An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Apr 22 17:58:35 2016 +0000
Revision:
53:9b2611964afc
Parent:
52:8298b2a73eb2
Child:
54:fd77a6b2f76c
Save some debugging instrumentation to be removed for release

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 35:e959ffba78fd 3 // New for 2016: dynamic configuration! To configure the controller, connect
mjr 35:e959ffba78fd 4 // the KL25Z to your PC, install the .bin file, and run the Windows config tool.
mjr 35:e959ffba78fd 5 // There's no need (as there was in the past) to edit this file or to compile a
mjr 35:e959ffba78fd 6 // custom version of the binary (.bin) to customize setup options.
mjr 35:e959ffba78fd 7 //
mjr 35:e959ffba78fd 8 // In earlier versions, configuration was largely handled with compile-time
mjr 35:e959ffba78fd 9 // constants. To customize the setup, you had to create a private forked copy
mjr 35:e959ffba78fd 10 // of the source code, edit the constants defined in config.h, and compile a
mjr 35:e959ffba78fd 11 // custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 12 //
mjr 35:e959ffba78fd 13 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 14 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 15 // version just to make a configurable change. Of course, you're still free
mjr 35:e959ffba78fd 16 // to create a custom version if you need to add or change features in ways
mjr 35:e959ffba78fd 17 // that weren't anticipated in the original design.
mjr 35:e959ffba78fd 18 //
mjr 35:e959ffba78fd 19
mjr 48:058ace2aed1d 20 // $$$ TESTING CONFIGURATIONS
mjr 48:058ace2aed1d 21 #define TEST_CONFIG_EXPAN 0
mjr 48:058ace2aed1d 22 #define TEST_CONFIG_CAB 1
mjr 52:8298b2a73eb2 23 #define TEST_KEEP_PRINTF 0
mjr 48:058ace2aed1d 24
mjr 17:ab3cec0c8bf4 25
mjr 25:e22b88bd783a 26 #ifndef CONFIG_H
mjr 25:e22b88bd783a 27 #define CONFIG_H
mjr 17:ab3cec0c8bf4 28
mjr 35:e959ffba78fd 29 // Plunger type codes
mjr 35:e959ffba78fd 30 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 31 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 32 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 33 // versions.
mjr 35:e959ffba78fd 34 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 35 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 36 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 35:e959ffba78fd 37 const int PlungerType_TSL1412RS = 3; // TSL1412R linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 38 const int PlungerType_TSL1412RP = 4; // TSL1412R, parallel mode
mjr 35:e959ffba78fd 39 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 40 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 41 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 42
mjr 35:e959ffba78fd 43 // Accelerometer orientation codes
mjr 35:e959ffba78fd 44 // These values are part of the external USB interface
mjr 35:e959ffba78fd 45 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 46 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 47 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 48 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 49
mjr 35:e959ffba78fd 50 // input button types
mjr 53:9b2611964afc 51 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 52 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 53 const int BtnTypeKey = 2; // keyboard key
mjr 38:091e511ce8a0 54
mjr 38:091e511ce8a0 55 // input button flags
mjr 38:091e511ce8a0 56 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 57 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 58
mjr 40:cc0d9814522b 59 // button setup structure
mjr 40:cc0d9814522b 60 struct ButtonCfg
mjr 40:cc0d9814522b 61 {
mjr 40:cc0d9814522b 62 uint8_t pin; // physical input GPIO pin - a USB-to-PinName mapping index
mjr 40:cc0d9814522b 63 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 64 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 65 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 66 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 67 // keyboard -> val is USB scan code
mjr 40:cc0d9814522b 68 uint8_t flags; // key flags - a bitwise combination of BtnFlagXxx values
mjr 40:cc0d9814522b 69
mjr 40:cc0d9814522b 70 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 71 {
mjr 40:cc0d9814522b 72 this->pin = pin;
mjr 40:cc0d9814522b 73 this->typ = typ;
mjr 40:cc0d9814522b 74 this->val = val;
mjr 40:cc0d9814522b 75 this->flags = flags;
mjr 40:cc0d9814522b 76 }
mjr 40:cc0d9814522b 77
mjr 40:cc0d9814522b 78 } __attribute__((packed));
mjr 40:cc0d9814522b 79
mjr 33:d832bcab089e 80
mjr 35:e959ffba78fd 81 // maximum number of input button mappings
mjr 53:9b2611964afc 82 const int MAX_EXT_BUTTONS = 32; // buttons visible through USB interface
mjr 53:9b2611964afc 83 const int VIRTUAL_BUTTONS = 1; // number of internal virtual buttons
mjr 53:9b2611964afc 84 const int ZBL_BUTTON = MAX_EXT_BUTTONS; // index of virtual ZB Launch Ball button
mjr 53:9b2611964afc 85 const int MAX_BUTTONS = MAX_EXT_BUTTONS + VIRTUAL_BUTTONS; // total button slots
mjr 33:d832bcab089e 86
mjr 35:e959ffba78fd 87 // LedWiz output port type codes
mjr 35:e959ffba78fd 88 // These values are part of the external USB interface
mjr 35:e959ffba78fd 89 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 90 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 91 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 92 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 93 const int PortType74HC595 = 4; // 74HC595 port
mjr 53:9b2611964afc 94 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 53:9b2611964afc 95 // to a physical output
mjr 17:ab3cec0c8bf4 96
mjr 35:e959ffba78fd 97 // LedWiz output port flag bits
mjr 38:091e511ce8a0 98 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 99 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 100 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 101
mjr 35:e959ffba78fd 102 // maximum number of output ports
mjr 48:058ace2aed1d 103 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 104
mjr 38:091e511ce8a0 105 // port configuration data
mjr 38:091e511ce8a0 106 struct LedWizPortCfg
mjr 38:091e511ce8a0 107 {
mjr 38:091e511ce8a0 108 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 109 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 110 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 111 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 112 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 113 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 114
mjr 40:cc0d9814522b 115 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 116 {
mjr 40:cc0d9814522b 117 this->typ = typ;
mjr 40:cc0d9814522b 118 this->pin = pin;
mjr 40:cc0d9814522b 119 this->flags = flags;
mjr 40:cc0d9814522b 120 }
mjr 40:cc0d9814522b 121
mjr 38:091e511ce8a0 122 } __attribute__((packed));
mjr 38:091e511ce8a0 123
mjr 38:091e511ce8a0 124
mjr 53:9b2611964afc 125 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 126 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 127 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 128 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 129
mjr 35:e959ffba78fd 130 struct Config
mjr 35:e959ffba78fd 131 {
mjr 35:e959ffba78fd 132 // set all values to factory defaults
mjr 35:e959ffba78fd 133 void setFactoryDefaults()
mjr 35:e959ffba78fd 134 {
mjr 35:e959ffba78fd 135 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 136 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 137 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 138 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 139 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 140 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 141 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 142 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 143 // default that most people won't have to change.
mjr 35:e959ffba78fd 144 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 145 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 35:e959ffba78fd 146 psUnitNo = 8;
mjr 35:e959ffba78fd 147
mjr 51:57eb311faafa 148 // set a disconnect reboot timeout of 10 seconds by default
mjr 51:57eb311faafa 149 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 150
mjr 35:e959ffba78fd 151 // enable joystick reports
mjr 35:e959ffba78fd 152 joystickEnabled = true;
mjr 35:e959ffba78fd 153
mjr 35:e959ffba78fd 154 // assume standard orientation, with USB ports toward front of cabinet
mjr 35:e959ffba78fd 155 orientation = OrientationFront;
mjr 25:e22b88bd783a 156
mjr 52:8298b2a73eb2 157 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 158 expan.typ = 0;
mjr 53:9b2611964afc 159 expan.vsn = 0;
mjr 53:9b2611964afc 160 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 161
mjr 35:e959ffba78fd 162 // assume no plunger is attached
mjr 35:e959ffba78fd 163 plunger.enabled = false;
mjr 35:e959ffba78fd 164 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 165
mjr 48:058ace2aed1d 166 #if TEST_CONFIG_EXPAN || TEST_CONFIG_CAB // $$$
mjr 43:7a6364d82a41 167 plunger.enabled = true;
mjr 43:7a6364d82a41 168 plunger.sensorType = PlungerType_TSL1410RS;
mjr 53:9b2611964afc 169 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 170 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 171 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 172 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 173 #endif
mjr 43:7a6364d82a41 174
mjr 48:058ace2aed1d 175 // default plunger calibration button settings
mjr 53:9b2611964afc 176 plunger.cal.btn = PINNAME_TO_WIRE(PTE29);
mjr 53:9b2611964afc 177 plunger.cal.led = PINNAME_TO_WIRE(PTE23);
mjr 35:e959ffba78fd 178
mjr 44:b5ac89b9cd5d 179 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 180 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 181
mjr 35:e959ffba78fd 182 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 183 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 53:9b2611964afc 184 plunger.zbLaunchBall.keytype = 2; // keyboard key
mjr 53:9b2611964afc 185 plunger.zbLaunchBall.keycode = 0x28; // Enter key (USB scan code)
mjr 53:9b2611964afc 186 plunger.zbLaunchBall.pushDistance = 63; // about 1/16"
mjr 35:e959ffba78fd 187
mjr 35:e959ffba78fd 188 // assume no TV ON switch
mjr 53:9b2611964afc 189 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 190 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 191 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 192 TVON.delayTime = 700; // 7 seconds
mjr 48:058ace2aed1d 193 #if TEST_CONFIG_EXPAN //$$$
mjr 53:9b2611964afc 194 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 195 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 196 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 197 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 198 #endif
mjr 53:9b2611964afc 199
mjr 53:9b2611964afc 200 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 201 nightMode.btn = 0;
mjr 53:9b2611964afc 202 nightMode.flags = 0;
mjr 53:9b2611964afc 203 nightMode.port = 0;
mjr 35:e959ffba78fd 204
mjr 35:e959ffba78fd 205 // assume no TLC5940 chips
mjr 35:e959ffba78fd 206 tlc5940.nchips = 0;
mjr 48:058ace2aed1d 207 #if TEST_CONFIG_EXPAN // $$$
mjr 48:058ace2aed1d 208 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 209 #endif
mjr 38:091e511ce8a0 210
mjr 38:091e511ce8a0 211 // default TLC5940 pin assignments
mjr 53:9b2611964afc 212 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 213 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 214 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 53:9b2611964afc 215 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 53:9b2611964afc 216 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 35:e959ffba78fd 217
mjr 35:e959ffba78fd 218 // assume no 74HC595 chips
mjr 35:e959ffba78fd 219 hc595.nchips = 0;
mjr 48:058ace2aed1d 220 #if TEST_CONFIG_EXPAN // $$$
mjr 48:058ace2aed1d 221 hc595.nchips = 1;
mjr 40:cc0d9814522b 222 #endif
mjr 40:cc0d9814522b 223
mjr 38:091e511ce8a0 224 // default 74HC595 pin assignments
mjr 53:9b2611964afc 225 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 226 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 227 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 228 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 229
mjr 35:e959ffba78fd 230 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 231 outPort[0].typ = PortTypeDisabled;
mjr 53:9b2611964afc 232
mjr 35:e959ffba78fd 233 // initially configure with no input buttons
mjr 35:e959ffba78fd 234 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 235 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 236
mjr 48:058ace2aed1d 237 #if TEST_CONFIG_EXPAN | TEST_CONFIG_CAB
mjr 38:091e511ce8a0 238 for (int i = 0 ; i < 24 ; ++i) {
mjr 38:091e511ce8a0 239 static int bp[] = {
mjr 53:9b2611964afc 240 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 241 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 242 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 243 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 244 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 245 #if TEST_CONFIG_EXPAN
mjr 53:9b2611964afc 246 PINNAME_TO_WIRE(PTC11), // 6
mjr 53:9b2611964afc 247 #elif TEST_CONFIG_CAB
mjr 53:9b2611964afc 248 PINNAME_TO_WIRE(PTE22), // 6
mjr 48:058ace2aed1d 249 #endif
mjr 53:9b2611964afc 250 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 251 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 252 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 253 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 254 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 255 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 256 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 257 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 258 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 259 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 260 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 261 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 262 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 263 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 264 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 265 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 266 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 267 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 268 };
mjr 48:058ace2aed1d 269 button[i].set(bp[i],
mjr 48:058ace2aed1d 270 #if TEST_CONFIG_EXPAN
mjr 48:058ace2aed1d 271 BtnTypeKey, i+4); // keyboard key A, B, C...
mjr 48:058ace2aed1d 272 #elif TEST_CONFIG_CAB
mjr 53:9b2611964afc 273 BtnTypeJoystick, i+1); // joystick button 0, 1, ...
mjr 48:058ace2aed1d 274 #endif
mjr 48:058ace2aed1d 275
mjr 38:091e511ce8a0 276 }
mjr 38:091e511ce8a0 277 #endif
mjr 38:091e511ce8a0 278
mjr 38:091e511ce8a0 279 #if 0
mjr 38:091e511ce8a0 280 button[23].typ = BtnTypeJoystick;
mjr 38:091e511ce8a0 281 button[23].val = 5; // B
mjr 38:091e511ce8a0 282 button[23].flags = 0x01; // pulse button
mjr 38:091e511ce8a0 283
mjr 38:091e511ce8a0 284 button[22].typ = BtnTypeModKey;
mjr 53:9b2611964afc 285 button[22].val = 0xE1; // left shift
mjr 38:091e511ce8a0 286
mjr 53:9b2611964afc 287 button[21].typ = BtnTypeKey;
mjr 53:9b2611964afc 288 button[21].val = 0x81; // vol down
mjr 38:091e511ce8a0 289
mjr 53:9b2611964afc 290 button[20].typ = BtnTypeKey;
mjr 53:9b2611964afc 291 button[20].val = 0x80; // vol up
mjr 39:b3815a1c3802 292
mjr 38:091e511ce8a0 293 #endif
mjr 38:091e511ce8a0 294
mjr 43:7a6364d82a41 295
mjr 48:058ace2aed1d 296 #if TEST_CONFIG_EXPAN // $$$
mjr 40:cc0d9814522b 297 // CONFIGURE EXPANSION BOARD PORTS
mjr 40:cc0d9814522b 298 //
mjr 40:cc0d9814522b 299 // We have the following hardware attached:
mjr 40:cc0d9814522b 300 //
mjr 40:cc0d9814522b 301 // Main board
mjr 40:cc0d9814522b 302 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 303 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 304 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 305 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 306 //
mjr 40:cc0d9814522b 307 // Power board:
mjr 40:cc0d9814522b 308 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 309 //
mjr 40:cc0d9814522b 310 // Chime board:
mjr 40:cc0d9814522b 311 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 312 //
mjr 38:091e511ce8a0 313 {
mjr 38:091e511ce8a0 314 int n = 0;
mjr 40:cc0d9814522b 315
mjr 40:cc0d9814522b 316 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 317 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 318 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 319 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 320
mjr 53:9b2611964afc 321 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 322 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 323
mjr 40:cc0d9814522b 324 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 325 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 326 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 327
mjr 40:cc0d9814522b 328 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 329 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 330 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 40:cc0d9814522b 331
mjr 40:cc0d9814522b 332 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 333 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 334 outPort[n++].set(PortType74HC595, i);
mjr 40:cc0d9814522b 335
mjr 40:cc0d9814522b 336 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 337 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 338 }
mjr 38:091e511ce8a0 339 #endif
mjr 48:058ace2aed1d 340
mjr 48:058ace2aed1d 341 #if TEST_CONFIG_CAB
mjr 48:058ace2aed1d 342 #if TEST_KEEP_PRINTF
mjr 53:9b2611964afc 343 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is UART)
mjr 53:9b2611964afc 344 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is UART)
mjr 48:058ace2aed1d 345 #else
mjr 53:9b2611964afc 346 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 347 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 348 #endif
mjr 53:9b2611964afc 349 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 350 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 351 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 352 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 353 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 354 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 355 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 356 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 357 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 358 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 359 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 360 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 361 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 362 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 363 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 364 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 365 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 366 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 367 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 368 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 369 #endif
mjr 48:058ace2aed1d 370
mjr 38:091e511ce8a0 371 #if 0
mjr 40:cc0d9814522b 372 // configure the on-board RGB LED as outputs 1,2,3
mjr 53:9b2611964afc 373 outPort[0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(LED1), PortFlagActiveLow); // PTB18 = LED1 = Red LED
mjr 53:9b2611964afc 374 outPort[1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(LED2), PortFlagActiveLow); // PTB19 = LED2 = Green LED
mjr 53:9b2611964afc 375 outPort[2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(LED3), PortFlagActiveLow); // PTD1 = LED3 = Blue LED
mjr 38:091e511ce8a0 376 outPort[3].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 377 #endif
mjr 35:e959ffba78fd 378 }
mjr 35:e959ffba78fd 379
mjr 35:e959ffba78fd 380 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 381
mjr 35:e959ffba78fd 382 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 383 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 384 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 385 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 386 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 387 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 388 // for open-source USB projects).
mjr 35:e959ffba78fd 389 uint16_t usbVendorID;
mjr 35:e959ffba78fd 390 uint16_t usbProductID;
mjr 35:e959ffba78fd 391
mjr 35:e959ffba78fd 392 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 393 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 394 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 395 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 396 uint8_t psUnitNo;
mjr 35:e959ffba78fd 397
mjr 35:e959ffba78fd 398 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 399 // use the device as purely an output controller.
mjr 35:e959ffba78fd 400 char joystickEnabled;
mjr 35:e959ffba78fd 401
mjr 51:57eb311faafa 402 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 403 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 404 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 405 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 406 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 407 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 408 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 409
mjr 35:e959ffba78fd 410 // --- ACCELEROMETER ---
mjr 35:e959ffba78fd 411
mjr 35:e959ffba78fd 412 // accelerometer orientation (ORIENTATION_xxx value)
mjr 35:e959ffba78fd 413 char orientation;
mjr 35:e959ffba78fd 414
mjr 35:e959ffba78fd 415
mjr 52:8298b2a73eb2 416 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 417 struct
mjr 52:8298b2a73eb2 418 {
mjr 53:9b2611964afc 419 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 420 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 421 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 422 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 423
mjr 52:8298b2a73eb2 424 } expan;
mjr 52:8298b2a73eb2 425
mjr 52:8298b2a73eb2 426
mjr 35:e959ffba78fd 427 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 428 struct
mjr 35:e959ffba78fd 429 {
mjr 35:e959ffba78fd 430 // plunger enabled/disabled
mjr 35:e959ffba78fd 431 char enabled;
mjr 33:d832bcab089e 432
mjr 35:e959ffba78fd 433 // plunger sensor type
mjr 35:e959ffba78fd 434 char sensorType;
mjr 35:e959ffba78fd 435
mjr 35:e959ffba78fd 436 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 437 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 438 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 439 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 440 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 441 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 442 //
mjr 35:e959ffba78fd 443 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 444 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 445 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 446 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 447 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 450 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 451
mjr 53:9b2611964afc 452 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 453 //
mjr 35:e959ffba78fd 454 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 455 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 456 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 457 //
mjr 35:e959ffba78fd 458 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 459 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 460 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 461 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 462 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 463 //
mjr 53:9b2611964afc 464 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 465 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 466 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 467 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 468 // plunger and Launch button input).
mjr 35:e959ffba78fd 469 //
mjr 40:cc0d9814522b 470 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 471 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 472 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 473 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 474 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 475 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 476 // Pub").
mjr 35:e959ffba78fd 477 struct
mjr 35:e959ffba78fd 478 {
mjr 53:9b2611964afc 479 uint8_t port;
mjr 53:9b2611964afc 480 uint8_t keytype;
mjr 53:9b2611964afc 481 uint8_t keycode;
mjr 53:9b2611964afc 482 uint16_t pushDistance;
mjr 35:e959ffba78fd 483
mjr 35:e959ffba78fd 484 } zbLaunchBall;
mjr 35:e959ffba78fd 485
mjr 35:e959ffba78fd 486 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 487 struct
mjr 35:e959ffba78fd 488 {
mjr 35:e959ffba78fd 489 // has the plunger been calibrated?
mjr 53:9b2611964afc 490 bool calibrated;
mjr 35:e959ffba78fd 491
mjr 35:e959ffba78fd 492 // calibration button switch pin
mjr 53:9b2611964afc 493 uint8_t btn;
mjr 35:e959ffba78fd 494
mjr 35:e959ffba78fd 495 // calibration button indicator light pin
mjr 53:9b2611964afc 496 uint8_t led;
mjr 35:e959ffba78fd 497
mjr 48:058ace2aed1d 498 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 499 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 500 // readings.
mjr 48:058ace2aed1d 501 //
mjr 48:058ace2aed1d 502 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 503 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 504 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 505 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 506 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 507 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 508 uint16_t min;
mjr 48:058ace2aed1d 509 uint16_t zero;
mjr 48:058ace2aed1d 510 uint16_t max;
mjr 52:8298b2a73eb2 511
mjr 52:8298b2a73eb2 512 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 513 uint8_t tRelease;
mjr 35:e959ffba78fd 514
mjr 44:b5ac89b9cd5d 515 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 516 void setDefaults()
mjr 35:e959ffba78fd 517 {
mjr 44:b5ac89b9cd5d 518 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 519 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 520 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 521 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 522 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 523 }
mjr 44:b5ac89b9cd5d 524
mjr 44:b5ac89b9cd5d 525 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 526 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 527 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 528 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 529 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 530 void begin()
mjr 44:b5ac89b9cd5d 531 {
mjr 48:058ace2aed1d 532 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 533 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 534 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 535 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 536 }
mjr 17:ab3cec0c8bf4 537
mjr 35:e959ffba78fd 538 } cal;
mjr 18:5e890ebd0023 539
mjr 35:e959ffba78fd 540 } plunger;
mjr 29:582472d0bc57 541
mjr 35:e959ffba78fd 542
mjr 35:e959ffba78fd 543 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 544 //
mjr 35:e959ffba78fd 545 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 546 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 547 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 548 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 549 struct
mjr 35:e959ffba78fd 550 {
mjr 35:e959ffba78fd 551 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 552 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 553 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 554 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 555 uint8_t statusPin;
mjr 35:e959ffba78fd 556
mjr 35:e959ffba78fd 557 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 558 uint8_t latchPin;
mjr 35:e959ffba78fd 559
mjr 35:e959ffba78fd 560 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 561 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 562 uint8_t relayPin;
mjr 35:e959ffba78fd 563
mjr 40:cc0d9814522b 564 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 565 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 566 // TV ON switch relay.
mjr 40:cc0d9814522b 567 int delayTime;
mjr 35:e959ffba78fd 568
mjr 35:e959ffba78fd 569 } TVON;
mjr 35:e959ffba78fd 570
mjr 53:9b2611964afc 571 // --- Night Mode ---
mjr 53:9b2611964afc 572 struct
mjr 53:9b2611964afc 573 {
mjr 53:9b2611964afc 574 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0=disabled)
mjr 53:9b2611964afc 575 uint8_t flags; // flags:
mjr 53:9b2611964afc 576 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 53:9b2611964afc 577 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0=disabled)
mjr 53:9b2611964afc 578 } nightMode;
mjr 53:9b2611964afc 579
mjr 29:582472d0bc57 580
mjr 35:e959ffba78fd 581 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 582 struct
mjr 35:e959ffba78fd 583 {
mjr 35:e959ffba78fd 584 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 585 int nchips;
mjr 35:e959ffba78fd 586
mjr 53:9b2611964afc 587 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 588 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 589 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 590 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 591 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 592 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 593 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 594
mjr 35:e959ffba78fd 595 } tlc5940;
mjr 35:e959ffba78fd 596
mjr 35:e959ffba78fd 597
mjr 35:e959ffba78fd 598 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 599 struct
mjr 35:e959ffba78fd 600 {
mjr 35:e959ffba78fd 601 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 602 int nchips;
mjr 35:e959ffba78fd 603
mjr 35:e959ffba78fd 604 // pin connections
mjr 53:9b2611964afc 605 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 606 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 607 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 608 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 609
mjr 35:e959ffba78fd 610 } hc595;
mjr 34:6b981a2afab7 611
mjr 25:e22b88bd783a 612
mjr 35:e959ffba78fd 613 // --- Button Input Setup ---
mjr 40:cc0d9814522b 614 ButtonCfg button[MAX_BUTTONS] __attribute__((packed));
mjr 17:ab3cec0c8bf4 615
mjr 35:e959ffba78fd 616 // --- LedWiz Output Port Setup ---
mjr 38:091e511ce8a0 617 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 618
mjr 17:ab3cec0c8bf4 619 };
mjr 17:ab3cec0c8bf4 620
mjr 35:e959ffba78fd 621 #endif