An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Tue May 09 05:48:37 2017 +0000
Revision:
87:8d35c74403af
Parent:
86:e30a1f60f783
Child:
88:98bce687e6c0
AEDR-8300, VL6180X, TLC59116; new plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 79:682ae3171a08 64 // 0x40 -> configuration saved successfully (see below)
mjr 40:cc0d9814522b 65 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 66 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 67 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 68 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 70 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 71 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 72 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 73 // xx high byte of X position
mjr 39:b3815a1c3802 74 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 75 // yy high byte of Y position
mjr 39:b3815a1c3802 76 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 77 // zz high byte of Z position
mjr 39:b3815a1c3802 78 //
mjr 39:b3815a1c3802 79 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 80 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 81 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 82 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 83 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 84 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 85 // is pushed forward of the park position.
mjr 39:b3815a1c3802 86 //
mjr 79:682ae3171a08 87 // Status bit 0x40 is set after a successful configuration update via special
mjr 79:682ae3171a08 88 // command 65 6 (save config to flash). The device always reboots after this
mjr 79:682ae3171a08 89 // command, so if the host wants to receive a status update verifying the
mjr 79:682ae3171a08 90 // save, it has to request a non-zero reboot delay in the message to allow
mjr 79:682ae3171a08 91 // us time to send at least one of these status reports after the save.
mjr 79:682ae3171a08 92 // This bit is only sent after a successful save, which means that the flash
mjr 79:682ae3171a08 93 // write succeeded and the written sectors verified as correct.
mjr 82:4f6209cb5c33 94 // NOTE: older firmware versions didn't support this status bit, so clients
mjr 82:4f6209cb5c33 95 // can't interpret the lack of a response as a failure for older versions.
mjr 82:4f6209cb5c33 96 // To determine if the flag is supported, check the config report feature
mjr 82:4f6209cb5c33 97 // flags.
mjr 82:4f6209cb5c33 98 //
mjr 79:682ae3171a08 99 //
mjr 39:b3815a1c3802 100 // 2. Special reports
mjr 35:e959ffba78fd 101 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 102 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 103 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 104 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 105 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 106 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 107 //
mjr 39:b3815a1c3802 108 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 109 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 110 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 111 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 112 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 113 //
mjr 52:8298b2a73eb2 114 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 115 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 116 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 117 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 118 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 119 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 120 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 121 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 122 //
mjr 52:8298b2a73eb2 123 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 124 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 125 //
mjr 52:8298b2a73eb2 126 // bytes 0:1 = 0x87FF
mjr 86:e30a1f60f783 127 // byte 2 = 0 -> first status report packet
mjr 52:8298b2a73eb2 128 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 129 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 130 // the sensor isn't an imaging type.
mjr 86:e30a1f60f783 131 // bytes 5:6 = current plunger position registered on the sensor. This
mjr 86:e30a1f60f783 132 // is on the *native* scale for the sensor, which might be
mjr 86:e30a1f60f783 133 // different from joystick units. By default, the native
mjr 86:e30a1f60f783 134 // scale is the number of pixels for an imaging sensor, or
mjr 86:e30a1f60f783 135 // 4096 for other sensor types. The actual native scale can
mjr 86:e30a1f60f783 136 // be reported separately via a second status report message
mjr 86:e30a1f60f783 137 // (see below).
mjr 52:8298b2a73eb2 138 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 139 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 140 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 141 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 142 // are sent for this reading)
mjr 52:8298b2a73eb2 143 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 144 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 145 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 146 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 147 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 148 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 149 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 150 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 151 // sample.
mjr 52:8298b2a73eb2 152 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 153 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 154 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 155 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 156 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 157 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 158 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 159 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 160 // the ADC sample.
mjr 52:8298b2a73eb2 161 //
mjr 86:e30a1f60f783 162 // An optional second message provides additional information:
mjr 86:e30a1f60f783 163 //
mjr 86:e30a1f60f783 164 // bytes 0:1 = 0x87FF
mjr 86:e30a1f60f783 165 // byte 2 = 1 -> second status report packet
mjr 86:e30a1f60f783 166 // bytes 3:4 = Native sensor scale. This is the actual native scale
mjr 86:e30a1f60f783 167 // used for the position report in the first status report
mjr 86:e30a1f60f783 168 // packet above.
mjr 86:e30a1f60f783 169 // bytes 5:6 = Jitter window lower bound, in native sensor scale units.
mjr 86:e30a1f60f783 170 // bytes 7:8 = Jitter window upper bound, in native sensor scale units.
mjr 86:e30a1f60f783 171 // The jitter window bounds reflect the current jitter filter
mjr 86:e30a1f60f783 172 // status as of this reading.
mjr 86:e30a1f60f783 173 // bytes 9:10 = Raw sensor reading before jitter filter was applied.
mjr 86:e30a1f60f783 174 // bytes 11:12 = Auto-exposure time in microseconds
mjr 87:8d35c74403af 175 //
mjr 87:8d35c74403af 176 // An optional third message provides additional information specifically
mjr 87:8d35c74403af 177 // for bar-code sensors:
mjr 87:8d35c74403af 178 //
mjr 87:8d35c74403af 179 // bytes 0:1 = 0x87FF
mjr 87:8d35c74403af 180 // byte 2 = 2 -> bar code status report
mjr 87:8d35c74403af 181 // byte 3 = number of bits in bar code
mjr 87:8d35c74403af 182 // byte 4 = bar code type:
mjr 87:8d35c74403af 183 // 1 = Gray code/Manchester bit coding
mjr 87:8d35c74403af 184 // bytes 5:6 = pixel offset of first bit
mjr 87:8d35c74403af 185 // byte 7 = width in pixels of each bit
mjr 87:8d35c74403af 186 // bytes 8:9 = raw bar code bits
mjr 87:8d35c74403af 187 // bytes 10:11 = mask of successfully read bar code bits; a '1' bit means
mjr 87:8d35c74403af 188 // that the bit was read successfully, '0' means the bit was
mjr 87:8d35c74403af 189 // unreadable
mjr 86:e30a1f60f783 190 //
mjr 86:e30a1f60f783 191 //
mjr 52:8298b2a73eb2 192 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 193 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 194 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 195 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 196 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 197 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 198 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 199 // if the sensor is an imaging type, since the transmission time for the
mjr 87:8d35c74403af 200 // pixels would interfere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 201 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 202 // pixel packet is:
mjr 35:e959ffba78fd 203 //
mjr 35:e959ffba78fd 204 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 205 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 206 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 207 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 208 // indicate pixel #0.
mjr 47:df7a88cd249c 209 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 210 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 211 // etc for the rest of the packet
mjr 35:e959ffba78fd 212 //
mjr 52:8298b2a73eb2 213 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 214 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 215 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 216 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 217 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 218 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 219 // format here accordingly.
mjr 51:57eb311faafa 220 //
mjr 51:57eb311faafa 221 //
mjr 53:9b2611964afc 222 // 2B. Configuration report.
mjr 39:b3815a1c3802 223 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 224 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 225 //
mjr 35:e959ffba78fd 226 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 227 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 228 // reports and from other special report types.
mjr 74:822a92bc11d2 229 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 230 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 231 // active configuration.
mjr 75:677892300e7a 232 // byte 4 = Pinscape unit number (0-15), little endian
mjr 75:677892300e7a 233 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 234 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 235 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 236 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 237 // byte 11 = bit flags:
mjr 40:cc0d9814522b 238 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 239 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 240 // has been sent from the host
mjr 74:822a92bc11d2 241 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 242 // that these features are present in this version.
mjr 78:1e00b3fa11af 243 // 0x04 -> new accelerometer features supported (adjustable
mjr 78:1e00b3fa11af 244 // dynamic range, auto-centering on/off, adjustable
mjr 78:1e00b3fa11af 245 // auto-centering time)
mjr 82:4f6209cb5c33 246 // 0x08 -> flash write status flag supported (see flag 0x40
mjr 82:4f6209cb5c33 247 // in normal joystick status report)
mjr 73:4e8ce0b18915 248 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 249 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 250 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 251 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 252 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 253 // the set of features enabled.
mjr 35:e959ffba78fd 254 //
mjr 53:9b2611964afc 255 // 2C. Device ID report.
mjr 40:cc0d9814522b 256 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 257 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 258 //
mjr 52:8298b2a73eb2 259 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 260 // to distinguish this from other report types.
mjr 53:9b2611964afc 261 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 262 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 263 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 264 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 265 //
mjr 53:9b2611964afc 266 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 267 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 268 //
mjr 53:9b2611964afc 269 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 270 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 271 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 272 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 273 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 274 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 275 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 276 //
mjr 53:9b2611964afc 277 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 278 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 279 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 280 //
mjr 52:8298b2a73eb2 281 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 282 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 283 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 284 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 285 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 286 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 287 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 288 //
mjr 53:9b2611964afc 289 // 2E. Software build information report.
mjr 53:9b2611964afc 290 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 291 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 292 //
mjr 73:4e8ce0b18915 293 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 294 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 295 // other report types.
mjr 53:9b2611964afc 296 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 297 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 298 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 299 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 300 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 301 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 302 // build time on a 24-hour clock.
mjr 53:9b2611964afc 303 //
mjr 73:4e8ce0b18915 304 // 2F. Button status report.
mjr 73:4e8ce0b18915 305 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 306 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 307 //
mjr 77:0b96f6867312 308 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 309 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 310 // report types.
mjr 73:4e8ce0b18915 311 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 312 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 313 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 314 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 315 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 316 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 317 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 318 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 319 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 320 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 321 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 322 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 323 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 324 //
mjr 77:0b96f6867312 325 // 2G. IR sensor data report.
mjr 77:0b96f6867312 326 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 327 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 328 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 329 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 330 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 331 // the command.
mjr 52:8298b2a73eb2 332 //
mjr 77:0b96f6867312 333 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 334 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 335 // report types.
mjr 77:0b96f6867312 336 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 337 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 338 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 339 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 340 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 341 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 342 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 343 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 344 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 345 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 346 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 347 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 348 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 349 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 350 // nothing is being transmitted.
mjr 77:0b96f6867312 351 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 352 // (etc for remaining reports)
mjr 77:0b96f6867312 353 //
mjr 77:0b96f6867312 354 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 355 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 356 // session.
mjr 77:0b96f6867312 357 //
mjr 77:0b96f6867312 358 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 359 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 360 // of the raw data:
mjr 77:0b96f6867312 361 //
mjr 77:0b96f6867312 362 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 363 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 364 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 365 // byte 4 = bit flags:
mjr 77:0b96f6867312 366 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 367 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 368 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 369 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 370 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 371 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 372 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 373 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 374 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 375 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 376 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 377 // bits or sequencing codes).
mjr 77:0b96f6867312 378 //
mjr 77:0b96f6867312 379 //
mjr 77:0b96f6867312 380 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 381 //
mjr 35:e959ffba78fd 382 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 383 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 384 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 385 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 386 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 387 //
mjr 77:0b96f6867312 388 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 389 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 390 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 391 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 392 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 393 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 394 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 395 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 396 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 397 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 398 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 399 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 400 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 401 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 402 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 403 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 404 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 405 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 406 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 407 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 408
mjr 35:e959ffba78fd 409
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 412 //
mjr 35:e959ffba78fd 413 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 414 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 415 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 416 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 417 //
mjr 35:e959ffba78fd 418 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 419 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 420 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 421 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 422 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 423 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 424 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 425
mjr 35:e959ffba78fd 426 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 427 //
mjr 74:822a92bc11d2 428 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 429 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 430 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 431 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 432 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 433 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 434 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 435 // meaning in the original protocol.
mjr 35:e959ffba78fd 436 //
mjr 74:822a92bc11d2 437 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 438 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 439 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 440 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 441 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 442 //
mjr 35:e959ffba78fd 443 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 444 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 445 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 446 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 447 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 448 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 449 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 450 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 451 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 452 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 453 //
mjr 35:e959ffba78fd 454 //
mjr 74:822a92bc11d2 455 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 456 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 457 //
mjr 74:822a92bc11d2 458 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 459 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 460 // ranges.
mjr 74:822a92bc11d2 461 //
mjr 74:822a92bc11d2 462 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 463 // The valid values are:
mjr 35:e959ffba78fd 464 //
mjr 35:e959ffba78fd 465 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 466 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 467 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 468 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 469 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 470 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 471 //
mjr 74:822a92bc11d2 472 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 473 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 474 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 475 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 476 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 477 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 478 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 479 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 480 //
mjr 74:822a92bc11d2 481 //
mjr 35:e959ffba78fd 482
mjr 35:e959ffba78fd 483 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 484 //
mjr 35:e959ffba78fd 485 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 486 //
mjr 35:e959ffba78fd 487 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 488 // operation:
mjr 35:e959ffba78fd 489 //
mjr 39:b3815a1c3802 490 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 491 // USB endpoint.)
mjr 39:b3815a1c3802 492 //
mjr 35:e959ffba78fd 493 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 494 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 495 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 496 //
mjr 35:e959ffba78fd 497 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 498 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 499 //
mjr 35:e959ffba78fd 500 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 501 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 502 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 503 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 504 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 505 //
mjr 51:57eb311faafa 506 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 507 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 508 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 509 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 510 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 511 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 512 // sent. Parameters:
mjr 48:058ace2aed1d 513 //
mjr 48:058ace2aed1d 514 // third byte = bit flags:
mjr 51:57eb311faafa 515 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 516 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 517 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 518 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 519 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 520 // viewing in the config tool.
mjr 35:e959ffba78fd 521 //
mjr 53:9b2611964afc 522 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 523 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 524 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 525 // level for calibration purposes.
mjr 53:9b2611964afc 526 //
mjr 35:e959ffba78fd 527 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 528 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 529 // joystick reports.
mjr 35:e959ffba78fd 530 //
mjr 74:822a92bc11d2 531 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 532 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 533 // global flash speed to 2.
mjr 35:e959ffba78fd 534 //
mjr 35:e959ffba78fd 535 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 85:3c28aee81cde 536 // type 66 messages since the last reboot, then optionally reboots the
mjr 82:4f6209cb5c33 537 // device to put the changes into effect. If the flash write succeeds,
mjr 82:4f6209cb5c33 538 // we set the "flash write OK" bit in our status reports, which we
mjr 82:4f6209cb5c33 539 // continue sending between the successful write and the delayed reboot.
mjr 85:3c28aee81cde 540 // We don't set the bit or reboot if the write fails. If the "do not
mjr 85:3c28aee81cde 541 // reboot" flag is set, we still set the flag on success for the delay
mjr 85:3c28aee81cde 542 // time, then clear the flag.
mjr 35:e959ffba78fd 543 //
mjr 53:9b2611964afc 544 // third byte = delay time in seconds. The device will wait this long
mjr 82:4f6209cb5c33 545 // before disconnecting, to allow the PC to test for the success bit
mjr 82:4f6209cb5c33 546 // in the status report, and to perform any cleanup tasks while the
mjr 82:4f6209cb5c33 547 // device is still attached (e.g., modifying Windows device driver
mjr 82:4f6209cb5c33 548 // settings)
mjr 53:9b2611964afc 549 //
mjr 85:3c28aee81cde 550 // fourth byte = flags:
mjr 85:3c28aee81cde 551 // 0x01 -> do not reboot
mjr 85:3c28aee81cde 552 //
mjr 40:cc0d9814522b 553 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 554 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 555 // joystick reports.
mjr 40:cc0d9814522b 556 //
mjr 53:9b2611964afc 557 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 558 //
mjr 53:9b2611964afc 559 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 560 //
mjr 53:9b2611964afc 561 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 562 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 563 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 564 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 565 //
mjr 40:cc0d9814522b 566 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 567 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 568 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 569 //
mjr 52:8298b2a73eb2 570 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 571 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 572 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 573 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 574 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 575 //
mjr 53:9b2611964afc 576 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 577 // the software build information report (see above).
mjr 53:9b2611964afc 578 //
mjr 73:4e8ce0b18915 579 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 580 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 581 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 582 //
mjr 73:4e8ce0b18915 583 // 0 = turn relay off
mjr 73:4e8ce0b18915 584 // 1 = turn relay on
mjr 73:4e8ce0b18915 585 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 586 //
mjr 77:0b96f6867312 587 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 588 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 589 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 590 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 591 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 592 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 593 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 594 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 595 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 596 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 597 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 598 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 599 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 600 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 601 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 602 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 603 // press.
mjr 77:0b96f6867312 604 //
mjr 78:1e00b3fa11af 605 // 13 -> Get button status report. The device sends one button status
mjr 78:1e00b3fa11af 606 // report in response (see section "2F" above).
mjr 78:1e00b3fa11af 607 //
mjr 78:1e00b3fa11af 608 // 14 -> Manually center the accelerometer. This sets the accelerometer
mjr 78:1e00b3fa11af 609 // zero point to the running average of readings over the past few
mjr 78:1e00b3fa11af 610 // seconds.
mjr 78:1e00b3fa11af 611 //
mjr 78:1e00b3fa11af 612 // 15 -> Set up ad hoc IR command, part 1. This sets up the first part
mjr 78:1e00b3fa11af 613 // of an IR command to transmit. The device stores the data in an
mjr 78:1e00b3fa11af 614 // internal register for later use in message 65 16. Send the
mjr 78:1e00b3fa11af 615 // remainder of the command data with 65 16.
mjr 78:1e00b3fa11af 616 //
mjr 78:1e00b3fa11af 617 // byte 3 = IR protocol ID
mjr 78:1e00b3fa11af 618 // byte 4 = flags (IRFlagXxx bit flags)
mjr 78:1e00b3fa11af 619 // byte 5-8 = low-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 620 //
mjr 78:1e00b3fa11af 621 // 16 -> Finish and send an ad hoc IR command. Use message 65 15 first
mjr 78:1e00b3fa11af 622 // to set up the start of the command data, then send this message
mjr 78:1e00b3fa11af 623 // to fill in the rest of the data and transmit the command. Upon
mjr 78:1e00b3fa11af 624 // receiving this message, the device performs the transmission.
mjr 78:1e00b3fa11af 625 //
mjr 78:1e00b3fa11af 626 // byte 3-6 = high-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 627 //
mjr 73:4e8ce0b18915 628 //
mjr 35:e959ffba78fd 629 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 630 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 631 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 632 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 633 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 634 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 635 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 636 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 637 //
mjr 74:822a92bc11d2 638 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 639 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 640 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 641 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 642 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 643 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 644 //
mjr 74:822a92bc11d2 645 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 646 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 647 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 648 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 649 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 650 //
mjr 74:822a92bc11d2 651 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 652 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 653 //
mjr 74:822a92bc11d2 654 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 655 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 656 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 657 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 658 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 659 //
mjr 74:822a92bc11d2 660 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 661 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 662 //
mjr 74:822a92bc11d2 663 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 664 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 665 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 666 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 667 //
mjr 74:822a92bc11d2 668 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 669 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 670 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 671 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 672 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 673 //
mjr 74:822a92bc11d2 674 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 675 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 676 //
mjr 74:822a92bc11d2 677 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 678 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 679 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 680 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 681 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 682 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 683 //
mjr 74:822a92bc11d2 684 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 685 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 686 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 687 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 688 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 689 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 690 //
mjr 74:822a92bc11d2 691 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 692 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 693 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 694 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 695 // 68, pp,
mjr 74:822a92bc11d2 696 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 697 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 698 // };
mjr 74:822a92bc11d2 699 //
mjr 35:e959ffba78fd 700 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 701 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 702 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 703 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 704 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 705 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 706 //
mjr 35:e959ffba78fd 707 // 200 = outputs 1-7
mjr 35:e959ffba78fd 708 // 201 = outputs 8-14
mjr 35:e959ffba78fd 709 // 202 = outputs 15-21
mjr 35:e959ffba78fd 710 // ...
mjr 35:e959ffba78fd 711 // 228 = outputs 197-203
mjr 35:e959ffba78fd 712 //
mjr 53:9b2611964afc 713 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 714 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 715 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 716 //
mjr 53:9b2611964afc 717 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 718 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 719 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 720 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 721 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 722 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 723 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 724 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 725 //
mjr 35:e959ffba78fd 726 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 727 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 728 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 729 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 730 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 731 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 732 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 733 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 734 //
mjr 53:9b2611964afc 735 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 736 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 737 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 738 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 739 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 740 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 741
mjr 35:e959ffba78fd 742
mjr 35:e959ffba78fd 743 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 744 //
mjr 35:e959ffba78fd 745 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 746 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 747 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 748 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 749 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 750 //
mjr 77:0b96f6867312 751 // Variable IDs:
mjr 77:0b96f6867312 752 //
mjr 53:9b2611964afc 753 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 754 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 755 //
mjr 53:9b2611964afc 756 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 757 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 758 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 759 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 760 //
mjr 53:9b2611964afc 761 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 762 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 763 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 764 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 765 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 766 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 767 // of the firmware and the host software.
mjr 53:9b2611964afc 768 //
mjr 53:9b2611964afc 769 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 770 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 771 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 772 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 773 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 774 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 775 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 776 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 777 //
mjr 53:9b2611964afc 778 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 779 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 780 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 781 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 782 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 783 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 784 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 785 //
mjr 53:9b2611964afc 786 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 787 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 788 //
mjr 53:9b2611964afc 789 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 790 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 791 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 792 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 793 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 794 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 795 // you have any real LedWiz units).
mjr 53:9b2611964afc 796 //
mjr 53:9b2611964afc 797 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 798 //
mjr 55:4db125cd11a0 799 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 800 //
mjr 55:4db125cd11a0 801 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 802 //
mjr 55:4db125cd11a0 803 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 804 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 805 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 806 //
mjr 55:4db125cd11a0 807 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 808 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 809 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 810 // to generate keyboard key input.
mjr 55:4db125cd11a0 811 //
mjr 77:0b96f6867312 812 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 813 //
mjr 55:4db125cd11a0 814 // byte 3 -> orientation:
mjr 55:4db125cd11a0 815 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 816 // 1 = ports at left
mjr 55:4db125cd11a0 817 // 2 = ports at right
mjr 55:4db125cd11a0 818 // 3 = ports at rear
mjr 77:0b96f6867312 819 // byte 4 -> dynamic range
mjr 78:1e00b3fa11af 820 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G
mjr 78:1e00b3fa11af 821 // range; compatible with older versions)
mjr 77:0b96f6867312 822 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 823 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 824 // 3 = +/- 8G (8G hardware mode)
mjr 78:1e00b3fa11af 825 // byte 5 -> Auto-centering mode
mjr 78:1e00b3fa11af 826 // 0 = auto-centering on, 5 second timer (default, compatible
mjr 78:1e00b3fa11af 827 // with older versions)
mjr 78:1e00b3fa11af 828 // 1-60 = auto-centering on with the given time in seconds
mjr 78:1e00b3fa11af 829 // 61-245 = reserved
mjr 78:1e00b3fa11af 830 // 255 = auto-centering off; manual centering only
mjr 55:4db125cd11a0 831 //
mjr 55:4db125cd11a0 832 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 833 //
mjr 55:4db125cd11a0 834 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 835 // 0 = none (disabled)
mjr 82:4f6209cb5c33 836 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode, edge detection
mjr 82:4f6209cb5c33 837 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode, edge detection
mjr 55:4db125cd11a0 838 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 839 // represents the position reading with a single analog voltage
mjr 82:4f6209cb5c33 840 // 6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 841 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 82:4f6209cb5c33 842 // 8 = TSL1401CL linear image sensor, 128x1 pixel, bar code detection
mjr 82:4f6209cb5c33 843 // 9 = VL6180X time-of-flight distance sensor
mjr 55:4db125cd11a0 844 //
mjr 55:4db125cd11a0 845 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 846 // that aren't currently implemented but could be added in the future.
mjr 82:4f6209cb5c33 847 // Selecting these types will effectively disable the plunger. Note
mjr 82:4f6209cb5c33 848 // that sensor types 2 and 4 were formerly reserved for TSL14xx sensors
mjr 82:4f6209cb5c33 849 // in parallel wiring mode, but support for these is no longer planned,
mjr 82:4f6209cb5c33 850 // as the KL25Z's single ADC sampler makes it incapable of gaining any
mjr 82:4f6209cb5c33 851 // advantage from the parallel mode offered by the sensors. Those slots
mjr 82:4f6209cb5c33 852 // could be reassigned in the future for other sensors, since they were
mjr 82:4f6209cb5c33 853 // never enabled in any version of the firwmare.
mjr 55:4db125cd11a0 854 //
mjr 55:4db125cd11a0 855 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 856 //
mjr 55:4db125cd11a0 857 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 858 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 859 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 860 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 861 //
mjr 55:4db125cd11a0 862 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 863 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 864 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 82:4f6209cb5c33 865 // corresponding plunger type. "GPIO" means that any GPIO pin will work.
mjr 82:4f6209cb5c33 866 // AnalogIn and InterruptIn means that only pins with the respective
mjr 82:4f6209cb5c33 867 // capabilities can be chosen.
mjr 35:e959ffba78fd 868 //
mjr 55:4db125cd11a0 869 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 870 //
mjr 82:4f6209cb5c33 871 // TSL1410R/1412R/1401CL SI (GPIO) CLK (GPIO) AO (AnalogIn) NC
mjr 55:4db125cd11a0 872 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 873 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 874 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 82:4f6209cb5c33 875 // VL6180X SDA (GPIO) SCL (GPIO) GPIO0/CE (GPIO) NC
mjr 55:4db125cd11a0 876 //
mjr 55:4db125cd11a0 877 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 878 //
mjr 55:4db125cd11a0 879 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 880 // 0x01 button input is enabled
mjr 55:4db125cd11a0 881 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 882 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 883 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 884 //
mjr 55:4db125cd11a0 885 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 886 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 887 //
mjr 55:4db125cd11a0 888 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 889 //
mjr 55:4db125cd11a0 890 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 891 // byte 4 -> key type
mjr 55:4db125cd11a0 892 // byte 5 -> key code
mjr 55:4db125cd11a0 893 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 894 //
mjr 55:4db125cd11a0 895 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 896 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 897 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 898 //
mjr 35:e959ffba78fd 899 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 900 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 901 //
mjr 55:4db125cd11a0 902 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 903 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 904 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 905 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 906 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 907 //
mjr 55:4db125cd11a0 908 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 909 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 910 //
mjr 77:0b96f6867312 911 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 912 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 913 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 914 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 915 //
mjr 87:8d35c74403af 916 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 16 outputs
mjr 35:e959ffba78fd 917 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 918 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 919 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 920 //
mjr 35:e959ffba78fd 921 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 922 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 923 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 924 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 925 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 926 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 927 //
mjr 55:4db125cd11a0 928 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 929 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 930 //
mjr 35:e959ffba78fd 931 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 932 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 933 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 934 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 935 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 936 //
mjr 35:e959ffba78fd 937 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 938 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 939 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 940 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 941 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 942 //
mjr 55:4db125cd11a0 943 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 944 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 945 //
mjr 53:9b2611964afc 946 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 947 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 948 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 949 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 950 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 951 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 952 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 953 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 954 //
mjr 55:4db125cd11a0 955 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 956 //
mjr 53:9b2611964afc 957 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 958 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 959 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 960 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 961 // when installing a software update.
mjr 52:8298b2a73eb2 962 //
mjr 52:8298b2a73eb2 963 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 964 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 965 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 966 //
mjr 53:9b2611964afc 967 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 968 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 969 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 970 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 971 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 972 // all of the fields to zero.
mjr 52:8298b2a73eb2 973 //
mjr 53:9b2611964afc 974 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 975 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 976 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 977 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 978 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 979 //
mjr 53:9b2611964afc 980 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 981 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 982 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 983 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 984 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 985 //
mjr 55:4db125cd11a0 986 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 987 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 988 //
mjr 55:4db125cd11a0 989 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 990 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 991 //
mjr 55:4db125cd11a0 992 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 993 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 994 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 995 // byte 7 = number of chime boards
mjr 53:9b2611964afc 996 //
mjr 53:9b2611964afc 997 // 15 -> Night mode setup.
mjr 53:9b2611964afc 998 //
mjr 53:9b2611964afc 999 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 1000 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 1001 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 1002 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 1003 // even if no button is assigned.
mjr 55:4db125cd11a0 1004 //
mjr 53:9b2611964afc 1005 // byte 4 = flags:
mjr 66:2e3583fbd2f4 1006 //
mjr 66:2e3583fbd2f4 1007 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 1008 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 1009 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 1010 // toggles night mode.
mjr 55:4db125cd11a0 1011 //
mjr 66:2e3583fbd2f4 1012 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 1013 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 1014 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 1015 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 1016 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 1017 // the Shift button.
mjr 66:2e3583fbd2f4 1018 //
mjr 53:9b2611964afc 1019 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 1020 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 1021 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 1022 // the host.
mjr 53:9b2611964afc 1023 //
mjr 66:2e3583fbd2f4 1024 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 1025 // Button" that can be pressed to select a secondary meaning for other
mjr 78:1e00b3fa11af 1026 // buttons. This isn't the same as the PC keyboard Shift keys; those can
mjr 66:2e3583fbd2f4 1027 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 1028 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 1029 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 1030 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 1031 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 1032 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 1033 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 1034 //
mjr 78:1e00b3fa11af 1035 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none
mjr 78:1e00b3fa11af 1036 // byte 4 = mode (default is 0):
mjr 66:2e3583fbd2f4 1037 //
mjr 78:1e00b3fa11af 1038 // 0 -> Shift OR Key mode. In this mode, the Shift button doesn't
mjr 78:1e00b3fa11af 1039 // send its assigned key or IR command when initially pressed.
mjr 78:1e00b3fa11af 1040 // Instead, we wait to see if another button is pressed while
mjr 78:1e00b3fa11af 1041 // the Shift button is held down. If so, this Shift button
mjr 78:1e00b3fa11af 1042 // press ONLY counts as the Shift function, and its own assigned
mjr 78:1e00b3fa11af 1043 // key is NOT sent to the PC. On the other hand, if you press
mjr 78:1e00b3fa11af 1044 // the Shift button and then release it without having pressed
mjr 78:1e00b3fa11af 1045 // any other key in the meantime, this press counts as a regular
mjr 78:1e00b3fa11af 1046 // key press, so we send the assigned key to the PC.
mjr 78:1e00b3fa11af 1047 //
mjr 78:1e00b3fa11af 1048 // 1 -> Shift AND Key mode. In this mode, the Shift button sends its
mjr 78:1e00b3fa11af 1049 // assigned key when pressed, just like a normal button. If you
mjr 78:1e00b3fa11af 1050 // press another button while the Shift key is pressed, the
mjr 78:1e00b3fa11af 1051 // shifted meaning of the other key is used.
mjr 66:2e3583fbd2f4 1052 //
mjr 77:0b96f6867312 1053 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 1054 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 1055 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 1056 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 1057 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 1058 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 1059 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 1060 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 1061 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 1062 //
mjr 77:0b96f6867312 1063 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 1064 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 1065 //
mjr 82:4f6209cb5c33 1066 // 18 -> Plunger auto-zeroing. This only applies to sensor types with
mjr 82:4f6209cb5c33 1067 // relative positioning, such as quadrature sensors. Other sensor
mjr 82:4f6209cb5c33 1068 // types simply ignore this.
mjr 82:4f6209cb5c33 1069 //
mjr 82:4f6209cb5c33 1070 // byte 3 = bit flags:
mjr 82:4f6209cb5c33 1071 // 0x01 -> auto-zeroing enabled
mjr 82:4f6209cb5c33 1072 // byte 4 = auto-zeroing time in seconds
mjr 82:4f6209cb5c33 1073 //
mjr 85:3c28aee81cde 1074 // 19 -> Plunger jitter filter. This sets a hysteresis window size, to
mjr 85:3c28aee81cde 1075 // reduce jitter in the plunger reading. Most sensors aren't perfectly
mjr 85:3c28aee81cde 1076 // accurate: consecutive readings at the same physical plunger position
mjr 85:3c28aee81cde 1077 // vary slightly, wandering in a range near the true reading. Over time,
mjr 85:3c28aee81cde 1078 // the readings will usually average the true value, but that's not much
mjr 85:3c28aee81cde 1079 // of a consolation to us because we want to display the position in
mjr 85:3c28aee81cde 1080 // real time. To reduce the visible jitter, we can apply a hysteresis
mjr 85:3c28aee81cde 1081 // filter that hides sensor reading variations within a chosen window.
mjr 85:3c28aee81cde 1082 // This sets the window size. The window is in joystick units; we
mjr 85:3c28aee81cde 1083 // report the joystick position on a scale of -4095..+4095, and the
mjr 85:3c28aee81cde 1084 // physical plunger travels about 3" overall, so each joystick unit
mjr 85:3c28aee81cde 1085 // represents about 1/10000" of physical travel. Setting this to zero
mjr 85:3c28aee81cde 1086 // (the default) disables the filter.
mjr 85:3c28aee81cde 1087 //
mjr 85:3c28aee81cde 1088 // byte 3:4 = window size in joystick units, little-endian
mjr 85:3c28aee81cde 1089 //
mjr 87:8d35c74403af 1090 // 20 -> Plunger bar code setup. Sets parameters applicable only to bar code
mjr 87:8d35c74403af 1091 // sensor types.
mjr 87:8d35c74403af 1092 //
mjr 87:8d35c74403af 1093 // bytes 3:4 = Starting pixel offset of bar code (margin width)
mjr 87:8d35c74403af 1094 //
mjr 87:8d35c74403af 1095 // 21 -> TLC59116 setup. This chip is an external PWM controller with 16
mjr 87:8d35c74403af 1096 // outputs per chip and an I2C bus interface. Up to 14 of the chips
mjr 87:8d35c74403af 1097 // can be connected to a single bus. This chip is a successor to the
mjr 87:8d35c74403af 1098 // TLC5940 with a more modern design and some nice improvements, such
mjr 87:8d35c74403af 1099 // as glitch-free startup and a standard (I2C) physical interface.
mjr 87:8d35c74403af 1100 //
mjr 87:8d35c74403af 1101 // Each chip has a 7-bit I2C address. The top three bits of the
mjr 87:8d35c74403af 1102 // address are fixed in the chip itself and can't be configured, but
mjr 87:8d35c74403af 1103 // the low four bits are configurable via the address line pins on
mjr 87:8d35c74403af 1104 // the chip, A3 A2 A1 A0. Our convention here is to ignore the fixed
mjr 87:8d35c74403af 1105 // three bits and refer to the chip address as just the A3 A2 A1 A0
mjr 87:8d35c74403af 1106 // bits. This gives each chip an address from 0 to 15.
mjr 87:8d35c74403af 1107 //
mjr 87:8d35c74403af 1108 // I2C allows us to discover the attached chips automatically, so in
mjr 87:8d35c74403af 1109 // principle we don't need to know which chips will be present.
mjr 87:8d35c74403af 1110 // However, it's useful for the config tool to know which chips are
mjr 87:8d35c74403af 1111 // expected so that it can offer them in the output port setup UI.
mjr 87:8d35c74403af 1112 // We therefore provide a bit mask specifying the enabled chips. Each
mjr 87:8d35c74403af 1113 // bit specifies whether the chip at the corresponding address is
mjr 87:8d35c74403af 1114 // present: 0x0001 is the chip at address 0, 0x0002 is the chip at
mjr 87:8d35c74403af 1115 // address 1, etc. This is mostly for the config tool's use; we only
mjr 87:8d35c74403af 1116 // use it to determine if TLC59116 support should be enabled at all,
mjr 87:8d35c74403af 1117 // by checking if it's non-zero.
mjr 87:8d35c74403af 1118 //
mjr 87:8d35c74403af 1119 // To disable support, set the populated chip mask to 0. The pin
mjr 87:8d35c74403af 1120 // assignments are all ignored in this case.
mjr 87:8d35c74403af 1121 //
mjr 87:8d35c74403af 1122 // bytes 3:4 = populated chips, as a bit mask (OR in 1<<address
mjr 87:8d35c74403af 1123 // each populated address)
mjr 87:8d35c74403af 1124 // byte 5 = SDA (any GPIO pin)
mjr 87:8d35c74403af 1125 // byte 6 = SCL (any GPIO pin)
mjr 87:8d35c74403af 1126 // byte 7 = RESET (any GPIO pin)
mjr 87:8d35c74403af 1127 //
mjr 53:9b2611964afc 1128 //
mjr 74:822a92bc11d2 1129 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 1130 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 1131 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 1132 //
mjr 74:822a92bc11d2 1133 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 1134 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 1135 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 1136 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 1137 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 1138 //
mjr 74:822a92bc11d2 1139 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 1140 //
mjr 74:822a92bc11d2 1141 // Diagnostic index values:
mjr 74:822a92bc11d2 1142 //
mjr 74:822a92bc11d2 1143 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 1144 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 1145 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 1146 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 1147 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 1148 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 1149 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 1150 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 1151 //
mjr 74:822a92bc11d2 1152 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 1153 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 1154 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 1155 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1156 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1157 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1158 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1159 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1160 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1161 //
mjr 74:822a92bc11d2 1162 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1163 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1164 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1165 //
mjr 74:822a92bc11d2 1166 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1167 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1168 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1169 //
mjr 74:822a92bc11d2 1170 //
mjr 53:9b2611964afc 1171 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1172 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1173 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1174 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1175 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1176 // the maximum array index.
mjr 53:9b2611964afc 1177 //
mjr 77:0b96f6867312 1178 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1179 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1180 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1181 //
mjr 77:0b96f6867312 1182 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1183 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1184 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1185 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1186 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1187 //
mjr 77:0b96f6867312 1188 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1189 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1190 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1191 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1192 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1193 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1194 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1195 //
mjr 77:0b96f6867312 1196 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1197 // byte 4 = protocol ID
mjr 77:0b96f6867312 1198 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1199 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1200 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1201 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1202 //
mjr 77:0b96f6867312 1203 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1204 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1205 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1206 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1207 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1208 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1209 //
mjr 77:0b96f6867312 1210 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1211 // byte 4 = bit flags:
mjr 77:0b96f6867312 1212 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1213 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1214 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1215 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1216 //
mjr 77:0b96f6867312 1217 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1218 //
mjr 77:0b96f6867312 1219 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1220 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1221 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1222 //
mjr 77:0b96f6867312 1223 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1224 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1225 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1226 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1227 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1228 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1229 //
mjr 77:0b96f6867312 1230 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1231 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1232 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1233 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1234 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1235 // setup.
mjr 77:0b96f6867312 1236 //
mjr 66:2e3583fbd2f4 1237 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1238 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1239 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1240 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1241 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1242 //
mjr 77:0b96f6867312 1243 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1244 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1245 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1246 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1247 //
mjr 53:9b2611964afc 1248 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1249 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1250 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1251 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1252 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1253 //
mjr 53:9b2611964afc 1254 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1255 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1256 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1257 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1258 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1259 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1260 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1261 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1262 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1263 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1264 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1265 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1266 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1267 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1268 // door changes state.
mjr 77:0b96f6867312 1269 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1270 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1271 // is associated with the button.
mjr 53:9b2611964afc 1272 //
mjr 53:9b2611964afc 1273 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1274 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1275 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1276 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1277 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1278 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1279 //
mjr 53:9b2611964afc 1280 // The bytes of the message are:
mjr 87:8d35c74403af 1281 //
mjr 53:9b2611964afc 1282 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 87:8d35c74403af 1283 //
mjr 53:9b2611964afc 1284 // byte 4 = physical output type:
mjr 87:8d35c74403af 1285 //
mjr 53:9b2611964afc 1286 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1287 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1288 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1289 // after the first disabled port are also implicitly disabled.
mjr 87:8d35c74403af 1290 //
mjr 53:9b2611964afc 1291 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1292 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1293 // ports are PWM-capable.
mjr 87:8d35c74403af 1294 //
mjr 53:9b2611964afc 1295 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1296 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1297 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1298 // used in this mode.
mjr 87:8d35c74403af 1299 //
mjr 53:9b2611964afc 1300 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1301 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1302 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 87:8d35c74403af 1303 //
mjr 53:9b2611964afc 1304 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1305 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1306 // for the first output on the first chip in the daisy chain.
mjr 87:8d35c74403af 1307 //
mjr 53:9b2611964afc 1308 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1309 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1310 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1311 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1312 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1313 // (byte 5) is ignored for this port type.
mjr 87:8d35c74403af 1314 //
mjr 87:8d35c74403af 1315 // 6 = TLC59116 output: connected to the TLC59116 output port specified
mjr 87:8d35c74403af 1316 // in byte 5. The high four bits of this value give the chip's
mjr 87:8d35c74403af 1317 // I2C address, specifically the A3 A2 A1 A0 bits configured in
mjr 87:8d35c74403af 1318 // the hardware. (A chip's I2C address is actually 7 bits, but
mjr 87:8d35c74403af 1319 // the three high-order bits are fixed, so we don't bother including
mjr 87:8d35c74403af 1320 // those in the byte 5 value). The low four bits of this value
mjr 87:8d35c74403af 1321 // give the output port number on the chip. For example, 0x37
mjr 87:8d35c74403af 1322 // specifies chip 3 (the one with A3 A2 A1 A0 wired as 0 0 1 1),
mjr 87:8d35c74403af 1323 // output #7 on that chip. Note that outputs are numbered from 0
mjr 87:8d35c74403af 1324 // to 15 (0xF) on each chip.
mjr 87:8d35c74403af 1325 //
mjr 53:9b2611964afc 1326 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 87:8d35c74403af 1327 //
mjr 53:9b2611964afc 1328 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1329 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1330 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 1331 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 1332 //
mjr 87:8d35c74403af 1333 // Note that the KL25Z's on-board LEDs can be used as LedWiz output ports. This
mjr 53:9b2611964afc 1334 // is useful for testing a new installation with DOF or other PC software without
mjr 87:8d35c74403af 1335 // having to connect any external devices. Assigning the on-board LEDs as output
mjr 87:8d35c74403af 1336 // ports overrides their normal status/diagnostic display use, so the normal status
mjr 87:8d35c74403af 1337 // flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 1338 //
mjr 35:e959ffba78fd 1339
mjr 35:e959ffba78fd 1340
mjr 55:4db125cd11a0 1341 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1342 //
mjr 53:9b2611964afc 1343 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1344 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1345 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1346 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1347 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1348
mjr 35:e959ffba78fd 1349
mjr 35:e959ffba78fd 1350 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1351 //
mjr 53:9b2611964afc 1352 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1353 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1354 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1355 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1356 //
mjr 53:9b2611964afc 1357 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1358 // A-Z -> 04-1D
mjr 53:9b2611964afc 1359 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1360 // Return -> 28
mjr 53:9b2611964afc 1361 // Escape -> 29
mjr 53:9b2611964afc 1362 // Backspace -> 2A
mjr 53:9b2611964afc 1363 // Tab -> 2B
mjr 53:9b2611964afc 1364 // Spacebar -> 2C
mjr 53:9b2611964afc 1365 // -_ -> 2D
mjr 53:9b2611964afc 1366 // =+ -> 2E
mjr 53:9b2611964afc 1367 // [{ -> 2F
mjr 53:9b2611964afc 1368 // ]} -> 30
mjr 53:9b2611964afc 1369 // \| -> 31
mjr 53:9b2611964afc 1370 // ;: -> 33
mjr 53:9b2611964afc 1371 // '" -> 34
mjr 53:9b2611964afc 1372 // `~ -> 35
mjr 53:9b2611964afc 1373 // ,< -> 36
mjr 53:9b2611964afc 1374 // .> -> 37
mjr 53:9b2611964afc 1375 // /? -> 38
mjr 53:9b2611964afc 1376 // Caps Lock -> 39
mjr 53:9b2611964afc 1377 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1378 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1379 // Print Screen -> 46
mjr 53:9b2611964afc 1380 // Scroll Lock -> 47
mjr 53:9b2611964afc 1381 // Pause -> 48
mjr 53:9b2611964afc 1382 // Insert -> 49
mjr 53:9b2611964afc 1383 // Home -> 4A
mjr 53:9b2611964afc 1384 // Page Up -> 4B
mjr 53:9b2611964afc 1385 // Del -> 4C
mjr 53:9b2611964afc 1386 // End -> 4D
mjr 53:9b2611964afc 1387 // Page Down -> 4E
mjr 53:9b2611964afc 1388 // Right Arrow -> 4F
mjr 53:9b2611964afc 1389 // Left Arrow -> 50
mjr 53:9b2611964afc 1390 // Down Arrow -> 51
mjr 53:9b2611964afc 1391 // Up Arrow -> 52
mjr 53:9b2611964afc 1392 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1393 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1394 // Keypad Enter -> 58
mjr 53:9b2611964afc 1395 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1396 // Keypad 0 -> 62
mjr 53:9b2611964afc 1397 // Keypad . -> 63
mjr 53:9b2611964afc 1398 // Mute -> 7F
mjr 53:9b2611964afc 1399 // Volume Up -> 80
mjr 53:9b2611964afc 1400 // Volume Down -> 81
mjr 53:9b2611964afc 1401 // Left Control -> E0
mjr 53:9b2611964afc 1402 // Left Shift -> E1
mjr 53:9b2611964afc 1403 // Left Alt -> E2
mjr 53:9b2611964afc 1404 // Left GUI -> E3
mjr 53:9b2611964afc 1405 // Right Control -> E4
mjr 53:9b2611964afc 1406 // Right Shift -> E5
mjr 53:9b2611964afc 1407 // Right Alt -> E6
mjr 53:9b2611964afc 1408 // Right GUI -> E7
mjr 53:9b2611964afc 1409 //
mjr 66:2e3583fbd2f4 1410 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1411 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1412 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1413 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1414 // regular keys.
mjr 67:c39e66c4e000 1415
mjr 67:c39e66c4e000 1416 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1417 //
mjr 67:c39e66c4e000 1418 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1419 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1420 // following type codes only:
mjr 67:c39e66c4e000 1421 //
mjr 67:c39e66c4e000 1422 // Mute -> E2
mjr 67:c39e66c4e000 1423 // Volume up -> E9
mjr 67:c39e66c4e000 1424 // Volume Down -> EA
mjr 67:c39e66c4e000 1425 // Next Track -> B5
mjr 67:c39e66c4e000 1426 // Previous Track -> B6
mjr 67:c39e66c4e000 1427 // Stop -> B7
mjr 67:c39e66c4e000 1428 // Play/Pause -> CD