An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Apr 14 17:56:54 2017 +0000
Revision:
85:3c28aee81cde
Parent:
84:31e926f4f3bc
Child:
86:e30a1f60f783
Save config updates before slight rearrangement;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 79:682ae3171a08 219 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 220 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 221 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 222 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 223 #include "crc32.h"
mjr 26:cb71c4af2912 224 #include "TLC5940.h"
mjr 34:6b981a2afab7 225 #include "74HC595.h"
mjr 35:e959ffba78fd 226 #include "nvm.h"
mjr 48:058ace2aed1d 227 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 228 #include "IRReceiver.h"
mjr 77:0b96f6867312 229 #include "IRTransmitter.h"
mjr 77:0b96f6867312 230 #include "NewPwm.h"
mjr 74:822a92bc11d2 231
mjr 82:4f6209cb5c33 232 // plunger sensors
mjr 82:4f6209cb5c33 233 #include "plunger.h"
mjr 82:4f6209cb5c33 234 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 235 #include "potSensor.h"
mjr 82:4f6209cb5c33 236 #include "quadSensor.h"
mjr 82:4f6209cb5c33 237 #include "nullSensor.h"
mjr 82:4f6209cb5c33 238 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 239 #include "distanceSensor.h"
mjr 82:4f6209cb5c33 240
mjr 2:c174f9ee414a 241
mjr 21:5048e16cc9ef 242 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 243 #include "config.h"
mjr 17:ab3cec0c8bf4 244
mjr 76:7f5912b6340e 245 // forward declarations
mjr 76:7f5912b6340e 246 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 247
mjr 53:9b2611964afc 248 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 249 //
mjr 53:9b2611964afc 250 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 251 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 252 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 253 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 254 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 255 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 256 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 257 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 258 // interface.
mjr 53:9b2611964afc 259 //
mjr 53:9b2611964afc 260 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 261 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 262 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 263 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 264 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 265 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 266 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 267 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 268 //
mjr 53:9b2611964afc 269 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 270 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 271 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 272 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 273 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 274 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 275 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 276 //
mjr 53:9b2611964afc 277 const char *getOpenSDAID()
mjr 53:9b2611964afc 278 {
mjr 53:9b2611964afc 279 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 280 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 281 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 282
mjr 53:9b2611964afc 283 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 284 }
mjr 53:9b2611964afc 285
mjr 53:9b2611964afc 286 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 287 //
mjr 53:9b2611964afc 288 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 289 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 290 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 291 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 292 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 293 // want from this.
mjr 53:9b2611964afc 294 //
mjr 53:9b2611964afc 295 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 296 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 297 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 298 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 299 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 300 // macros.
mjr 53:9b2611964afc 301 //
mjr 53:9b2611964afc 302 const char *getBuildID()
mjr 53:9b2611964afc 303 {
mjr 53:9b2611964afc 304 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 305 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 306 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 309 }
mjr 53:9b2611964afc 310
mjr 74:822a92bc11d2 311 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 312 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 313 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 314 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 315 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 316 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 317 Timer mainLoopTimer;
mjr 76:7f5912b6340e 318 #endif
mjr 76:7f5912b6340e 319
mjr 53:9b2611964afc 320
mjr 5:a70c0bce770d 321 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 322 //
mjr 38:091e511ce8a0 323 // Forward declarations
mjr 38:091e511ce8a0 324 //
mjr 38:091e511ce8a0 325 void setNightMode(bool on);
mjr 38:091e511ce8a0 326 void toggleNightMode();
mjr 38:091e511ce8a0 327
mjr 38:091e511ce8a0 328 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 329 // utilities
mjr 17:ab3cec0c8bf4 330
mjr 77:0b96f6867312 331 // int/float point square of a number
mjr 77:0b96f6867312 332 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 333 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 334
mjr 26:cb71c4af2912 335 // floating point rounding
mjr 26:cb71c4af2912 336 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 337
mjr 17:ab3cec0c8bf4 338
mjr 33:d832bcab089e 339 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 340 //
mjr 40:cc0d9814522b 341 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 342 // the running state.
mjr 40:cc0d9814522b 343 //
mjr 77:0b96f6867312 344 class ExtTimer: public Timer
mjr 40:cc0d9814522b 345 {
mjr 40:cc0d9814522b 346 public:
mjr 77:0b96f6867312 347 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 348
mjr 40:cc0d9814522b 349 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 350 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 351
mjr 40:cc0d9814522b 352 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 353
mjr 40:cc0d9814522b 354 private:
mjr 40:cc0d9814522b 355 bool running;
mjr 40:cc0d9814522b 356 };
mjr 40:cc0d9814522b 357
mjr 53:9b2611964afc 358
mjr 53:9b2611964afc 359 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 360 //
mjr 33:d832bcab089e 361 // USB product version number
mjr 5:a70c0bce770d 362 //
mjr 47:df7a88cd249c 363 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 364
mjr 33:d832bcab089e 365 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 366 //
mjr 6:cc35eb643e8f 367 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 368 //
mjr 6:cc35eb643e8f 369 #define JOYMAX 4096
mjr 6:cc35eb643e8f 370
mjr 9:fd65b0a94720 371
mjr 17:ab3cec0c8bf4 372 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 373 //
mjr 40:cc0d9814522b 374 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 375 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 376 //
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 // unsigned 16-bit integer
mjr 35:e959ffba78fd 379 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 380 {
mjr 35:e959ffba78fd 381 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 382 }
mjr 40:cc0d9814522b 383 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 384 {
mjr 40:cc0d9814522b 385 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 386 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 387 }
mjr 35:e959ffba78fd 388
mjr 35:e959ffba78fd 389 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 390 {
mjr 35:e959ffba78fd 391 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 392 }
mjr 40:cc0d9814522b 393 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 394 {
mjr 40:cc0d9814522b 395 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 396 }
mjr 35:e959ffba78fd 397
mjr 35:e959ffba78fd 398 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 399 {
mjr 35:e959ffba78fd 400 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 401 }
mjr 40:cc0d9814522b 402 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 403 {
mjr 40:cc0d9814522b 404 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 405 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 406 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 407 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 408 }
mjr 35:e959ffba78fd 409
mjr 35:e959ffba78fd 410 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 411 {
mjr 35:e959ffba78fd 412 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 413 }
mjr 35:e959ffba78fd 414
mjr 53:9b2611964afc 415 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 416 //
mjr 53:9b2611964afc 417 // The internal mbed PinName format is
mjr 53:9b2611964afc 418 //
mjr 53:9b2611964afc 419 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 420 //
mjr 53:9b2611964afc 421 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 422 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 423 //
mjr 53:9b2611964afc 424 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 425 // pin name fits in 8 bits:
mjr 53:9b2611964afc 426 //
mjr 53:9b2611964afc 427 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 428 //
mjr 53:9b2611964afc 429 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 430 //
mjr 53:9b2611964afc 431 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 432 //
mjr 53:9b2611964afc 433 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 434 {
mjr 53:9b2611964afc 435 if (c == 0xFF)
mjr 53:9b2611964afc 436 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 437 else
mjr 53:9b2611964afc 438 return PinName(
mjr 53:9b2611964afc 439 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 440 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 441 }
mjr 40:cc0d9814522b 442 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 443 {
mjr 53:9b2611964afc 444 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 445 }
mjr 35:e959ffba78fd 446
mjr 35:e959ffba78fd 447
mjr 35:e959ffba78fd 448 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 449 //
mjr 38:091e511ce8a0 450 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 451 //
mjr 38:091e511ce8a0 452 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 453 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 454 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 455 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 456 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 457 // SPI capability.
mjr 38:091e511ce8a0 458 //
mjr 38:091e511ce8a0 459 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 460
mjr 73:4e8ce0b18915 461 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 462 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 463 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 464 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 465
mjr 38:091e511ce8a0 466 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 467 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 468 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 469 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 470 {
mjr 73:4e8ce0b18915 471 // remember the new state
mjr 73:4e8ce0b18915 472 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 473
mjr 73:4e8ce0b18915 474 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 475 // applying it to the blue LED
mjr 73:4e8ce0b18915 476 if (diagLEDState == 0)
mjr 77:0b96f6867312 477 {
mjr 77:0b96f6867312 478 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 479 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 480 }
mjr 73:4e8ce0b18915 481
mjr 73:4e8ce0b18915 482 // set the new state
mjr 38:091e511ce8a0 483 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 484 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 485 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 486 }
mjr 38:091e511ce8a0 487
mjr 73:4e8ce0b18915 488 // update the LEDs with the current state
mjr 73:4e8ce0b18915 489 void diagLED(void)
mjr 73:4e8ce0b18915 490 {
mjr 73:4e8ce0b18915 491 diagLED(
mjr 73:4e8ce0b18915 492 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 493 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 494 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 495 }
mjr 73:4e8ce0b18915 496
mjr 38:091e511ce8a0 497 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 498 // an on-board LED segment
mjr 38:091e511ce8a0 499 struct LedSeg
mjr 38:091e511ce8a0 500 {
mjr 38:091e511ce8a0 501 bool r, g, b;
mjr 38:091e511ce8a0 502 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 503
mjr 38:091e511ce8a0 504 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 505 {
mjr 38:091e511ce8a0 506 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 507 // our on-board LED segments
mjr 38:091e511ce8a0 508 int t = pc.typ;
mjr 38:091e511ce8a0 509 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 510 {
mjr 38:091e511ce8a0 511 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 512 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 513 if (pin == LED1)
mjr 38:091e511ce8a0 514 r = true;
mjr 38:091e511ce8a0 515 else if (pin == LED2)
mjr 38:091e511ce8a0 516 g = true;
mjr 38:091e511ce8a0 517 else if (pin == LED3)
mjr 38:091e511ce8a0 518 b = true;
mjr 38:091e511ce8a0 519 }
mjr 38:091e511ce8a0 520 }
mjr 38:091e511ce8a0 521 };
mjr 38:091e511ce8a0 522
mjr 38:091e511ce8a0 523 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 524 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 525 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 526 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 527 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 528 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 529 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 530 {
mjr 38:091e511ce8a0 531 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 532 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 533 LedSeg l;
mjr 38:091e511ce8a0 534 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 535 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 536
mjr 38:091e511ce8a0 537 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 538 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 539 // LedWiz use.
mjr 38:091e511ce8a0 540 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 541 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 542 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 543 }
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545
mjr 38:091e511ce8a0 546 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 547 //
mjr 76:7f5912b6340e 548 // LedWiz emulation
mjr 76:7f5912b6340e 549 //
mjr 76:7f5912b6340e 550
mjr 76:7f5912b6340e 551 // LedWiz output states.
mjr 76:7f5912b6340e 552 //
mjr 76:7f5912b6340e 553 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 554 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 555 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 556 // The two axes are independent.
mjr 76:7f5912b6340e 557 //
mjr 76:7f5912b6340e 558 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 559 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 560 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 561 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 562 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 563 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 564 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 565 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 566
mjr 76:7f5912b6340e 567 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 568 static uint8_t *wizOn;
mjr 76:7f5912b6340e 569
mjr 76:7f5912b6340e 570 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 571 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 572 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 573 //
mjr 76:7f5912b6340e 574 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 575 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 576 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 577 // 130 = flash on / off
mjr 76:7f5912b6340e 578 // 131 = on / ramp down
mjr 76:7f5912b6340e 579 // 132 = ramp up / on
mjr 5:a70c0bce770d 580 //
mjr 76:7f5912b6340e 581 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 582 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 583 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 584 static uint8_t *wizVal;
mjr 76:7f5912b6340e 585
mjr 76:7f5912b6340e 586 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 587 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 588 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 589 // by the extended protocol:
mjr 76:7f5912b6340e 590 //
mjr 76:7f5912b6340e 591 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 592 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 593 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 594 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 595 // if the brightness is non-zero.
mjr 76:7f5912b6340e 596 //
mjr 76:7f5912b6340e 597 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 598 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 599 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 600 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 601 // 0..255 range.
mjr 26:cb71c4af2912 602 //
mjr 76:7f5912b6340e 603 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 604 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 605 // level.
mjr 26:cb71c4af2912 606 //
mjr 76:7f5912b6340e 607 static uint8_t *outLevel;
mjr 76:7f5912b6340e 608
mjr 76:7f5912b6340e 609
mjr 76:7f5912b6340e 610 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 611 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 612 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 613 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 614 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 615 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 616 //
mjr 76:7f5912b6340e 617 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 618 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 619 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 620 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 621 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 622 // at the maximum size.
mjr 76:7f5912b6340e 623 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 624 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 625
mjr 26:cb71c4af2912 626 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 627 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 628 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 629 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 630 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 631
mjr 76:7f5912b6340e 632
mjr 76:7f5912b6340e 633 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 634 //
mjr 76:7f5912b6340e 635 // Output Ports
mjr 76:7f5912b6340e 636 //
mjr 76:7f5912b6340e 637 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 638 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 639 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 640 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 641 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 642 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 643 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 644 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 645 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 646 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 647 // you have to ration pins among features.
mjr 76:7f5912b6340e 648 //
mjr 76:7f5912b6340e 649 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 650 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 651 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 652 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 653 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 654 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 655 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 656 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 657 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 658 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 659 // to control the whole chain.
mjr 76:7f5912b6340e 660 //
mjr 76:7f5912b6340e 661 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 662 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 663 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 664 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 665 //
mjr 76:7f5912b6340e 666 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 667 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 668 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 669 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 670 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 671 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 672 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 673 // of physical devices they're connected to.
mjr 76:7f5912b6340e 674
mjr 76:7f5912b6340e 675
mjr 26:cb71c4af2912 676 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 677 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 678 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 679 class LwOut
mjr 6:cc35eb643e8f 680 {
mjr 6:cc35eb643e8f 681 public:
mjr 40:cc0d9814522b 682 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 683 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 684 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 685 };
mjr 26:cb71c4af2912 686
mjr 35:e959ffba78fd 687 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 688 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 689 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 690 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 691 // numbering.
mjr 35:e959ffba78fd 692 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 693 {
mjr 33:d832bcab089e 694 public:
mjr 35:e959ffba78fd 695 LwVirtualOut() { }
mjr 40:cc0d9814522b 696 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 697 };
mjr 26:cb71c4af2912 698
mjr 34:6b981a2afab7 699 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 700 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 701 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 702 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 703 {
mjr 34:6b981a2afab7 704 public:
mjr 34:6b981a2afab7 705 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 706 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 707
mjr 34:6b981a2afab7 708 private:
mjr 53:9b2611964afc 709 // underlying physical output
mjr 34:6b981a2afab7 710 LwOut *out;
mjr 34:6b981a2afab7 711 };
mjr 34:6b981a2afab7 712
mjr 53:9b2611964afc 713 // Global ZB Launch Ball state
mjr 53:9b2611964afc 714 bool zbLaunchOn = false;
mjr 53:9b2611964afc 715
mjr 53:9b2611964afc 716 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 717 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 718 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 719 {
mjr 53:9b2611964afc 720 public:
mjr 53:9b2611964afc 721 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 722 virtual void set(uint8_t val)
mjr 53:9b2611964afc 723 {
mjr 53:9b2611964afc 724 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 725 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 726
mjr 53:9b2611964afc 727 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 728 out->set(val);
mjr 53:9b2611964afc 729 }
mjr 53:9b2611964afc 730
mjr 53:9b2611964afc 731 private:
mjr 53:9b2611964afc 732 // underlying physical or virtual output
mjr 53:9b2611964afc 733 LwOut *out;
mjr 53:9b2611964afc 734 };
mjr 53:9b2611964afc 735
mjr 53:9b2611964afc 736
mjr 40:cc0d9814522b 737 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 738 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 741 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 742 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 743 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 744 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 745 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 746 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 747 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 748 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 749 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 750 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 751 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 752 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 753 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 754 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 755 };
mjr 40:cc0d9814522b 756
mjr 40:cc0d9814522b 757 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 758 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 759 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 760 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 761 {
mjr 40:cc0d9814522b 762 public:
mjr 40:cc0d9814522b 763 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 764 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 765
mjr 40:cc0d9814522b 766 private:
mjr 40:cc0d9814522b 767 LwOut *out;
mjr 40:cc0d9814522b 768 };
mjr 40:cc0d9814522b 769
mjr 77:0b96f6867312 770 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 771 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 772 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 773 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 774
mjr 40:cc0d9814522b 775 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 776 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 777 // mode is engaged.
mjr 40:cc0d9814522b 778 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 779 {
mjr 40:cc0d9814522b 780 public:
mjr 40:cc0d9814522b 781 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 782 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 783
mjr 53:9b2611964afc 784 private:
mjr 53:9b2611964afc 785 LwOut *out;
mjr 53:9b2611964afc 786 };
mjr 53:9b2611964afc 787
mjr 53:9b2611964afc 788 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 789 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 790 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 791 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 792 {
mjr 53:9b2611964afc 793 public:
mjr 53:9b2611964afc 794 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 795 virtual void set(uint8_t)
mjr 53:9b2611964afc 796 {
mjr 53:9b2611964afc 797 // ignore the host value and simply show the current
mjr 53:9b2611964afc 798 // night mode setting
mjr 53:9b2611964afc 799 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 800 }
mjr 40:cc0d9814522b 801
mjr 40:cc0d9814522b 802 private:
mjr 40:cc0d9814522b 803 LwOut *out;
mjr 40:cc0d9814522b 804 };
mjr 40:cc0d9814522b 805
mjr 26:cb71c4af2912 806
mjr 35:e959ffba78fd 807 //
mjr 35:e959ffba78fd 808 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 809 // assignments set in config.h.
mjr 33:d832bcab089e 810 //
mjr 35:e959ffba78fd 811 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 812 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 813 {
mjr 35:e959ffba78fd 814 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 815 {
mjr 53:9b2611964afc 816 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 817 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 818 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 819 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 820 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 821 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 822 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 823 }
mjr 35:e959ffba78fd 824 }
mjr 26:cb71c4af2912 825
mjr 40:cc0d9814522b 826 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 827 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 828 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 829 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 830 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 831 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 832 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 833 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 834 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 835 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 836 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 837 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 838 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 839 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 840 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 841 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 842 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 843 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 844 };
mjr 40:cc0d9814522b 845
mjr 40:cc0d9814522b 846 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 847 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 848 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 849 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 850 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 851 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 852 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 853 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 854 // are always 8 bits.
mjr 40:cc0d9814522b 855 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 857 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 858 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 859 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 860 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 861 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 862 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 863 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 864 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 865 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 866 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 867 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 868 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 869 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 870 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 871 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 872 };
mjr 40:cc0d9814522b 873
mjr 26:cb71c4af2912 874 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 875 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 876 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 877 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 878 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 879 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 880 {
mjr 26:cb71c4af2912 881 public:
mjr 60:f38da020aa13 882 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 883 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 884 {
mjr 26:cb71c4af2912 885 if (val != prv)
mjr 40:cc0d9814522b 886 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 887 }
mjr 60:f38da020aa13 888 uint8_t idx;
mjr 40:cc0d9814522b 889 uint8_t prv;
mjr 26:cb71c4af2912 890 };
mjr 26:cb71c4af2912 891
mjr 40:cc0d9814522b 892 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 893 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 894 {
mjr 40:cc0d9814522b 895 public:
mjr 60:f38da020aa13 896 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 897 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 898 {
mjr 40:cc0d9814522b 899 if (val != prv)
mjr 40:cc0d9814522b 900 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 901 }
mjr 60:f38da020aa13 902 uint8_t idx;
mjr 40:cc0d9814522b 903 uint8_t prv;
mjr 40:cc0d9814522b 904 };
mjr 40:cc0d9814522b 905
mjr 40:cc0d9814522b 906
mjr 33:d832bcab089e 907
mjr 34:6b981a2afab7 908 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 909 // config.h.
mjr 35:e959ffba78fd 910 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 911
mjr 35:e959ffba78fd 912 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 913 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 914 {
mjr 35:e959ffba78fd 915 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 916 {
mjr 53:9b2611964afc 917 hc595 = new HC595(
mjr 53:9b2611964afc 918 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 919 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 920 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 921 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 922 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 923 hc595->init();
mjr 35:e959ffba78fd 924 hc595->update();
mjr 35:e959ffba78fd 925 }
mjr 35:e959ffba78fd 926 }
mjr 34:6b981a2afab7 927
mjr 34:6b981a2afab7 928 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 929 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 930 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 931 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 932 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 933 class Lw595Out: public LwOut
mjr 33:d832bcab089e 934 {
mjr 33:d832bcab089e 935 public:
mjr 60:f38da020aa13 936 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 937 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 938 {
mjr 34:6b981a2afab7 939 if (val != prv)
mjr 40:cc0d9814522b 940 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 941 }
mjr 60:f38da020aa13 942 uint8_t idx;
mjr 40:cc0d9814522b 943 uint8_t prv;
mjr 33:d832bcab089e 944 };
mjr 33:d832bcab089e 945
mjr 26:cb71c4af2912 946
mjr 40:cc0d9814522b 947
mjr 64:ef7ca92dff36 948 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 949 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 950 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 951 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 952 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 953 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 954 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 955 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 956 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 957 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 958 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 959 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 960 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 961 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 962 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 963 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 964 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 965 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 966 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 967 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 968 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 969 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 970 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 971 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 972 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 973 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 974 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 975 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 976 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 977 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 978 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 979 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 980 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 981 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 982 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 983 };
mjr 26:cb71c4af2912 984
mjr 64:ef7ca92dff36 985
mjr 64:ef7ca92dff36 986 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 987 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 988 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 989 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 990 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 991 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 992 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 993 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 994 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 995 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 996 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 997 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 998 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 999 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1000 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1001 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1002 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1003 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1004 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1005 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1006 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1007 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1008 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1009 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1010 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1011 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1012 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1013 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1014 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1015 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1016 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1017 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1018 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1019 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1020 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1021 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1022 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1023 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1024 };
mjr 64:ef7ca92dff36 1025
mjr 77:0b96f6867312 1026 // Polled-update PWM output list
mjr 74:822a92bc11d2 1027 //
mjr 77:0b96f6867312 1028 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1029 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1030 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1031 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1032 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1033 //
mjr 77:0b96f6867312 1034 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1035 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1036 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1037 // the main loop.
mjr 74:822a92bc11d2 1038 //
mjr 77:0b96f6867312 1039 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1040 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1041 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1042 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1043 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1044 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1045 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1046 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1047 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1048 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1049 //
mjr 77:0b96f6867312 1050 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1051 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1052 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1053 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1054 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1055 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1056 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1057 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1058 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1059 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1060 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1061 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1062 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1063 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1064 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1065 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1066 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1067 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1068 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1069 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1070 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1071 //
mjr 77:0b96f6867312 1072 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1073 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1074 // of polled items.
mjr 74:822a92bc11d2 1075 static int numPolledPwm;
mjr 74:822a92bc11d2 1076 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1077
mjr 74:822a92bc11d2 1078 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1079 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1080 {
mjr 6:cc35eb643e8f 1081 public:
mjr 43:7a6364d82a41 1082 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1083 {
mjr 77:0b96f6867312 1084 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1085 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1086 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1087
mjr 77:0b96f6867312 1088 // set the initial value
mjr 77:0b96f6867312 1089 set(initVal);
mjr 43:7a6364d82a41 1090 }
mjr 74:822a92bc11d2 1091
mjr 40:cc0d9814522b 1092 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1093 {
mjr 77:0b96f6867312 1094 // save the new value
mjr 74:822a92bc11d2 1095 this->val = val;
mjr 77:0b96f6867312 1096
mjr 77:0b96f6867312 1097 // commit it to the hardware
mjr 77:0b96f6867312 1098 commit();
mjr 13:72dda449c3c0 1099 }
mjr 74:822a92bc11d2 1100
mjr 74:822a92bc11d2 1101 // handle periodic update polling
mjr 74:822a92bc11d2 1102 void poll()
mjr 74:822a92bc11d2 1103 {
mjr 77:0b96f6867312 1104 commit();
mjr 74:822a92bc11d2 1105 }
mjr 74:822a92bc11d2 1106
mjr 74:822a92bc11d2 1107 protected:
mjr 77:0b96f6867312 1108 virtual void commit()
mjr 74:822a92bc11d2 1109 {
mjr 74:822a92bc11d2 1110 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1111 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1112 }
mjr 74:822a92bc11d2 1113
mjr 77:0b96f6867312 1114 NewPwmOut p;
mjr 77:0b96f6867312 1115 uint8_t val;
mjr 6:cc35eb643e8f 1116 };
mjr 26:cb71c4af2912 1117
mjr 74:822a92bc11d2 1118 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1119 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1120 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1121 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1122 {
mjr 64:ef7ca92dff36 1123 public:
mjr 64:ef7ca92dff36 1124 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1125 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1126 {
mjr 64:ef7ca92dff36 1127 }
mjr 74:822a92bc11d2 1128
mjr 74:822a92bc11d2 1129 protected:
mjr 77:0b96f6867312 1130 virtual void commit()
mjr 64:ef7ca92dff36 1131 {
mjr 74:822a92bc11d2 1132 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1133 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1134 }
mjr 64:ef7ca92dff36 1135 };
mjr 64:ef7ca92dff36 1136
mjr 74:822a92bc11d2 1137 // poll the PWM outputs
mjr 74:822a92bc11d2 1138 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1139 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1140 void pollPwmUpdates()
mjr 74:822a92bc11d2 1141 {
mjr 74:822a92bc11d2 1142 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1143 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1144 {
mjr 74:822a92bc11d2 1145 // time the run for statistics collection
mjr 74:822a92bc11d2 1146 IF_DIAG(
mjr 74:822a92bc11d2 1147 Timer t;
mjr 74:822a92bc11d2 1148 t.start();
mjr 74:822a92bc11d2 1149 )
mjr 74:822a92bc11d2 1150
mjr 74:822a92bc11d2 1151 // poll each output
mjr 74:822a92bc11d2 1152 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1153 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1154
mjr 74:822a92bc11d2 1155 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1156 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1157
mjr 74:822a92bc11d2 1158 // collect statistics
mjr 74:822a92bc11d2 1159 IF_DIAG(
mjr 76:7f5912b6340e 1160 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1161 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1162 )
mjr 74:822a92bc11d2 1163 }
mjr 74:822a92bc11d2 1164 }
mjr 64:ef7ca92dff36 1165
mjr 26:cb71c4af2912 1166 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1167 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1168 {
mjr 6:cc35eb643e8f 1169 public:
mjr 43:7a6364d82a41 1170 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1171 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1172 {
mjr 13:72dda449c3c0 1173 if (val != prv)
mjr 40:cc0d9814522b 1174 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1175 }
mjr 6:cc35eb643e8f 1176 DigitalOut p;
mjr 40:cc0d9814522b 1177 uint8_t prv;
mjr 6:cc35eb643e8f 1178 };
mjr 26:cb71c4af2912 1179
mjr 29:582472d0bc57 1180 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1181 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1182 // port n (0-based).
mjr 35:e959ffba78fd 1183 //
mjr 35:e959ffba78fd 1184 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1185 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1186 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1187 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1188 // 74HC595 ports).
mjr 33:d832bcab089e 1189 static int numOutputs;
mjr 33:d832bcab089e 1190 static LwOut **lwPin;
mjr 33:d832bcab089e 1191
mjr 38:091e511ce8a0 1192 // create a single output pin
mjr 53:9b2611964afc 1193 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1194 {
mjr 38:091e511ce8a0 1195 // get this item's values
mjr 38:091e511ce8a0 1196 int typ = pc.typ;
mjr 38:091e511ce8a0 1197 int pin = pc.pin;
mjr 38:091e511ce8a0 1198 int flags = pc.flags;
mjr 40:cc0d9814522b 1199 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1200 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1201 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1202
mjr 38:091e511ce8a0 1203 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1204 LwOut *lwp;
mjr 38:091e511ce8a0 1205 switch (typ)
mjr 38:091e511ce8a0 1206 {
mjr 38:091e511ce8a0 1207 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1208 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1209 if (pin != 0)
mjr 64:ef7ca92dff36 1210 {
mjr 64:ef7ca92dff36 1211 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1212 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1213 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1214 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1215 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1216 {
mjr 64:ef7ca92dff36 1217 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1218 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1219
mjr 64:ef7ca92dff36 1220 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1221 gamma = false;
mjr 64:ef7ca92dff36 1222 }
mjr 64:ef7ca92dff36 1223 else
mjr 64:ef7ca92dff36 1224 {
mjr 64:ef7ca92dff36 1225 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1226 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1227 }
mjr 64:ef7ca92dff36 1228 }
mjr 48:058ace2aed1d 1229 else
mjr 48:058ace2aed1d 1230 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1231 break;
mjr 38:091e511ce8a0 1232
mjr 38:091e511ce8a0 1233 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1234 // Digital GPIO port
mjr 48:058ace2aed1d 1235 if (pin != 0)
mjr 48:058ace2aed1d 1236 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1237 else
mjr 48:058ace2aed1d 1238 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1239 break;
mjr 38:091e511ce8a0 1240
mjr 38:091e511ce8a0 1241 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1242 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1243 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1244 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1245 {
mjr 40:cc0d9814522b 1246 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1247 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1248 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1249 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1250 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1251 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1252 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1253 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1254 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1255 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1256 // for this unlikely case.
mjr 40:cc0d9814522b 1257 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1258 {
mjr 40:cc0d9814522b 1259 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1260 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1261
mjr 40:cc0d9814522b 1262 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1263 gamma = false;
mjr 40:cc0d9814522b 1264 }
mjr 40:cc0d9814522b 1265 else
mjr 40:cc0d9814522b 1266 {
mjr 40:cc0d9814522b 1267 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1268 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1269 }
mjr 40:cc0d9814522b 1270 }
mjr 38:091e511ce8a0 1271 else
mjr 40:cc0d9814522b 1272 {
mjr 40:cc0d9814522b 1273 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1274 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1275 }
mjr 38:091e511ce8a0 1276 break;
mjr 38:091e511ce8a0 1277
mjr 38:091e511ce8a0 1278 case PortType74HC595:
mjr 38:091e511ce8a0 1279 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1280 // output number, create a virtual port)
mjr 38:091e511ce8a0 1281 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1282 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1283 else
mjr 38:091e511ce8a0 1284 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1285 break;
mjr 38:091e511ce8a0 1286
mjr 38:091e511ce8a0 1287 case PortTypeVirtual:
mjr 43:7a6364d82a41 1288 case PortTypeDisabled:
mjr 38:091e511ce8a0 1289 default:
mjr 38:091e511ce8a0 1290 // virtual or unknown
mjr 38:091e511ce8a0 1291 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1292 break;
mjr 38:091e511ce8a0 1293 }
mjr 38:091e511ce8a0 1294
mjr 40:cc0d9814522b 1295 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1296 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1297 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1298 if (activeLow)
mjr 38:091e511ce8a0 1299 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1300
mjr 40:cc0d9814522b 1301 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1302 // needs to be
mjr 40:cc0d9814522b 1303 if (noisy)
mjr 40:cc0d9814522b 1304 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1305
mjr 40:cc0d9814522b 1306 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1307 if (gamma)
mjr 40:cc0d9814522b 1308 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1309
mjr 53:9b2611964afc 1310 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1311 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1312 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1313 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1314 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1315
mjr 53:9b2611964afc 1316 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1317 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1318 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1319
mjr 38:091e511ce8a0 1320 // turn it off initially
mjr 38:091e511ce8a0 1321 lwp->set(0);
mjr 38:091e511ce8a0 1322
mjr 38:091e511ce8a0 1323 // return the pin
mjr 38:091e511ce8a0 1324 return lwp;
mjr 38:091e511ce8a0 1325 }
mjr 38:091e511ce8a0 1326
mjr 6:cc35eb643e8f 1327 // initialize the output pin array
mjr 35:e959ffba78fd 1328 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1329 {
mjr 35:e959ffba78fd 1330 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1331 // total number of ports.
mjr 35:e959ffba78fd 1332 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1333 int i;
mjr 35:e959ffba78fd 1334 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1335 {
mjr 35:e959ffba78fd 1336 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1337 {
mjr 35:e959ffba78fd 1338 numOutputs = i;
mjr 34:6b981a2afab7 1339 break;
mjr 34:6b981a2afab7 1340 }
mjr 33:d832bcab089e 1341 }
mjr 33:d832bcab089e 1342
mjr 73:4e8ce0b18915 1343 // allocate the pin array
mjr 73:4e8ce0b18915 1344 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1345
mjr 73:4e8ce0b18915 1346 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1347 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1348
mjr 73:4e8ce0b18915 1349 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1350 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1351 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1352
mjr 73:4e8ce0b18915 1353 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1354 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1355 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1356
mjr 73:4e8ce0b18915 1357 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1358 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1359 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1360
mjr 35:e959ffba78fd 1361 // create the pin interface object for each port
mjr 35:e959ffba78fd 1362 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1363 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1364 }
mjr 6:cc35eb643e8f 1365
mjr 76:7f5912b6340e 1366 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1367 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1368 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1369 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1370 // equivalent to 48.
mjr 40:cc0d9814522b 1371 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1372 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1373 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1374 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1375 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1376 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1377 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1378 255, 255
mjr 40:cc0d9814522b 1379 };
mjr 40:cc0d9814522b 1380
mjr 76:7f5912b6340e 1381 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1382 // level (1..48)
mjr 76:7f5912b6340e 1383 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1384 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1385 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1386 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1387 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1388 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1389 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1390 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1391 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1392 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1393 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1394 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1395 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1396 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1397 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1398 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1399 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1400 };
mjr 76:7f5912b6340e 1401
mjr 74:822a92bc11d2 1402 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1403 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1404 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1405 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1406 //
mjr 74:822a92bc11d2 1407 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1408 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1409 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1410 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1411 //
mjr 74:822a92bc11d2 1412 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1413 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1414 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1415 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1416 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1417 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1418 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1419 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1420 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1421 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1422 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1423 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1424 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1425 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1426 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1427 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1428 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1429 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1430 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1431 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1432
mjr 74:822a92bc11d2 1433 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1434 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1435 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1436 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1437 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1438 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1439 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1440 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1441 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1442 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1443 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1444 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1445 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1446 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1447 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1448 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1449 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1450
mjr 74:822a92bc11d2 1451 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1452 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1453 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1454 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1455 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1456 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1457 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1458 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1459 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1460 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1461 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1462 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1463 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1464 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1465 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1466 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1467 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1468
mjr 74:822a92bc11d2 1469 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1470 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1471 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1472 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1473 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1474 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1475 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1476 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1477 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1478 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1479 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1480 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1481 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1482 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1483 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1484 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1485 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1486 };
mjr 74:822a92bc11d2 1487
mjr 74:822a92bc11d2 1488 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1489 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1490 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1491
mjr 76:7f5912b6340e 1492 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1493 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1494
mjr 76:7f5912b6340e 1495 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1496 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1497 // outputs on each cycle.
mjr 29:582472d0bc57 1498 static void wizPulse()
mjr 29:582472d0bc57 1499 {
mjr 76:7f5912b6340e 1500 // current bank
mjr 76:7f5912b6340e 1501 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1502
mjr 76:7f5912b6340e 1503 // start a timer for statistics collection
mjr 76:7f5912b6340e 1504 IF_DIAG(
mjr 76:7f5912b6340e 1505 Timer t;
mjr 76:7f5912b6340e 1506 t.start();
mjr 76:7f5912b6340e 1507 )
mjr 76:7f5912b6340e 1508
mjr 76:7f5912b6340e 1509 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1510 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1511 //
mjr 76:7f5912b6340e 1512 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1513 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1514 //
mjr 76:7f5912b6340e 1515 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1516 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1517 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1518 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1519 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1520 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1521 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1522 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1523 // current cycle.
mjr 76:7f5912b6340e 1524 //
mjr 76:7f5912b6340e 1525 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1526 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1527 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1528 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1529 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1530 //
mjr 76:7f5912b6340e 1531 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1532 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1533 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1534 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1535 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1536 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1537 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1538 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1539 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1540 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1541 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1542 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1543 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1544 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1545 // bit counts.
mjr 76:7f5912b6340e 1546 //
mjr 76:7f5912b6340e 1547 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1548 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1549 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1550 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1551 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1552 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1553 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1554 // one division for another!
mjr 76:7f5912b6340e 1555 //
mjr 76:7f5912b6340e 1556 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1557 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1558 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1559 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1560 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1561 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1562 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1563 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1564 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1565 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1566 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1567 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1568 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1569 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1570 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1571 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1572 // remainder calculation anyway.
mjr 76:7f5912b6340e 1573 //
mjr 76:7f5912b6340e 1574 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1575 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1576 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1577 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1578 //
mjr 76:7f5912b6340e 1579 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1580 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1581 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1582 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1583 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1584 // the result, since we started with 32.
mjr 76:7f5912b6340e 1585 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1586 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1587 };
mjr 76:7f5912b6340e 1588 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1589
mjr 76:7f5912b6340e 1590 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1591 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1592 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1593 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1594 toPort = numOutputs;
mjr 76:7f5912b6340e 1595
mjr 76:7f5912b6340e 1596 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1597 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1598 {
mjr 76:7f5912b6340e 1599 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1600 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1601 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1602 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1603 if (wizOn[i])
mjr 29:582472d0bc57 1604 {
mjr 76:7f5912b6340e 1605 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1606 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1607 {
mjr 76:7f5912b6340e 1608 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1609 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1610 }
mjr 29:582472d0bc57 1611 }
mjr 76:7f5912b6340e 1612 }
mjr 76:7f5912b6340e 1613
mjr 34:6b981a2afab7 1614 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1615 if (hc595 != 0)
mjr 35:e959ffba78fd 1616 hc595->update();
mjr 76:7f5912b6340e 1617
mjr 76:7f5912b6340e 1618 // switch to the next bank
mjr 76:7f5912b6340e 1619 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1620 wizPulseBank = 0;
mjr 76:7f5912b6340e 1621
mjr 76:7f5912b6340e 1622 // collect timing statistics
mjr 76:7f5912b6340e 1623 IF_DIAG(
mjr 76:7f5912b6340e 1624 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1625 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1626 )
mjr 1:d913e0afb2ac 1627 }
mjr 38:091e511ce8a0 1628
mjr 76:7f5912b6340e 1629 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1630 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1631 {
mjr 76:7f5912b6340e 1632 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1633 if (wizOn[port])
mjr 76:7f5912b6340e 1634 {
mjr 76:7f5912b6340e 1635 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1636 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1637 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1638 // it on the next cycle.
mjr 76:7f5912b6340e 1639 int val = wizVal[port];
mjr 76:7f5912b6340e 1640 if (val <= 49)
mjr 76:7f5912b6340e 1641 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1642 }
mjr 76:7f5912b6340e 1643 else
mjr 76:7f5912b6340e 1644 {
mjr 76:7f5912b6340e 1645 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1646 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1647 }
mjr 73:4e8ce0b18915 1648 }
mjr 73:4e8ce0b18915 1649
mjr 73:4e8ce0b18915 1650 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1651 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1652 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1653 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1654 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1655 //
mjr 73:4e8ce0b18915 1656 void allOutputsOff()
mjr 73:4e8ce0b18915 1657 {
mjr 73:4e8ce0b18915 1658 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1659 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1660 {
mjr 73:4e8ce0b18915 1661 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1662 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1663 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1664 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1665 }
mjr 73:4e8ce0b18915 1666
mjr 73:4e8ce0b18915 1667 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1668 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1669 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1670
mjr 73:4e8ce0b18915 1671 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1672 if (hc595 != 0)
mjr 38:091e511ce8a0 1673 hc595->update();
mjr 38:091e511ce8a0 1674 }
mjr 38:091e511ce8a0 1675
mjr 74:822a92bc11d2 1676 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1677 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1678 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1679 // address any port group.
mjr 74:822a92bc11d2 1680 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1681 {
mjr 76:7f5912b6340e 1682 // update all on/off states in the group
mjr 74:822a92bc11d2 1683 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1684 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1685 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1686 {
mjr 74:822a92bc11d2 1687 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1688 if (bit == 0x100) {
mjr 74:822a92bc11d2 1689 bit = 1;
mjr 74:822a92bc11d2 1690 ++imsg;
mjr 74:822a92bc11d2 1691 }
mjr 74:822a92bc11d2 1692
mjr 74:822a92bc11d2 1693 // set the on/off state
mjr 76:7f5912b6340e 1694 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1695
mjr 76:7f5912b6340e 1696 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1697 updateLwPort(port);
mjr 74:822a92bc11d2 1698 }
mjr 74:822a92bc11d2 1699
mjr 74:822a92bc11d2 1700 // set the flash speed for the port group
mjr 74:822a92bc11d2 1701 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1702 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1703
mjr 76:7f5912b6340e 1704 // update 74HC959 outputs
mjr 76:7f5912b6340e 1705 if (hc595 != 0)
mjr 76:7f5912b6340e 1706 hc595->update();
mjr 74:822a92bc11d2 1707 }
mjr 74:822a92bc11d2 1708
mjr 74:822a92bc11d2 1709 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1710 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1711 {
mjr 74:822a92bc11d2 1712 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1713 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1714 {
mjr 74:822a92bc11d2 1715 // get the value
mjr 74:822a92bc11d2 1716 uint8_t v = data[i];
mjr 74:822a92bc11d2 1717
mjr 74:822a92bc11d2 1718 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1719 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1720 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1721 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1722 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1723 // as such.
mjr 74:822a92bc11d2 1724 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1725 v = 48;
mjr 74:822a92bc11d2 1726
mjr 74:822a92bc11d2 1727 // store it
mjr 76:7f5912b6340e 1728 wizVal[port] = v;
mjr 76:7f5912b6340e 1729
mjr 76:7f5912b6340e 1730 // update the port
mjr 76:7f5912b6340e 1731 updateLwPort(port);
mjr 74:822a92bc11d2 1732 }
mjr 74:822a92bc11d2 1733
mjr 76:7f5912b6340e 1734 // update 74HC595 outputs
mjr 76:7f5912b6340e 1735 if (hc595 != 0)
mjr 76:7f5912b6340e 1736 hc595->update();
mjr 74:822a92bc11d2 1737 }
mjr 74:822a92bc11d2 1738
mjr 77:0b96f6867312 1739 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1740 //
mjr 77:0b96f6867312 1741 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1742 //
mjr 77:0b96f6867312 1743
mjr 77:0b96f6867312 1744 // receiver
mjr 77:0b96f6867312 1745 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1746
mjr 77:0b96f6867312 1747 // transmitter
mjr 77:0b96f6867312 1748 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1749
mjr 77:0b96f6867312 1750 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1751 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1752 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1753 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1754 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1755 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1756 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1757 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1758 // configuration slot n
mjr 77:0b96f6867312 1759 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1760
mjr 78:1e00b3fa11af 1761 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1762 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1763 // protocol.
mjr 78:1e00b3fa11af 1764 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1765
mjr 78:1e00b3fa11af 1766 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1767 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1768 // while waiting for the rest.
mjr 78:1e00b3fa11af 1769 static struct
mjr 78:1e00b3fa11af 1770 {
mjr 78:1e00b3fa11af 1771 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1772 uint64_t code; // code
mjr 78:1e00b3fa11af 1773 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1774 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1775 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1776
mjr 77:0b96f6867312 1777
mjr 77:0b96f6867312 1778 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1779 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1780 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1781 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1782 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1783 // amount of time.
mjr 77:0b96f6867312 1784 Timer IRTimer;
mjr 77:0b96f6867312 1785
mjr 77:0b96f6867312 1786 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1787 // The states are:
mjr 77:0b96f6867312 1788 //
mjr 77:0b96f6867312 1789 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1790 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1791 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1792 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1793 //
mjr 77:0b96f6867312 1794 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1795 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1796 // received within a reasonable time.
mjr 77:0b96f6867312 1797 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1798
mjr 77:0b96f6867312 1799 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1800 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1801 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1802 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1803 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1804 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1805 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1806 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1807 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1808
mjr 78:1e00b3fa11af 1809 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1810 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1811 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1812 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1813 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1814 // index; 0 represents no command.
mjr 77:0b96f6867312 1815 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1816
mjr 77:0b96f6867312 1817 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1818 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1819 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1820 // command we received.
mjr 77:0b96f6867312 1821 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1822
mjr 77:0b96f6867312 1823 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1824 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1825 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1826 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1827 // distinct key press.
mjr 77:0b96f6867312 1828 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1829
mjr 78:1e00b3fa11af 1830
mjr 77:0b96f6867312 1831 // initialize
mjr 77:0b96f6867312 1832 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1833 {
mjr 77:0b96f6867312 1834 PinName pin;
mjr 77:0b96f6867312 1835
mjr 77:0b96f6867312 1836 // start the IR timer
mjr 77:0b96f6867312 1837 IRTimer.start();
mjr 77:0b96f6867312 1838
mjr 77:0b96f6867312 1839 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1840 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1841 {
mjr 77:0b96f6867312 1842 // no virtual buttons yet
mjr 77:0b96f6867312 1843 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1844 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1845
mjr 77:0b96f6867312 1846 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1847 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1848 {
mjr 77:0b96f6867312 1849 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1850 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1851 }
mjr 77:0b96f6867312 1852
mjr 77:0b96f6867312 1853 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1854 // real button inputs
mjr 77:0b96f6867312 1855 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1856 {
mjr 77:0b96f6867312 1857 // get the button
mjr 77:0b96f6867312 1858 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1859
mjr 77:0b96f6867312 1860 // check the unshifted button
mjr 77:0b96f6867312 1861 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1862 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1863 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1864 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1865
mjr 77:0b96f6867312 1866 // check the shifted button
mjr 77:0b96f6867312 1867 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1868 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1869 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1870 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1871 }
mjr 77:0b96f6867312 1872
mjr 77:0b96f6867312 1873 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1874 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1875 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1876
mjr 77:0b96f6867312 1877 // create the transmitter
mjr 77:0b96f6867312 1878 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1879
mjr 77:0b96f6867312 1880 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1881 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1882 {
mjr 77:0b96f6867312 1883 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1884 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1885 if (vb != 0xFF)
mjr 77:0b96f6867312 1886 {
mjr 77:0b96f6867312 1887 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1888 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1889 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1890 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1891 }
mjr 77:0b96f6867312 1892 }
mjr 77:0b96f6867312 1893 }
mjr 77:0b96f6867312 1894
mjr 77:0b96f6867312 1895 // if there's a receiver, set it up
mjr 77:0b96f6867312 1896 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1897 {
mjr 77:0b96f6867312 1898 // create the receiver
mjr 77:0b96f6867312 1899 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1900
mjr 77:0b96f6867312 1901 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1902 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1903 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1904
mjr 77:0b96f6867312 1905 // enable it
mjr 77:0b96f6867312 1906 ir_rx->enable();
mjr 77:0b96f6867312 1907
mjr 77:0b96f6867312 1908 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1909 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1910 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1911 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1912 {
mjr 77:0b96f6867312 1913 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1914 if (cb.protocol != 0
mjr 77:0b96f6867312 1915 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 1916 {
mjr 77:0b96f6867312 1917 kbKeys = true;
mjr 77:0b96f6867312 1918 break;
mjr 77:0b96f6867312 1919 }
mjr 77:0b96f6867312 1920 }
mjr 77:0b96f6867312 1921 }
mjr 77:0b96f6867312 1922 }
mjr 77:0b96f6867312 1923
mjr 77:0b96f6867312 1924 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 1925 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 1926 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 1927 {
mjr 77:0b96f6867312 1928 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 1929 if (ir_tx != 0)
mjr 77:0b96f6867312 1930 {
mjr 77:0b96f6867312 1931 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 1932 int slot = cmd - 1;
mjr 77:0b96f6867312 1933
mjr 77:0b96f6867312 1934 // press or release the virtual button
mjr 77:0b96f6867312 1935 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 1936 }
mjr 77:0b96f6867312 1937 }
mjr 77:0b96f6867312 1938
mjr 78:1e00b3fa11af 1939 // Process IR input and output
mjr 77:0b96f6867312 1940 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 1941 {
mjr 78:1e00b3fa11af 1942 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 1943 if (ir_tx != 0)
mjr 77:0b96f6867312 1944 {
mjr 78:1e00b3fa11af 1945 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 1946 // is ready to send, send it.
mjr 78:1e00b3fa11af 1947 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 1948 {
mjr 78:1e00b3fa11af 1949 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 1950 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 1951 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 1952 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 1953
mjr 78:1e00b3fa11af 1954 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 1955 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 1956 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 1957
mjr 78:1e00b3fa11af 1958 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 1959 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 1960 }
mjr 77:0b96f6867312 1961 }
mjr 78:1e00b3fa11af 1962
mjr 78:1e00b3fa11af 1963 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 1964 if (ir_rx != 0)
mjr 77:0b96f6867312 1965 {
mjr 78:1e00b3fa11af 1966 // Time out any received command
mjr 78:1e00b3fa11af 1967 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 1968 {
mjr 80:94dc2946871b 1969 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 1970 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 1971 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 1972 if (t > 200000)
mjr 78:1e00b3fa11af 1973 IRCommandIn = 0;
mjr 80:94dc2946871b 1974 else if (t > 50000)
mjr 78:1e00b3fa11af 1975 IRKeyGap = false;
mjr 78:1e00b3fa11af 1976 }
mjr 78:1e00b3fa11af 1977
mjr 78:1e00b3fa11af 1978 // Check if we're in learning mode
mjr 78:1e00b3fa11af 1979 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 1980 {
mjr 78:1e00b3fa11af 1981 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 1982 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 1983 // limit.
mjr 78:1e00b3fa11af 1984 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 1985 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 1986 int n;
mjr 78:1e00b3fa11af 1987 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 1988
mjr 78:1e00b3fa11af 1989 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 1990 if (n != 0)
mjr 78:1e00b3fa11af 1991 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 1992
mjr 78:1e00b3fa11af 1993 // check for a command
mjr 78:1e00b3fa11af 1994 IRCommand c;
mjr 78:1e00b3fa11af 1995 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 1996 {
mjr 78:1e00b3fa11af 1997 // check the current learning state
mjr 78:1e00b3fa11af 1998 switch (IRLearningMode)
mjr 78:1e00b3fa11af 1999 {
mjr 78:1e00b3fa11af 2000 case 1:
mjr 78:1e00b3fa11af 2001 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2002 // This is it.
mjr 78:1e00b3fa11af 2003 learnedIRCode = c;
mjr 78:1e00b3fa11af 2004
mjr 78:1e00b3fa11af 2005 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2006 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2007 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2008 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2009 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2010 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2011 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2012 break;
mjr 78:1e00b3fa11af 2013
mjr 78:1e00b3fa11af 2014 case 2:
mjr 78:1e00b3fa11af 2015 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2016 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2017 //
mjr 78:1e00b3fa11af 2018 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2019 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2020 //
mjr 78:1e00b3fa11af 2021 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2022 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2023 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2024 // them.
mjr 78:1e00b3fa11af 2025 //
mjr 78:1e00b3fa11af 2026 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2027 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2028 // over.
mjr 78:1e00b3fa11af 2029 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2030 && c.hasDittos
mjr 78:1e00b3fa11af 2031 && c.ditto)
mjr 78:1e00b3fa11af 2032 {
mjr 78:1e00b3fa11af 2033 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2034 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2035 }
mjr 78:1e00b3fa11af 2036 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2037 && c.hasDittos
mjr 78:1e00b3fa11af 2038 && !c.ditto
mjr 78:1e00b3fa11af 2039 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2040 {
mjr 78:1e00b3fa11af 2041 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2042 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2043 // protocol supports them
mjr 78:1e00b3fa11af 2044 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2045 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2046 }
mjr 78:1e00b3fa11af 2047 else
mjr 78:1e00b3fa11af 2048 {
mjr 78:1e00b3fa11af 2049 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2050 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2051 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2052 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2053 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2054 }
mjr 78:1e00b3fa11af 2055 break;
mjr 78:1e00b3fa11af 2056 }
mjr 77:0b96f6867312 2057
mjr 78:1e00b3fa11af 2058 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2059 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2060 // learning mode.
mjr 78:1e00b3fa11af 2061 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2062 {
mjr 78:1e00b3fa11af 2063 // figure the flags:
mjr 78:1e00b3fa11af 2064 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2065 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2066 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2067 flags |= 0x02;
mjr 78:1e00b3fa11af 2068
mjr 78:1e00b3fa11af 2069 // report the code
mjr 78:1e00b3fa11af 2070 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2071
mjr 78:1e00b3fa11af 2072 // exit learning mode
mjr 78:1e00b3fa11af 2073 IRLearningMode = 0;
mjr 77:0b96f6867312 2074 }
mjr 77:0b96f6867312 2075 }
mjr 77:0b96f6867312 2076
mjr 78:1e00b3fa11af 2077 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2078 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2079 {
mjr 78:1e00b3fa11af 2080 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2081 // zero data elements
mjr 78:1e00b3fa11af 2082 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2083
mjr 78:1e00b3fa11af 2084
mjr 78:1e00b3fa11af 2085 // cancel learning mode
mjr 77:0b96f6867312 2086 IRLearningMode = 0;
mjr 77:0b96f6867312 2087 }
mjr 77:0b96f6867312 2088 }
mjr 78:1e00b3fa11af 2089 else
mjr 77:0b96f6867312 2090 {
mjr 78:1e00b3fa11af 2091 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2092 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2093 ir_rx->process();
mjr 78:1e00b3fa11af 2094
mjr 78:1e00b3fa11af 2095 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2096 // have been read.
mjr 78:1e00b3fa11af 2097 IRCommand c;
mjr 78:1e00b3fa11af 2098 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2099 {
mjr 78:1e00b3fa11af 2100 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2101 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2102 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2103 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2104 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2105 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2106 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2107 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2108 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2109 //
mjr 78:1e00b3fa11af 2110 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2111 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2112 // command.
mjr 78:1e00b3fa11af 2113 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2114 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2115 {
mjr 78:1e00b3fa11af 2116 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2117 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2118 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2119 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2120 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2121 if (c.ditto)
mjr 78:1e00b3fa11af 2122 {
mjr 78:1e00b3fa11af 2123 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2124 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2125 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2126 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2127 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2128 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2129 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2130 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2131 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2132 }
mjr 78:1e00b3fa11af 2133 else
mjr 78:1e00b3fa11af 2134 {
mjr 78:1e00b3fa11af 2135 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2136 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2137 // prior command.
mjr 78:1e00b3fa11af 2138 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2139 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2140 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2141
mjr 78:1e00b3fa11af 2142 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2143 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2144 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2145 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2146 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2147 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2148 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2149 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2150 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2151 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2152 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2153 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2154 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2155 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2156 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2157 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2158 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2159 autoRepeat =
mjr 78:1e00b3fa11af 2160 repeat
mjr 78:1e00b3fa11af 2161 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2162 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2163 }
mjr 78:1e00b3fa11af 2164 }
mjr 78:1e00b3fa11af 2165
mjr 78:1e00b3fa11af 2166 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2167 if (repeat)
mjr 78:1e00b3fa11af 2168 {
mjr 78:1e00b3fa11af 2169 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2170 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2171 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2172 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2173 // key press event.
mjr 78:1e00b3fa11af 2174 if (!autoRepeat)
mjr 78:1e00b3fa11af 2175 IRKeyGap = true;
mjr 78:1e00b3fa11af 2176
mjr 78:1e00b3fa11af 2177 // restart the key-up timer
mjr 78:1e00b3fa11af 2178 IRTimer.reset();
mjr 78:1e00b3fa11af 2179 }
mjr 78:1e00b3fa11af 2180 else if (c.ditto)
mjr 78:1e00b3fa11af 2181 {
mjr 78:1e00b3fa11af 2182 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2183 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2184 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2185 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2186 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2187 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2188 // a full command for a new key press.
mjr 78:1e00b3fa11af 2189 IRCommandIn = 0;
mjr 77:0b96f6867312 2190 }
mjr 77:0b96f6867312 2191 else
mjr 77:0b96f6867312 2192 {
mjr 78:1e00b3fa11af 2193 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2194 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2195 // the new command).
mjr 78:1e00b3fa11af 2196 IRCommandIn = 0;
mjr 77:0b96f6867312 2197
mjr 78:1e00b3fa11af 2198 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2199 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2200 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2201 {
mjr 78:1e00b3fa11af 2202 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2203 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2204 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2205 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2206 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2207 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2208 {
mjr 78:1e00b3fa11af 2209 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2210 // remember the starting time.
mjr 78:1e00b3fa11af 2211 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2212 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2213 IRTimer.reset();
mjr 78:1e00b3fa11af 2214
mjr 78:1e00b3fa11af 2215 // no need to keep searching
mjr 78:1e00b3fa11af 2216 break;
mjr 78:1e00b3fa11af 2217 }
mjr 77:0b96f6867312 2218 }
mjr 77:0b96f6867312 2219 }
mjr 77:0b96f6867312 2220 }
mjr 77:0b96f6867312 2221 }
mjr 77:0b96f6867312 2222 }
mjr 77:0b96f6867312 2223 }
mjr 77:0b96f6867312 2224
mjr 74:822a92bc11d2 2225
mjr 11:bd9da7088e6e 2226 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2227 //
mjr 11:bd9da7088e6e 2228 // Button input
mjr 11:bd9da7088e6e 2229 //
mjr 11:bd9da7088e6e 2230
mjr 18:5e890ebd0023 2231 // button state
mjr 18:5e890ebd0023 2232 struct ButtonState
mjr 18:5e890ebd0023 2233 {
mjr 38:091e511ce8a0 2234 ButtonState()
mjr 38:091e511ce8a0 2235 {
mjr 53:9b2611964afc 2236 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2237 virtState = 0;
mjr 53:9b2611964afc 2238 dbState = 0;
mjr 38:091e511ce8a0 2239 pulseState = 0;
mjr 53:9b2611964afc 2240 pulseTime = 0;
mjr 38:091e511ce8a0 2241 }
mjr 35:e959ffba78fd 2242
mjr 53:9b2611964afc 2243 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2244 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2245 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2246 //
mjr 53:9b2611964afc 2247 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2248 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2249 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2250 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2251 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2252 void virtPress(bool on)
mjr 53:9b2611964afc 2253 {
mjr 53:9b2611964afc 2254 // Increment or decrement the current state
mjr 53:9b2611964afc 2255 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2256 }
mjr 53:9b2611964afc 2257
mjr 53:9b2611964afc 2258 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2259 TinyDigitalIn di;
mjr 38:091e511ce8a0 2260
mjr 65:739875521aae 2261 // Time of last pulse state transition.
mjr 65:739875521aae 2262 //
mjr 65:739875521aae 2263 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2264 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2265 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2266 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2267 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2268 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2269 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2270 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2271 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2272 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2273 // This software system can't be fooled that way.)
mjr 65:739875521aae 2274 uint32_t pulseTime;
mjr 18:5e890ebd0023 2275
mjr 65:739875521aae 2276 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2277 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2278 uint8_t cfgIndex;
mjr 53:9b2611964afc 2279
mjr 53:9b2611964afc 2280 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2281 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2282 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2283 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2284 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2285 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2286 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2287 // and physical source states.
mjr 53:9b2611964afc 2288 uint8_t virtState;
mjr 38:091e511ce8a0 2289
mjr 38:091e511ce8a0 2290 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2291 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2292 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2293 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2294 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2295 uint8_t dbState;
mjr 38:091e511ce8a0 2296
mjr 65:739875521aae 2297 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2298 uint8_t physState : 1;
mjr 65:739875521aae 2299
mjr 65:739875521aae 2300 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2301 uint8_t logState : 1;
mjr 65:739875521aae 2302
mjr 79:682ae3171a08 2303 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2304 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2305 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2306 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2307 uint8_t prevLogState : 1;
mjr 65:739875521aae 2308
mjr 65:739875521aae 2309 // Pulse state
mjr 65:739875521aae 2310 //
mjr 65:739875521aae 2311 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2312 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2313 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2314 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2315 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2316 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2317 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2318 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2319 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2320 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2321 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2322 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2323 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2324 //
mjr 38:091e511ce8a0 2325 // Pulse state:
mjr 38:091e511ce8a0 2326 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2327 // 1 -> off
mjr 38:091e511ce8a0 2328 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2329 // 3 -> on
mjr 38:091e511ce8a0 2330 // 4 -> transitioning on-off
mjr 65:739875521aae 2331 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2332
mjr 65:739875521aae 2333 } __attribute__((packed));
mjr 65:739875521aae 2334
mjr 65:739875521aae 2335 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2336 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2337 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2338
mjr 66:2e3583fbd2f4 2339 // Shift button state
mjr 66:2e3583fbd2f4 2340 struct
mjr 66:2e3583fbd2f4 2341 {
mjr 66:2e3583fbd2f4 2342 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2343 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2344 // 0 = not shifted
mjr 66:2e3583fbd2f4 2345 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2346 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2347 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2348 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2349 }
mjr 66:2e3583fbd2f4 2350 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2351
mjr 38:091e511ce8a0 2352 // Button data
mjr 38:091e511ce8a0 2353 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2354
mjr 38:091e511ce8a0 2355 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2356 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2357 // modifier keys.
mjr 38:091e511ce8a0 2358 struct
mjr 38:091e511ce8a0 2359 {
mjr 38:091e511ce8a0 2360 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2361 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2362 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2363 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2364 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2365
mjr 38:091e511ce8a0 2366 // Media key state
mjr 38:091e511ce8a0 2367 struct
mjr 38:091e511ce8a0 2368 {
mjr 38:091e511ce8a0 2369 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2370 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2371 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2372
mjr 79:682ae3171a08 2373 // button scan interrupt timer
mjr 79:682ae3171a08 2374 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2375
mjr 38:091e511ce8a0 2376 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2377 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2378 void scanButtons()
mjr 38:091e511ce8a0 2379 {
mjr 79:682ae3171a08 2380 // schedule the next interrupt
mjr 79:682ae3171a08 2381 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2382
mjr 38:091e511ce8a0 2383 // scan all button input pins
mjr 73:4e8ce0b18915 2384 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2385 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2386 {
mjr 73:4e8ce0b18915 2387 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2388 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2389 bs->dbState = db;
mjr 73:4e8ce0b18915 2390
mjr 73:4e8ce0b18915 2391 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2392 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2393 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2394 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2395 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2396 db &= stable;
mjr 73:4e8ce0b18915 2397 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2398 bs->physState = !db;
mjr 38:091e511ce8a0 2399 }
mjr 38:091e511ce8a0 2400 }
mjr 38:091e511ce8a0 2401
mjr 38:091e511ce8a0 2402 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2403 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2404 // in the physical button state.
mjr 38:091e511ce8a0 2405 Timer buttonTimer;
mjr 12:669df364a565 2406
mjr 65:739875521aae 2407 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2408 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2409 {
mjr 65:739875521aae 2410 // count it
mjr 65:739875521aae 2411 ++nButtons;
mjr 65:739875521aae 2412
mjr 67:c39e66c4e000 2413 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2414 // keyboard interface
mjr 72:884207c0aab0 2415 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2416 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2417 kbKeys = true;
mjr 65:739875521aae 2418 }
mjr 65:739875521aae 2419
mjr 11:bd9da7088e6e 2420 // initialize the button inputs
mjr 35:e959ffba78fd 2421 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2422 {
mjr 66:2e3583fbd2f4 2423 // presume no shift key
mjr 66:2e3583fbd2f4 2424 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2425 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2426
mjr 65:739875521aae 2427 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2428 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2429 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2430 nButtons = 0;
mjr 65:739875521aae 2431 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2432 {
mjr 65:739875521aae 2433 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2434 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2435 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2436 }
mjr 65:739875521aae 2437
mjr 65:739875521aae 2438 // Count virtual buttons
mjr 65:739875521aae 2439
mjr 65:739875521aae 2440 // ZB Launch
mjr 65:739875521aae 2441 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2442 {
mjr 65:739875521aae 2443 // valid - remember the live button index
mjr 65:739875521aae 2444 zblButtonIndex = nButtons;
mjr 65:739875521aae 2445
mjr 65:739875521aae 2446 // count it
mjr 72:884207c0aab0 2447 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2448 }
mjr 65:739875521aae 2449
mjr 65:739875521aae 2450 // Allocate the live button slots
mjr 65:739875521aae 2451 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2452
mjr 65:739875521aae 2453 // Configure the physical inputs
mjr 65:739875521aae 2454 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2455 {
mjr 65:739875521aae 2456 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2457 if (pin != NC)
mjr 65:739875521aae 2458 {
mjr 65:739875521aae 2459 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2460 bs->cfgIndex = i;
mjr 65:739875521aae 2461
mjr 65:739875521aae 2462 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2463 bs->di.assignPin(pin);
mjr 65:739875521aae 2464
mjr 65:739875521aae 2465 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2466 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2467 bs->pulseState = 1;
mjr 65:739875521aae 2468
mjr 66:2e3583fbd2f4 2469 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2470 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2471 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2472 // config slots are left unused.
mjr 78:1e00b3fa11af 2473 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2474 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2475
mjr 65:739875521aae 2476 // advance to the next button
mjr 65:739875521aae 2477 ++bs;
mjr 65:739875521aae 2478 }
mjr 65:739875521aae 2479 }
mjr 65:739875521aae 2480
mjr 53:9b2611964afc 2481 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2482 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2483 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2484 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2485
mjr 53:9b2611964afc 2486 // ZB Launch Ball button
mjr 65:739875521aae 2487 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2488 {
mjr 65:739875521aae 2489 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2490 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2491 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2492 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2493 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2494 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2495 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2496 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2497
mjr 66:2e3583fbd2f4 2498 // advance to the next button
mjr 65:739875521aae 2499 ++bs;
mjr 11:bd9da7088e6e 2500 }
mjr 12:669df364a565 2501
mjr 38:091e511ce8a0 2502 // start the button scan thread
mjr 79:682ae3171a08 2503 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2504
mjr 38:091e511ce8a0 2505 // start the button state transition timer
mjr 12:669df364a565 2506 buttonTimer.start();
mjr 11:bd9da7088e6e 2507 }
mjr 11:bd9da7088e6e 2508
mjr 67:c39e66c4e000 2509 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2510 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2511 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2512 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2513 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2514 //
mjr 67:c39e66c4e000 2515 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2516 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2517 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2518 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2519 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2520 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2521 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2522 //
mjr 67:c39e66c4e000 2523 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2528 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2529 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2530 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2531 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2533 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2534 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2535 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2536 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2537 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2538 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2539 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2540 };
mjr 77:0b96f6867312 2541
mjr 77:0b96f6867312 2542 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2543 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2544 // states of the button iputs.
mjr 77:0b96f6867312 2545 struct KeyState
mjr 77:0b96f6867312 2546 {
mjr 77:0b96f6867312 2547 KeyState()
mjr 77:0b96f6867312 2548 {
mjr 77:0b96f6867312 2549 // zero all members
mjr 77:0b96f6867312 2550 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2551 }
mjr 77:0b96f6867312 2552
mjr 77:0b96f6867312 2553 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2554 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2555 uint8_t mediakeys;
mjr 77:0b96f6867312 2556
mjr 77:0b96f6867312 2557 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2558 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2559 // USBJoystick.cpp).
mjr 77:0b96f6867312 2560 uint8_t modkeys;
mjr 77:0b96f6867312 2561
mjr 77:0b96f6867312 2562 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2563 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2564 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2565 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2566 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2567 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2568 uint8_t keys[7];
mjr 77:0b96f6867312 2569
mjr 77:0b96f6867312 2570 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2571 int nkeys;
mjr 77:0b96f6867312 2572
mjr 77:0b96f6867312 2573 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2574 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2575 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2576 uint32_t js;
mjr 77:0b96f6867312 2577
mjr 77:0b96f6867312 2578
mjr 77:0b96f6867312 2579 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2580 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2581 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2582 {
mjr 77:0b96f6867312 2583 // add the key according to the type
mjr 77:0b96f6867312 2584 switch (typ)
mjr 77:0b96f6867312 2585 {
mjr 77:0b96f6867312 2586 case BtnTypeJoystick:
mjr 77:0b96f6867312 2587 // joystick button
mjr 77:0b96f6867312 2588 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2589 break;
mjr 77:0b96f6867312 2590
mjr 77:0b96f6867312 2591 case BtnTypeKey:
mjr 77:0b96f6867312 2592 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2593 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2594 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2595 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2596 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2597 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2598 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2599 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2600 {
mjr 77:0b96f6867312 2601 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2602 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2603 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2604 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2605 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2606 }
mjr 77:0b96f6867312 2607 else
mjr 77:0b96f6867312 2608 {
mjr 77:0b96f6867312 2609 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2610 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2611 // apply, add the key to the key array.
mjr 77:0b96f6867312 2612 if (nkeys < 7)
mjr 77:0b96f6867312 2613 {
mjr 77:0b96f6867312 2614 bool found = false;
mjr 77:0b96f6867312 2615 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2616 {
mjr 77:0b96f6867312 2617 if (keys[i] == val)
mjr 77:0b96f6867312 2618 {
mjr 77:0b96f6867312 2619 found = true;
mjr 77:0b96f6867312 2620 break;
mjr 77:0b96f6867312 2621 }
mjr 77:0b96f6867312 2622 }
mjr 77:0b96f6867312 2623 if (!found)
mjr 77:0b96f6867312 2624 keys[nkeys++] = val;
mjr 77:0b96f6867312 2625 }
mjr 77:0b96f6867312 2626 }
mjr 77:0b96f6867312 2627 break;
mjr 77:0b96f6867312 2628
mjr 77:0b96f6867312 2629 case BtnTypeMedia:
mjr 77:0b96f6867312 2630 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2631 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2632 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2633 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2634 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2635 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2636 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2637 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2638 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2639 break;
mjr 77:0b96f6867312 2640 }
mjr 77:0b96f6867312 2641 }
mjr 77:0b96f6867312 2642 };
mjr 67:c39e66c4e000 2643
mjr 67:c39e66c4e000 2644
mjr 38:091e511ce8a0 2645 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2646 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2647 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2648 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2649 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2650 {
mjr 77:0b96f6867312 2651 // key state
mjr 77:0b96f6867312 2652 KeyState ks;
mjr 38:091e511ce8a0 2653
mjr 38:091e511ce8a0 2654 // calculate the time since the last run
mjr 53:9b2611964afc 2655 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2656 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2657
mjr 66:2e3583fbd2f4 2658 // check the shift button state
mjr 66:2e3583fbd2f4 2659 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2660 {
mjr 78:1e00b3fa11af 2661 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 2662 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 2663
mjr 78:1e00b3fa11af 2664 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 2665 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2666 {
mjr 66:2e3583fbd2f4 2667 case 0:
mjr 78:1e00b3fa11af 2668 default:
mjr 78:1e00b3fa11af 2669 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 2670 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 2671 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 2672 switch (shiftButton.state)
mjr 78:1e00b3fa11af 2673 {
mjr 78:1e00b3fa11af 2674 case 0:
mjr 78:1e00b3fa11af 2675 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 2676 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 2677 if (sbs->physState)
mjr 78:1e00b3fa11af 2678 shiftButton.state = 1;
mjr 78:1e00b3fa11af 2679 break;
mjr 78:1e00b3fa11af 2680
mjr 78:1e00b3fa11af 2681 case 1:
mjr 78:1e00b3fa11af 2682 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 2683 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 2684 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 2685 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 2686 // pulse event.
mjr 78:1e00b3fa11af 2687 if (!sbs->physState)
mjr 78:1e00b3fa11af 2688 {
mjr 78:1e00b3fa11af 2689 shiftButton.state = 3;
mjr 78:1e00b3fa11af 2690 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 2691 }
mjr 78:1e00b3fa11af 2692 break;
mjr 78:1e00b3fa11af 2693
mjr 78:1e00b3fa11af 2694 case 2:
mjr 78:1e00b3fa11af 2695 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 2696 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 2697 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 2698 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 2699 // suppressed.
mjr 78:1e00b3fa11af 2700 if (!sbs->physState)
mjr 78:1e00b3fa11af 2701 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2702 break;
mjr 78:1e00b3fa11af 2703
mjr 78:1e00b3fa11af 2704 case 3:
mjr 78:1e00b3fa11af 2705 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 2706 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 2707 // has expired.
mjr 78:1e00b3fa11af 2708 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 2709 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 2710 else
mjr 78:1e00b3fa11af 2711 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2712 break;
mjr 78:1e00b3fa11af 2713 }
mjr 66:2e3583fbd2f4 2714 break;
mjr 66:2e3583fbd2f4 2715
mjr 66:2e3583fbd2f4 2716 case 1:
mjr 78:1e00b3fa11af 2717 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 2718 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 2719 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 2720 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 2721 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 2722 break;
mjr 66:2e3583fbd2f4 2723 }
mjr 66:2e3583fbd2f4 2724 }
mjr 38:091e511ce8a0 2725
mjr 11:bd9da7088e6e 2726 // scan the button list
mjr 18:5e890ebd0023 2727 ButtonState *bs = buttonState;
mjr 65:739875521aae 2728 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2729 {
mjr 77:0b96f6867312 2730 // get the config entry for the button
mjr 77:0b96f6867312 2731 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2732
mjr 66:2e3583fbd2f4 2733 // Check the button type:
mjr 66:2e3583fbd2f4 2734 // - shift button
mjr 66:2e3583fbd2f4 2735 // - pulsed button
mjr 66:2e3583fbd2f4 2736 // - regular button
mjr 66:2e3583fbd2f4 2737 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2738 {
mjr 78:1e00b3fa11af 2739 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 2740 // depends on the mode.
mjr 78:1e00b3fa11af 2741 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2742 {
mjr 78:1e00b3fa11af 2743 case 0:
mjr 78:1e00b3fa11af 2744 default:
mjr 78:1e00b3fa11af 2745 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 2746 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 2747 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 2748 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 2749 break;
mjr 78:1e00b3fa11af 2750
mjr 78:1e00b3fa11af 2751 case 1:
mjr 78:1e00b3fa11af 2752 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 2753 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 2754 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 2755 break;
mjr 66:2e3583fbd2f4 2756 }
mjr 66:2e3583fbd2f4 2757 }
mjr 66:2e3583fbd2f4 2758 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2759 {
mjr 38:091e511ce8a0 2760 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2761 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2762 {
mjr 53:9b2611964afc 2763 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2764 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2765 }
mjr 53:9b2611964afc 2766 else
mjr 53:9b2611964afc 2767 {
mjr 53:9b2611964afc 2768 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2769 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2770 switch (bs->pulseState)
mjr 18:5e890ebd0023 2771 {
mjr 38:091e511ce8a0 2772 case 1:
mjr 38:091e511ce8a0 2773 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2774 if (bs->physState)
mjr 53:9b2611964afc 2775 {
mjr 38:091e511ce8a0 2776 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2777 bs->pulseState = 2;
mjr 53:9b2611964afc 2778 bs->logState = 1;
mjr 38:091e511ce8a0 2779 }
mjr 38:091e511ce8a0 2780 break;
mjr 18:5e890ebd0023 2781
mjr 38:091e511ce8a0 2782 case 2:
mjr 38:091e511ce8a0 2783 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2784 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2785 // change in state in the logical button
mjr 38:091e511ce8a0 2786 bs->pulseState = 3;
mjr 38:091e511ce8a0 2787 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2788 bs->logState = 0;
mjr 38:091e511ce8a0 2789 break;
mjr 38:091e511ce8a0 2790
mjr 38:091e511ce8a0 2791 case 3:
mjr 38:091e511ce8a0 2792 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2793 if (!bs->physState)
mjr 53:9b2611964afc 2794 {
mjr 38:091e511ce8a0 2795 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2796 bs->pulseState = 4;
mjr 53:9b2611964afc 2797 bs->logState = 1;
mjr 38:091e511ce8a0 2798 }
mjr 38:091e511ce8a0 2799 break;
mjr 38:091e511ce8a0 2800
mjr 38:091e511ce8a0 2801 case 4:
mjr 38:091e511ce8a0 2802 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2803 bs->pulseState = 1;
mjr 38:091e511ce8a0 2804 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2805 bs->logState = 0;
mjr 38:091e511ce8a0 2806 break;
mjr 18:5e890ebd0023 2807 }
mjr 18:5e890ebd0023 2808 }
mjr 38:091e511ce8a0 2809 }
mjr 38:091e511ce8a0 2810 else
mjr 38:091e511ce8a0 2811 {
mjr 38:091e511ce8a0 2812 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2813 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2814 }
mjr 77:0b96f6867312 2815
mjr 77:0b96f6867312 2816 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 2817 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 2818 //
mjr 78:1e00b3fa11af 2819 // - the shift button is down, AND
mjr 78:1e00b3fa11af 2820 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 2821 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 2822 //
mjr 78:1e00b3fa11af 2823 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 2824 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 2825 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 2826 //
mjr 78:1e00b3fa11af 2827 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 2828 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 2829 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 2830 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 2831 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2832 bool useShift =
mjr 77:0b96f6867312 2833 (shiftButton.state != 0
mjr 78:1e00b3fa11af 2834 && shiftButton.index != i
mjr 77:0b96f6867312 2835 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2836 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2837 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2838
mjr 77:0b96f6867312 2839 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2840 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2841 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2842 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2843 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 2844 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 2845 shiftButton.state = 2;
mjr 35:e959ffba78fd 2846
mjr 38:091e511ce8a0 2847 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2848 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2849 {
mjr 77:0b96f6867312 2850 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2851 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2852 {
mjr 77:0b96f6867312 2853 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2854 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2855 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2856 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2857 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2858 // the night mode state.
mjr 77:0b96f6867312 2859 //
mjr 77:0b96f6867312 2860 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2861 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 2862 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 2863 {
mjr 77:0b96f6867312 2864 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2865 // current switch state.
mjr 53:9b2611964afc 2866 setNightMode(bs->logState);
mjr 53:9b2611964afc 2867 }
mjr 82:4f6209cb5c33 2868 else if (bs->logState)
mjr 53:9b2611964afc 2869 {
mjr 77:0b96f6867312 2870 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2871 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2872 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2873 // OFF to ON.
mjr 66:2e3583fbd2f4 2874 //
mjr 77:0b96f6867312 2875 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2876 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2877 // button.
mjr 77:0b96f6867312 2878 bool pressed;
mjr 66:2e3583fbd2f4 2879 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2880 {
mjr 77:0b96f6867312 2881 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2882 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2883 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2884 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2885 }
mjr 77:0b96f6867312 2886 else
mjr 77:0b96f6867312 2887 {
mjr 77:0b96f6867312 2888 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2889 // regular unshifted button. The button press only
mjr 77:0b96f6867312 2890 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 2891 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 2892 }
mjr 66:2e3583fbd2f4 2893
mjr 66:2e3583fbd2f4 2894 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2895 // toggle night mode
mjr 66:2e3583fbd2f4 2896 if (pressed)
mjr 53:9b2611964afc 2897 toggleNightMode();
mjr 53:9b2611964afc 2898 }
mjr 35:e959ffba78fd 2899 }
mjr 38:091e511ce8a0 2900
mjr 77:0b96f6867312 2901 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 2902 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 2903 if (irc != 0)
mjr 77:0b96f6867312 2904 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 2905
mjr 38:091e511ce8a0 2906 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2907 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2908 }
mjr 38:091e511ce8a0 2909
mjr 53:9b2611964afc 2910 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2911 // key state list
mjr 53:9b2611964afc 2912 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2913 {
mjr 70:9f58735a1732 2914 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2915 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 2916 uint8_t typ, val;
mjr 77:0b96f6867312 2917 if (useShift)
mjr 66:2e3583fbd2f4 2918 {
mjr 77:0b96f6867312 2919 typ = bc->typ2;
mjr 77:0b96f6867312 2920 val = bc->val2;
mjr 66:2e3583fbd2f4 2921 }
mjr 77:0b96f6867312 2922 else
mjr 77:0b96f6867312 2923 {
mjr 77:0b96f6867312 2924 typ = bc->typ;
mjr 77:0b96f6867312 2925 val = bc->val;
mjr 77:0b96f6867312 2926 }
mjr 77:0b96f6867312 2927
mjr 70:9f58735a1732 2928 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 2929 // the keyboard or joystick event.
mjr 77:0b96f6867312 2930 ks.addKey(typ, val);
mjr 18:5e890ebd0023 2931 }
mjr 11:bd9da7088e6e 2932 }
mjr 77:0b96f6867312 2933
mjr 77:0b96f6867312 2934 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 2935 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 2936 // the IR key.
mjr 77:0b96f6867312 2937 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 2938 {
mjr 77:0b96f6867312 2939 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 2940 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 2941 }
mjr 77:0b96f6867312 2942
mjr 77:0b96f6867312 2943 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 2944 // key state variables to reflect the new state.
mjr 77:0b96f6867312 2945
mjr 77:0b96f6867312 2946 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 2947 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 2948 jsButtons = ks.js;
mjr 77:0b96f6867312 2949
mjr 77:0b96f6867312 2950 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 2951 // something changes)
mjr 77:0b96f6867312 2952 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 2953 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 2954 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2955 {
mjr 35:e959ffba78fd 2956 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2957 kbState.changed = true;
mjr 77:0b96f6867312 2958 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 2959 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 2960 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 2961 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 2962 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 2963 }
mjr 35:e959ffba78fd 2964 else {
mjr 35:e959ffba78fd 2965 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2966 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2967 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2968 }
mjr 35:e959ffba78fd 2969 }
mjr 35:e959ffba78fd 2970
mjr 77:0b96f6867312 2971 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 2972 // something changes)
mjr 77:0b96f6867312 2973 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 2974 {
mjr 77:0b96f6867312 2975 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2976 mediaState.changed = true;
mjr 77:0b96f6867312 2977 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 2978 }
mjr 11:bd9da7088e6e 2979 }
mjr 11:bd9da7088e6e 2980
mjr 73:4e8ce0b18915 2981 // Send a button status report
mjr 73:4e8ce0b18915 2982 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 2983 {
mjr 73:4e8ce0b18915 2984 // start with all buttons off
mjr 73:4e8ce0b18915 2985 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 2986 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 2987
mjr 73:4e8ce0b18915 2988 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 2989 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 2990 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 2991 {
mjr 73:4e8ce0b18915 2992 // get the physical state
mjr 73:4e8ce0b18915 2993 int b = bs->physState;
mjr 73:4e8ce0b18915 2994
mjr 73:4e8ce0b18915 2995 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 2996 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 2997 int si = idx / 8;
mjr 73:4e8ce0b18915 2998 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 2999 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3000 }
mjr 73:4e8ce0b18915 3001
mjr 73:4e8ce0b18915 3002 // send the report
mjr 73:4e8ce0b18915 3003 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3004 }
mjr 73:4e8ce0b18915 3005
mjr 5:a70c0bce770d 3006 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3007 //
mjr 5:a70c0bce770d 3008 // Customization joystick subbclass
mjr 5:a70c0bce770d 3009 //
mjr 5:a70c0bce770d 3010
mjr 5:a70c0bce770d 3011 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3012 {
mjr 5:a70c0bce770d 3013 public:
mjr 35:e959ffba78fd 3014 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3015 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3016 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3017 {
mjr 54:fd77a6b2f76c 3018 sleeping_ = false;
mjr 54:fd77a6b2f76c 3019 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3020 timer_.start();
mjr 54:fd77a6b2f76c 3021 }
mjr 54:fd77a6b2f76c 3022
mjr 54:fd77a6b2f76c 3023 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3024 void diagFlash()
mjr 54:fd77a6b2f76c 3025 {
mjr 54:fd77a6b2f76c 3026 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3027 {
mjr 54:fd77a6b2f76c 3028 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3029 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3030 {
mjr 54:fd77a6b2f76c 3031 // short red flash
mjr 54:fd77a6b2f76c 3032 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3033 wait_us(50000);
mjr 54:fd77a6b2f76c 3034 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3035 wait_us(50000);
mjr 54:fd77a6b2f76c 3036 }
mjr 54:fd77a6b2f76c 3037 }
mjr 5:a70c0bce770d 3038 }
mjr 5:a70c0bce770d 3039
mjr 5:a70c0bce770d 3040 // are we connected?
mjr 5:a70c0bce770d 3041 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3042
mjr 54:fd77a6b2f76c 3043 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3044 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3045 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3046 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3047 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3048
mjr 54:fd77a6b2f76c 3049 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3050 //
mjr 54:fd77a6b2f76c 3051 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3052 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3053 // other way.
mjr 54:fd77a6b2f76c 3054 //
mjr 54:fd77a6b2f76c 3055 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3056 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3057 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3058 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3059 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3060 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3061 //
mjr 54:fd77a6b2f76c 3062 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3063 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3064 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3065 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3066 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3067 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3068 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3069 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3070 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3071 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3072 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3073 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3074 // is effectively dead.
mjr 54:fd77a6b2f76c 3075 //
mjr 54:fd77a6b2f76c 3076 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3077 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3078 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3079 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3080 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3081 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3082 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3083 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3084 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3085 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3086 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3087 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3088 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3089 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3090 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3091 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3092 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3093 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3094 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3095 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3096 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3097 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3098 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3099 // a disconnect.
mjr 54:fd77a6b2f76c 3100 //
mjr 54:fd77a6b2f76c 3101 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3102 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3103 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3104 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3105 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3106 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3107 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3108 //
mjr 54:fd77a6b2f76c 3109 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3110 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3111 //
mjr 54:fd77a6b2f76c 3112 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3113 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3114 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3115 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3116 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3117 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3118 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3119 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3120 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3121 // reliable in practice.
mjr 54:fd77a6b2f76c 3122 //
mjr 54:fd77a6b2f76c 3123 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3124 //
mjr 54:fd77a6b2f76c 3125 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3126 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3127 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3128 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3129 // return.
mjr 54:fd77a6b2f76c 3130 //
mjr 54:fd77a6b2f76c 3131 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3132 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3133 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3134 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3135 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3136 //
mjr 54:fd77a6b2f76c 3137 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3138 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3139 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3140 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3141 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3142 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3143 //
mjr 54:fd77a6b2f76c 3144 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3145 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3146 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3147 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3148 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3149 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3150 // freezes over.
mjr 54:fd77a6b2f76c 3151 //
mjr 54:fd77a6b2f76c 3152 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3153 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3154 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3155 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3156 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3157 void recoverConnection()
mjr 54:fd77a6b2f76c 3158 {
mjr 54:fd77a6b2f76c 3159 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3160 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3161 {
mjr 54:fd77a6b2f76c 3162 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3163 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3164 {
mjr 54:fd77a6b2f76c 3165 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3166 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3167 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3168 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3169 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3170 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3171 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3172 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3173 __disable_irq();
mjr 54:fd77a6b2f76c 3174 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3175 {
mjr 54:fd77a6b2f76c 3176 connect(false);
mjr 54:fd77a6b2f76c 3177 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3178 done = true;
mjr 54:fd77a6b2f76c 3179 }
mjr 54:fd77a6b2f76c 3180 __enable_irq();
mjr 54:fd77a6b2f76c 3181 }
mjr 54:fd77a6b2f76c 3182 }
mjr 54:fd77a6b2f76c 3183 }
mjr 5:a70c0bce770d 3184
mjr 5:a70c0bce770d 3185 protected:
mjr 54:fd77a6b2f76c 3186 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3187 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3188 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3189 //
mjr 54:fd77a6b2f76c 3190 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3191 //
mjr 54:fd77a6b2f76c 3192 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3193 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3194 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3195 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3196 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3197 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3198 {
mjr 54:fd77a6b2f76c 3199 // note the new state
mjr 54:fd77a6b2f76c 3200 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3201
mjr 54:fd77a6b2f76c 3202 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3203 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3204 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3205 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3206 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3207 {
mjr 54:fd77a6b2f76c 3208 disconnect();
mjr 54:fd77a6b2f76c 3209 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3210 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3211 }
mjr 54:fd77a6b2f76c 3212 }
mjr 54:fd77a6b2f76c 3213
mjr 54:fd77a6b2f76c 3214 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3215 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3216
mjr 54:fd77a6b2f76c 3217 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3218 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3219
mjr 54:fd77a6b2f76c 3220 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3221 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3222
mjr 54:fd77a6b2f76c 3223 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3224 Timer timer_;
mjr 5:a70c0bce770d 3225 };
mjr 5:a70c0bce770d 3226
mjr 5:a70c0bce770d 3227 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3228 //
mjr 5:a70c0bce770d 3229 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3230 //
mjr 5:a70c0bce770d 3231
mjr 5:a70c0bce770d 3232 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3233 //
mjr 5:a70c0bce770d 3234 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3235 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3236 // automatic calibration.
mjr 5:a70c0bce770d 3237 //
mjr 77:0b96f6867312 3238 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3239 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3240 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3241 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3242 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3243 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3244 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3245 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3246 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3247 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3248 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3249 //
mjr 77:0b96f6867312 3250 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3251 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3252 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3253 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3254 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3255 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3256 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3257 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3258 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3259 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3260 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3261 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3262 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3263 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3264 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3265 // rather than change it across the board.
mjr 5:a70c0bce770d 3266 //
mjr 6:cc35eb643e8f 3267 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3268 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3269 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3270 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3271 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3272 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3273 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3274 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3275 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3276 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3277 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3278 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3279 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3280 // of nudging, say).
mjr 5:a70c0bce770d 3281 //
mjr 5:a70c0bce770d 3282
mjr 17:ab3cec0c8bf4 3283 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3284 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3285
mjr 17:ab3cec0c8bf4 3286 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3287 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3288 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3289
mjr 17:ab3cec0c8bf4 3290 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3291 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3292 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3293 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3294
mjr 17:ab3cec0c8bf4 3295
mjr 6:cc35eb643e8f 3296 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3297 struct AccHist
mjr 5:a70c0bce770d 3298 {
mjr 77:0b96f6867312 3299 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3300 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3301 {
mjr 6:cc35eb643e8f 3302 // save the raw position
mjr 6:cc35eb643e8f 3303 this->x = x;
mjr 6:cc35eb643e8f 3304 this->y = y;
mjr 77:0b96f6867312 3305 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3306 }
mjr 6:cc35eb643e8f 3307
mjr 6:cc35eb643e8f 3308 // reading for this entry
mjr 77:0b96f6867312 3309 int x, y;
mjr 77:0b96f6867312 3310
mjr 77:0b96f6867312 3311 // (distance from previous entry) squared
mjr 77:0b96f6867312 3312 int dsq;
mjr 5:a70c0bce770d 3313
mjr 6:cc35eb643e8f 3314 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3315 int xtot, ytot;
mjr 6:cc35eb643e8f 3316 int cnt;
mjr 6:cc35eb643e8f 3317
mjr 77:0b96f6867312 3318 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3319 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3320 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3321 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3322
mjr 77:0b96f6867312 3323 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3324 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3325 };
mjr 5:a70c0bce770d 3326
mjr 5:a70c0bce770d 3327 // accelerometer wrapper class
mjr 3:3514575d4f86 3328 class Accel
mjr 3:3514575d4f86 3329 {
mjr 3:3514575d4f86 3330 public:
mjr 78:1e00b3fa11af 3331 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3332 int range, int autoCenterMode)
mjr 77:0b96f6867312 3333 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3334 {
mjr 5:a70c0bce770d 3335 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3336 irqPin_ = irqPin;
mjr 77:0b96f6867312 3337
mjr 77:0b96f6867312 3338 // remember the range
mjr 77:0b96f6867312 3339 range_ = range;
mjr 78:1e00b3fa11af 3340
mjr 78:1e00b3fa11af 3341 // set the auto-centering mode
mjr 78:1e00b3fa11af 3342 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3343
mjr 78:1e00b3fa11af 3344 // no manual centering request has been received
mjr 78:1e00b3fa11af 3345 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3346
mjr 5:a70c0bce770d 3347 // reset and initialize
mjr 5:a70c0bce770d 3348 reset();
mjr 5:a70c0bce770d 3349 }
mjr 5:a70c0bce770d 3350
mjr 78:1e00b3fa11af 3351 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3352 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3353 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3354 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3355
mjr 78:1e00b3fa11af 3356 // set the auto-centering mode
mjr 78:1e00b3fa11af 3357 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3358 {
mjr 78:1e00b3fa11af 3359 // remember the mode
mjr 78:1e00b3fa11af 3360 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3361
mjr 78:1e00b3fa11af 3362 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3363 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3364 if (mode == 0)
mjr 78:1e00b3fa11af 3365 {
mjr 78:1e00b3fa11af 3366 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3367 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3368 }
mjr 78:1e00b3fa11af 3369 else if (mode <= 60)
mjr 78:1e00b3fa11af 3370 {
mjr 78:1e00b3fa11af 3371 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3372 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3373 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3374 }
mjr 78:1e00b3fa11af 3375 else
mjr 78:1e00b3fa11af 3376 {
mjr 78:1e00b3fa11af 3377 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3378 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3379 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3380 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3381 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3382 // includes recent data.
mjr 78:1e00b3fa11af 3383 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3384 }
mjr 78:1e00b3fa11af 3385 }
mjr 78:1e00b3fa11af 3386
mjr 5:a70c0bce770d 3387 void reset()
mjr 5:a70c0bce770d 3388 {
mjr 6:cc35eb643e8f 3389 // clear the center point
mjr 77:0b96f6867312 3390 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3391
mjr 77:0b96f6867312 3392 // start the auto-centering timer
mjr 5:a70c0bce770d 3393 tCenter_.start();
mjr 5:a70c0bce770d 3394 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3395
mjr 5:a70c0bce770d 3396 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3397 mma_.init();
mjr 77:0b96f6867312 3398
mjr 77:0b96f6867312 3399 // set the range
mjr 77:0b96f6867312 3400 mma_.setRange(
mjr 77:0b96f6867312 3401 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3402 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3403 2);
mjr 6:cc35eb643e8f 3404
mjr 77:0b96f6867312 3405 // set the average accumulators to zero
mjr 77:0b96f6867312 3406 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3407 nSum_ = 0;
mjr 3:3514575d4f86 3408
mjr 3:3514575d4f86 3409 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3410 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3411 }
mjr 3:3514575d4f86 3412
mjr 77:0b96f6867312 3413 void poll()
mjr 76:7f5912b6340e 3414 {
mjr 77:0b96f6867312 3415 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3416 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3417 {
mjr 77:0b96f6867312 3418 int x, y, z;
mjr 77:0b96f6867312 3419 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3420
mjr 77:0b96f6867312 3421 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3422 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3423 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3424 ++nSum_;
mjr 77:0b96f6867312 3425
mjr 77:0b96f6867312 3426 // store the updates
mjr 77:0b96f6867312 3427 ax_ = x;
mjr 77:0b96f6867312 3428 ay_ = y;
mjr 77:0b96f6867312 3429 az_ = z;
mjr 77:0b96f6867312 3430 }
mjr 76:7f5912b6340e 3431 }
mjr 77:0b96f6867312 3432
mjr 9:fd65b0a94720 3433 void get(int &x, int &y)
mjr 3:3514575d4f86 3434 {
mjr 77:0b96f6867312 3435 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3436 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3437 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3438 int nSum = nSum_;
mjr 6:cc35eb643e8f 3439
mjr 77:0b96f6867312 3440 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3441 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3442 nSum_ = 0;
mjr 77:0b96f6867312 3443
mjr 77:0b96f6867312 3444 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3445 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3446 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3447
mjr 78:1e00b3fa11af 3448 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3449 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3450 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3451 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3452 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3453 {
mjr 77:0b96f6867312 3454 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3455 AccHist *prv = p;
mjr 77:0b96f6867312 3456 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3457 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3458 iAccPrv_ = 0;
mjr 77:0b96f6867312 3459 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3460 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3461
mjr 78:1e00b3fa11af 3462 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3463 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3464 {
mjr 78:1e00b3fa11af 3465 // Center if:
mjr 78:1e00b3fa11af 3466 //
mjr 78:1e00b3fa11af 3467 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3468 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3469 //
mjr 78:1e00b3fa11af 3470 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3471 //
mjr 77:0b96f6867312 3472 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3473 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3474 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3475 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3476 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3477 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3478 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3479 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3480 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3481 {
mjr 77:0b96f6867312 3482 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3483 // the samples over the rest period
mjr 77:0b96f6867312 3484 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3485 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3486
mjr 78:1e00b3fa11af 3487 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3488 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3489 }
mjr 77:0b96f6867312 3490 }
mjr 77:0b96f6867312 3491 else
mjr 77:0b96f6867312 3492 {
mjr 77:0b96f6867312 3493 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3494 ++nAccPrv_;
mjr 77:0b96f6867312 3495 }
mjr 6:cc35eb643e8f 3496
mjr 77:0b96f6867312 3497 // clear the new item's running totals
mjr 77:0b96f6867312 3498 p->clearAvg();
mjr 5:a70c0bce770d 3499
mjr 77:0b96f6867312 3500 // reset the timer
mjr 77:0b96f6867312 3501 tCenter_.reset();
mjr 77:0b96f6867312 3502 }
mjr 5:a70c0bce770d 3503
mjr 77:0b96f6867312 3504 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3505 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3506 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3507
mjr 6:cc35eb643e8f 3508 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3509 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3510 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3511 #endif
mjr 77:0b96f6867312 3512 }
mjr 29:582472d0bc57 3513
mjr 3:3514575d4f86 3514 private:
mjr 6:cc35eb643e8f 3515 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3516 int rawToReport(int v)
mjr 5:a70c0bce770d 3517 {
mjr 77:0b96f6867312 3518 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3519 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3520 // so their scale is 2^13.
mjr 77:0b96f6867312 3521 //
mjr 77:0b96f6867312 3522 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3523 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3524 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3525 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3526 int i = v*JOYMAX;
mjr 77:0b96f6867312 3527 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3528
mjr 6:cc35eb643e8f 3529 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3530 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3531 static const int filter[] = {
mjr 6:cc35eb643e8f 3532 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3533 0,
mjr 6:cc35eb643e8f 3534 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3535 };
mjr 6:cc35eb643e8f 3536 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3537 }
mjr 5:a70c0bce770d 3538
mjr 3:3514575d4f86 3539 // underlying accelerometer object
mjr 3:3514575d4f86 3540 MMA8451Q mma_;
mjr 3:3514575d4f86 3541
mjr 77:0b96f6867312 3542 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3543 // scale -8192..+8191
mjr 77:0b96f6867312 3544 int ax_, ay_, az_;
mjr 77:0b96f6867312 3545
mjr 77:0b96f6867312 3546 // running sum of readings since last get()
mjr 77:0b96f6867312 3547 int xSum_, ySum_;
mjr 77:0b96f6867312 3548
mjr 77:0b96f6867312 3549 // number of readings since last get()
mjr 77:0b96f6867312 3550 int nSum_;
mjr 6:cc35eb643e8f 3551
mjr 6:cc35eb643e8f 3552 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3553 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3554 // at rest.
mjr 77:0b96f6867312 3555 int cx_, cy_;
mjr 77:0b96f6867312 3556
mjr 77:0b96f6867312 3557 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3558 uint8_t range_;
mjr 78:1e00b3fa11af 3559
mjr 78:1e00b3fa11af 3560 // auto-center mode:
mjr 78:1e00b3fa11af 3561 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3562 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3563 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3564 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3565
mjr 78:1e00b3fa11af 3566 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3567 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3568
mjr 78:1e00b3fa11af 3569 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3570 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3571
mjr 77:0b96f6867312 3572 // atuo-centering timer
mjr 5:a70c0bce770d 3573 Timer tCenter_;
mjr 6:cc35eb643e8f 3574
mjr 6:cc35eb643e8f 3575 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3576 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3577 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3578 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3579 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3580 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3581 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3582 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3583 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3584 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3585 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3586 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3587 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3588 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3589 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3590
mjr 5:a70c0bce770d 3591 // interurupt pin name
mjr 5:a70c0bce770d 3592 PinName irqPin_;
mjr 3:3514575d4f86 3593 };
mjr 3:3514575d4f86 3594
mjr 5:a70c0bce770d 3595 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3596 //
mjr 14:df700b22ca08 3597 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3598 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3599 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3600 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3601 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3602 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3603 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3604 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3605 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3606 //
mjr 14:df700b22ca08 3607 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3608 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3609 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3610 //
mjr 5:a70c0bce770d 3611 void clear_i2c()
mjr 5:a70c0bce770d 3612 {
mjr 38:091e511ce8a0 3613 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3614 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3615 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3616
mjr 5:a70c0bce770d 3617 // clock the SCL 9 times
mjr 5:a70c0bce770d 3618 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3619 {
mjr 5:a70c0bce770d 3620 scl = 1;
mjr 5:a70c0bce770d 3621 wait_us(20);
mjr 5:a70c0bce770d 3622 scl = 0;
mjr 5:a70c0bce770d 3623 wait_us(20);
mjr 5:a70c0bce770d 3624 }
mjr 5:a70c0bce770d 3625 }
mjr 76:7f5912b6340e 3626
mjr 76:7f5912b6340e 3627
mjr 14:df700b22ca08 3628 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3629 //
mjr 33:d832bcab089e 3630 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3631 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3632 //
mjr 33:d832bcab089e 3633 class Debouncer
mjr 33:d832bcab089e 3634 {
mjr 33:d832bcab089e 3635 public:
mjr 33:d832bcab089e 3636 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3637 {
mjr 33:d832bcab089e 3638 t.start();
mjr 33:d832bcab089e 3639 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3640 this->tmin = tmin;
mjr 33:d832bcab089e 3641 }
mjr 33:d832bcab089e 3642
mjr 33:d832bcab089e 3643 // Get the current stable value
mjr 33:d832bcab089e 3644 bool val() const { return stable; }
mjr 33:d832bcab089e 3645
mjr 33:d832bcab089e 3646 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3647 // input device.
mjr 33:d832bcab089e 3648 void sampleIn(bool val)
mjr 33:d832bcab089e 3649 {
mjr 33:d832bcab089e 3650 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3651 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3652 // on the sample reader.
mjr 33:d832bcab089e 3653 if (val != prv)
mjr 33:d832bcab089e 3654 {
mjr 33:d832bcab089e 3655 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3656 t.reset();
mjr 33:d832bcab089e 3657
mjr 33:d832bcab089e 3658 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3659 prv = val;
mjr 33:d832bcab089e 3660 }
mjr 33:d832bcab089e 3661 else if (val != stable)
mjr 33:d832bcab089e 3662 {
mjr 33:d832bcab089e 3663 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3664 // and different from the stable value. This means that
mjr 33:d832bcab089e 3665 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3666 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3667 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3668 if (t.read() > tmin)
mjr 33:d832bcab089e 3669 stable = val;
mjr 33:d832bcab089e 3670 }
mjr 33:d832bcab089e 3671 }
mjr 33:d832bcab089e 3672
mjr 33:d832bcab089e 3673 private:
mjr 33:d832bcab089e 3674 // current stable value
mjr 33:d832bcab089e 3675 bool stable;
mjr 33:d832bcab089e 3676
mjr 33:d832bcab089e 3677 // last raw sample value
mjr 33:d832bcab089e 3678 bool prv;
mjr 33:d832bcab089e 3679
mjr 33:d832bcab089e 3680 // elapsed time since last raw input change
mjr 33:d832bcab089e 3681 Timer t;
mjr 33:d832bcab089e 3682
mjr 33:d832bcab089e 3683 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3684 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3685 float tmin;
mjr 33:d832bcab089e 3686 };
mjr 33:d832bcab089e 3687
mjr 33:d832bcab089e 3688
mjr 33:d832bcab089e 3689 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3690 //
mjr 33:d832bcab089e 3691 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3692 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3693 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3694 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3695 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3696 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3697 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3698 //
mjr 33:d832bcab089e 3699 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3700 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3701 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3702 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3703 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3704 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3705 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3706 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3707 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3708 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3709 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3710 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3711 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3712 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3713 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3714 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3715 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3716 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3717 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3718 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3719 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3720 //
mjr 40:cc0d9814522b 3721 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3722 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3723 //
mjr 33:d832bcab089e 3724 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3725 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3726 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3727 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3728 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3729 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3730 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3731 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3732 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3733 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3734 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3735 //
mjr 33:d832bcab089e 3736 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3737 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3738 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3739 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3740 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3741 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3742 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3743 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3744 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3745 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3746 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3747 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3748 // first check.
mjr 33:d832bcab089e 3749 //
mjr 33:d832bcab089e 3750 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3751 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3752 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3753 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3754 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3755 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3756 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3757 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3758 //
mjr 33:d832bcab089e 3759
mjr 77:0b96f6867312 3760 // Current PSU2 power state:
mjr 33:d832bcab089e 3761 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3762 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3763 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3764 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3765 // 5 -> TV relay on
mjr 77:0b96f6867312 3766 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3767 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3768
mjr 73:4e8ce0b18915 3769 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3770 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3771 // separate state for each:
mjr 73:4e8ce0b18915 3772 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3773 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3774 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3775 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3776 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3777
mjr 79:682ae3171a08 3778 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 3779 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 3780
mjr 77:0b96f6867312 3781 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3782 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3783 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3784 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3785 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3786 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3787 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3788 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3789 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3790 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3791 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3792
mjr 77:0b96f6867312 3793 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3794 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3795
mjr 35:e959ffba78fd 3796 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3797 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3798 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3799
mjr 73:4e8ce0b18915 3800 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3801 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3802 {
mjr 73:4e8ce0b18915 3803 // update the state
mjr 73:4e8ce0b18915 3804 if (state)
mjr 73:4e8ce0b18915 3805 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3806 else
mjr 73:4e8ce0b18915 3807 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3808
mjr 73:4e8ce0b18915 3809 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3810 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3811 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3812 }
mjr 35:e959ffba78fd 3813
mjr 77:0b96f6867312 3814 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3815 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3816 // functions.
mjr 77:0b96f6867312 3817 Timer powerStatusTimer;
mjr 77:0b96f6867312 3818 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3819 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3820 {
mjr 79:682ae3171a08 3821 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 3822 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 3823 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 3824 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 3825 {
mjr 79:682ae3171a08 3826 // turn off the relay and disable the timer
mjr 79:682ae3171a08 3827 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 3828 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 3829 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 3830 }
mjr 79:682ae3171a08 3831
mjr 77:0b96f6867312 3832 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3833 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3834 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3835 // skip this whole routine.
mjr 77:0b96f6867312 3836 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3837 return;
mjr 77:0b96f6867312 3838
mjr 77:0b96f6867312 3839 // reset the update timer for next time
mjr 77:0b96f6867312 3840 powerStatusTimer.reset();
mjr 77:0b96f6867312 3841
mjr 77:0b96f6867312 3842 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3843 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3844 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3845 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3846 static Timer tv_timer;
mjr 35:e959ffba78fd 3847
mjr 33:d832bcab089e 3848 // Check our internal state
mjr 33:d832bcab089e 3849 switch (psu2_state)
mjr 33:d832bcab089e 3850 {
mjr 33:d832bcab089e 3851 case 1:
mjr 33:d832bcab089e 3852 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3853 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3854 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3855 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3856 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3857 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3858 {
mjr 33:d832bcab089e 3859 // switch to OFF state
mjr 33:d832bcab089e 3860 psu2_state = 2;
mjr 33:d832bcab089e 3861
mjr 33:d832bcab089e 3862 // try setting the latch
mjr 35:e959ffba78fd 3863 psu2_status_set->write(1);
mjr 33:d832bcab089e 3864 }
mjr 77:0b96f6867312 3865 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3866 break;
mjr 33:d832bcab089e 3867
mjr 33:d832bcab089e 3868 case 2:
mjr 33:d832bcab089e 3869 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3870 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3871 psu2_status_set->write(0);
mjr 33:d832bcab089e 3872 psu2_state = 3;
mjr 77:0b96f6867312 3873 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3874 break;
mjr 33:d832bcab089e 3875
mjr 33:d832bcab089e 3876 case 3:
mjr 33:d832bcab089e 3877 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3878 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3879 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3880 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3881 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3882 {
mjr 33:d832bcab089e 3883 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3884 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3885 tv_timer.reset();
mjr 33:d832bcab089e 3886 tv_timer.start();
mjr 33:d832bcab089e 3887 psu2_state = 4;
mjr 73:4e8ce0b18915 3888
mjr 73:4e8ce0b18915 3889 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3890 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3891 }
mjr 33:d832bcab089e 3892 else
mjr 33:d832bcab089e 3893 {
mjr 33:d832bcab089e 3894 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3895 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3896 // was turned on since the last check.
mjr 35:e959ffba78fd 3897 psu2_status_set->write(1);
mjr 33:d832bcab089e 3898 psu2_state = 2;
mjr 33:d832bcab089e 3899 }
mjr 33:d832bcab089e 3900 break;
mjr 33:d832bcab089e 3901
mjr 33:d832bcab089e 3902 case 4:
mjr 77:0b96f6867312 3903 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 3904 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 3905 // off again before the countdown finished.
mjr 77:0b96f6867312 3906 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 3907 {
mjr 77:0b96f6867312 3908 // power is off - start a new check cycle
mjr 77:0b96f6867312 3909 psu2_status_set->write(1);
mjr 77:0b96f6867312 3910 psu2_state = 2;
mjr 77:0b96f6867312 3911 break;
mjr 77:0b96f6867312 3912 }
mjr 77:0b96f6867312 3913
mjr 77:0b96f6867312 3914 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 3915 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 3916
mjr 77:0b96f6867312 3917 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 3918 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 3919 {
mjr 33:d832bcab089e 3920 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3921 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3922 psu2_state = 5;
mjr 77:0b96f6867312 3923
mjr 77:0b96f6867312 3924 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 3925 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3926 }
mjr 33:d832bcab089e 3927 break;
mjr 33:d832bcab089e 3928
mjr 33:d832bcab089e 3929 case 5:
mjr 33:d832bcab089e 3930 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 3931 // it's now time to turn it off.
mjr 73:4e8ce0b18915 3932 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 3933
mjr 77:0b96f6867312 3934 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 3935 psu2_state = 6;
mjr 77:0b96f6867312 3936 tvon_ir_state = 0;
mjr 77:0b96f6867312 3937
mjr 77:0b96f6867312 3938 // diagnostic LEDs off for now
mjr 77:0b96f6867312 3939 powerTimerDiagState = 0;
mjr 77:0b96f6867312 3940 break;
mjr 77:0b96f6867312 3941
mjr 77:0b96f6867312 3942 case 6:
mjr 77:0b96f6867312 3943 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 3944 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 3945 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 3946 psu2_state = 1;
mjr 77:0b96f6867312 3947 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3948
mjr 77:0b96f6867312 3949 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 3950 if (ir_tx != 0)
mjr 77:0b96f6867312 3951 {
mjr 77:0b96f6867312 3952 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 3953 if (ir_tx->isSending())
mjr 77:0b96f6867312 3954 {
mjr 77:0b96f6867312 3955 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 3956 // state 6.
mjr 77:0b96f6867312 3957 psu2_state = 6;
mjr 77:0b96f6867312 3958 powerTimerDiagState = 4;
mjr 77:0b96f6867312 3959 break;
mjr 77:0b96f6867312 3960 }
mjr 77:0b96f6867312 3961
mjr 77:0b96f6867312 3962 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 3963 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 3964 // number.
mjr 77:0b96f6867312 3965 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3966 {
mjr 77:0b96f6867312 3967 // is this a TV ON command?
mjr 77:0b96f6867312 3968 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 3969 {
mjr 77:0b96f6867312 3970 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 3971 // looking for.
mjr 77:0b96f6867312 3972 if (n == tvon_ir_state)
mjr 77:0b96f6867312 3973 {
mjr 77:0b96f6867312 3974 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 3975 // pushing its virtual button.
mjr 77:0b96f6867312 3976 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 3977 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 3978
mjr 77:0b96f6867312 3979 // Pushing the button starts transmission, and once
mjr 77:0b96f6867312 3980 // started, the transmission will run to completion
mjr 77:0b96f6867312 3981 // even if the button is no longer pushed. So we
mjr 77:0b96f6867312 3982 // can immediately un-push the button, since we only
mjr 77:0b96f6867312 3983 // need to send the code once.
mjr 77:0b96f6867312 3984 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 3985
mjr 77:0b96f6867312 3986 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 3987 // await the end of this transmission and move on to
mjr 77:0b96f6867312 3988 // the next one.
mjr 77:0b96f6867312 3989 psu2_state = 6;
mjr 77:0b96f6867312 3990 tvon_ir_state++;
mjr 77:0b96f6867312 3991 break;
mjr 77:0b96f6867312 3992 }
mjr 77:0b96f6867312 3993
mjr 77:0b96f6867312 3994 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 3995 ++n;
mjr 77:0b96f6867312 3996 }
mjr 77:0b96f6867312 3997 }
mjr 77:0b96f6867312 3998 }
mjr 33:d832bcab089e 3999 break;
mjr 33:d832bcab089e 4000 }
mjr 77:0b96f6867312 4001
mjr 77:0b96f6867312 4002 // update the diagnostic LEDs
mjr 77:0b96f6867312 4003 diagLED();
mjr 33:d832bcab089e 4004 }
mjr 33:d832bcab089e 4005
mjr 77:0b96f6867312 4006 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4007 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4008 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4009 // are configured as NC.
mjr 77:0b96f6867312 4010 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4011 {
mjr 55:4db125cd11a0 4012 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4013 // time is nonzero
mjr 77:0b96f6867312 4014 powerStatusTimer.reset();
mjr 77:0b96f6867312 4015 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4016 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4017 {
mjr 77:0b96f6867312 4018 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4019 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4020 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4021
mjr 77:0b96f6867312 4022 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4023 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4024 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4025
mjr 77:0b96f6867312 4026 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4027 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4028 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4029 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4030
mjr 77:0b96f6867312 4031 // Start the TV timer
mjr 77:0b96f6867312 4032 powerStatusTimer.start();
mjr 35:e959ffba78fd 4033 }
mjr 35:e959ffba78fd 4034 }
mjr 35:e959ffba78fd 4035
mjr 73:4e8ce0b18915 4036 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4037 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4038 //
mjr 73:4e8ce0b18915 4039 // Mode:
mjr 73:4e8ce0b18915 4040 // 0 = turn relay off
mjr 73:4e8ce0b18915 4041 // 1 = turn relay on
mjr 73:4e8ce0b18915 4042 // 2 = pulse relay
mjr 73:4e8ce0b18915 4043 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4044 {
mjr 73:4e8ce0b18915 4045 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4046 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4047 return;
mjr 73:4e8ce0b18915 4048
mjr 73:4e8ce0b18915 4049 switch (mode)
mjr 73:4e8ce0b18915 4050 {
mjr 73:4e8ce0b18915 4051 case 0:
mjr 73:4e8ce0b18915 4052 // relay off
mjr 73:4e8ce0b18915 4053 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4054 break;
mjr 73:4e8ce0b18915 4055
mjr 73:4e8ce0b18915 4056 case 1:
mjr 73:4e8ce0b18915 4057 // relay on
mjr 73:4e8ce0b18915 4058 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4059 break;
mjr 73:4e8ce0b18915 4060
mjr 73:4e8ce0b18915 4061 case 2:
mjr 79:682ae3171a08 4062 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4063 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4064 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4065 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4066 break;
mjr 73:4e8ce0b18915 4067 }
mjr 73:4e8ce0b18915 4068 }
mjr 73:4e8ce0b18915 4069
mjr 73:4e8ce0b18915 4070
mjr 35:e959ffba78fd 4071 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4072 //
mjr 35:e959ffba78fd 4073 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4074 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4075 //
mjr 35:e959ffba78fd 4076 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4077 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4078 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4079 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4080 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4081 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4082 //
mjr 35:e959ffba78fd 4083 NVM nvm;
mjr 35:e959ffba78fd 4084
mjr 85:3c28aee81cde 4085 // Configuration save state
mjr 85:3c28aee81cde 4086 const uint8_t SAVE_CONFIG_IDLE = 0; // no config save work pending
mjr 85:3c28aee81cde 4087 const uint8_t SAVE_CONFIG_ONLY = 1; // save is pending
mjr 85:3c28aee81cde 4088 const uint8_t SAVE_CONFIG_AND_REBOOT = 2; // save is pending, reboot after save
mjr 85:3c28aee81cde 4089 const uint8_t SAVE_CONFIG_REBOOT = 3; // save done, reboot is pending
mjr 85:3c28aee81cde 4090 uint8_t saveConfigState = SAVE_CONFIG_IDLE;
mjr 85:3c28aee81cde 4091
mjr 85:3c28aee81cde 4092 // Save Config post-processing time, in seconds.
mjr 85:3c28aee81cde 4093 //
mjr 85:3c28aee81cde 4094 // If saveConfigState == SAVE_CONFIG_AND_REBOOT, we reboot after this
mjr 85:3c28aee81cde 4095 // time elapses. Otherwise, we simply clear the timer and clear the
mjr 85:3c28aee81cde 4096 // "succeeded" flag.
mjr 85:3c28aee81cde 4097 uint8_t saveConfigPostTime;
mjr 77:0b96f6867312 4098
mjr 79:682ae3171a08 4099 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4100 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4101
mjr 35:e959ffba78fd 4102 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4103 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4104
mjr 35:e959ffba78fd 4105 // flash memory controller interface
mjr 35:e959ffba78fd 4106 FreescaleIAP iap;
mjr 35:e959ffba78fd 4107
mjr 79:682ae3171a08 4108 // figure the flash address for the config data
mjr 79:682ae3171a08 4109 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4110 {
mjr 79:682ae3171a08 4111 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4112 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4113
mjr 79:682ae3171a08 4114 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4115 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4116
mjr 79:682ae3171a08 4117 // locate it at the top of memory
mjr 79:682ae3171a08 4118 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4119
mjr 79:682ae3171a08 4120 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4121 return (const NVM *)addr;
mjr 35:e959ffba78fd 4122 }
mjr 35:e959ffba78fd 4123
mjr 76:7f5912b6340e 4124 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4125 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4126 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4127 // in either case.
mjr 76:7f5912b6340e 4128 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4129 {
mjr 35:e959ffba78fd 4130 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4131 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4132 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4133 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4134 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4135 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4136 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4137 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4138 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4139 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4140 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4141 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4142 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4143 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4144 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4145 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4146
mjr 35:e959ffba78fd 4147 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4148 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4149
mjr 35:e959ffba78fd 4150 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4151 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4152 if (nvm_valid)
mjr 35:e959ffba78fd 4153 {
mjr 35:e959ffba78fd 4154 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4155 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4156 }
mjr 35:e959ffba78fd 4157 else
mjr 35:e959ffba78fd 4158 {
mjr 76:7f5912b6340e 4159 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4160 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4161 }
mjr 76:7f5912b6340e 4162
mjr 76:7f5912b6340e 4163 // tell the caller what happened
mjr 76:7f5912b6340e 4164 return nvm_valid;
mjr 35:e959ffba78fd 4165 }
mjr 35:e959ffba78fd 4166
mjr 79:682ae3171a08 4167 // save the config - returns true on success, false on failure
mjr 79:682ae3171a08 4168 bool saveConfigToFlash()
mjr 33:d832bcab089e 4169 {
mjr 76:7f5912b6340e 4170 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4171 waitPlungerIdle();
mjr 76:7f5912b6340e 4172
mjr 76:7f5912b6340e 4173 // get the config block location in the flash memory
mjr 77:0b96f6867312 4174 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4175
mjr 79:682ae3171a08 4176 // save the data
mjr 79:682ae3171a08 4177 return nvm.save(iap, addr);
mjr 76:7f5912b6340e 4178 }
mjr 76:7f5912b6340e 4179
mjr 76:7f5912b6340e 4180 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4181 //
mjr 76:7f5912b6340e 4182 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4183 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4184 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4185 // downloading it to the device.
mjr 76:7f5912b6340e 4186 //
mjr 76:7f5912b6340e 4187 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4188 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4189 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4190 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4191 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4192 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4193 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4194 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4195 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4196 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4197 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4198 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4199 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4200 //
mjr 76:7f5912b6340e 4201 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4202 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4203 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4204 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4205 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4206 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4207 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4208 //
mjr 76:7f5912b6340e 4209 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4210 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4211 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4212 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4213 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4214 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4215 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4216 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4217 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4218 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4219
mjr 76:7f5912b6340e 4220 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4221 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4222 {
mjr 76:7f5912b6340e 4223 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4224 // 32-byte signature header
mjr 76:7f5912b6340e 4225 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4226 };
mjr 76:7f5912b6340e 4227
mjr 76:7f5912b6340e 4228 // forward reference to config var store function
mjr 76:7f5912b6340e 4229 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4230
mjr 76:7f5912b6340e 4231 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4232 // configuration object.
mjr 76:7f5912b6340e 4233 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4234 {
mjr 76:7f5912b6340e 4235 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4236 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4237 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4238 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4239 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4240 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4241 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4242 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4243 {
mjr 76:7f5912b6340e 4244 // load this variable
mjr 76:7f5912b6340e 4245 configVarSet(p);
mjr 76:7f5912b6340e 4246 }
mjr 35:e959ffba78fd 4247 }
mjr 35:e959ffba78fd 4248
mjr 35:e959ffba78fd 4249 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4250 //
mjr 55:4db125cd11a0 4251 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4252 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4253 //
mjr 55:4db125cd11a0 4254 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4255 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4256 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4257
mjr 55:4db125cd11a0 4258
mjr 55:4db125cd11a0 4259
mjr 55:4db125cd11a0 4260 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4261 //
mjr 40:cc0d9814522b 4262 // Night mode setting updates
mjr 40:cc0d9814522b 4263 //
mjr 38:091e511ce8a0 4264
mjr 38:091e511ce8a0 4265 // Turn night mode on or off
mjr 38:091e511ce8a0 4266 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4267 {
mjr 77:0b96f6867312 4268 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4269 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4270 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4271 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4272
mjr 40:cc0d9814522b 4273 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4274 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4275 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4276 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4277
mjr 76:7f5912b6340e 4278 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4279 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4280 // mode change.
mjr 76:7f5912b6340e 4281 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4282 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4283
mjr 76:7f5912b6340e 4284 // update 74HC595 outputs
mjr 76:7f5912b6340e 4285 if (hc595 != 0)
mjr 76:7f5912b6340e 4286 hc595->update();
mjr 38:091e511ce8a0 4287 }
mjr 38:091e511ce8a0 4288
mjr 38:091e511ce8a0 4289 // Toggle night mode
mjr 38:091e511ce8a0 4290 static void toggleNightMode()
mjr 38:091e511ce8a0 4291 {
mjr 53:9b2611964afc 4292 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4293 }
mjr 38:091e511ce8a0 4294
mjr 38:091e511ce8a0 4295
mjr 38:091e511ce8a0 4296 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4297 //
mjr 35:e959ffba78fd 4298 // Plunger Sensor
mjr 35:e959ffba78fd 4299 //
mjr 35:e959ffba78fd 4300
mjr 35:e959ffba78fd 4301 // the plunger sensor interface object
mjr 35:e959ffba78fd 4302 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4303
mjr 76:7f5912b6340e 4304 // wait for the plunger sensor to complete any outstanding read
mjr 76:7f5912b6340e 4305 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4306 {
mjr 76:7f5912b6340e 4307 while (!plungerSensor->ready()) { }
mjr 76:7f5912b6340e 4308 }
mjr 76:7f5912b6340e 4309
mjr 35:e959ffba78fd 4310 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4311 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4312 void createPlunger()
mjr 35:e959ffba78fd 4313 {
mjr 35:e959ffba78fd 4314 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4315 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4316 {
mjr 82:4f6209cb5c33 4317 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4318 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4319 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4320 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4321 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4322 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4323 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4324 break;
mjr 35:e959ffba78fd 4325
mjr 82:4f6209cb5c33 4326 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4327 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4328 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4329 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4330 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4331 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4332 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4333 break;
mjr 35:e959ffba78fd 4334
mjr 35:e959ffba78fd 4335 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4336 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4337 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4338 // pins are: AO (analog in)
mjr 53:9b2611964afc 4339 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4340 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4341 break;
mjr 82:4f6209cb5c33 4342
mjr 82:4f6209cb5c33 4343 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4344 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4345 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4346 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4347 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4348 300,
mjr 82:4f6209cb5c33 4349 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4350 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4351 break;
mjr 82:4f6209cb5c33 4352
mjr 82:4f6209cb5c33 4353 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4354 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4355 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4356 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4357 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4358 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4359 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4360 break;
mjr 82:4f6209cb5c33 4361
mjr 82:4f6209cb5c33 4362 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4363 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4364 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4365 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4366 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4367 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4368 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4369 break;
mjr 82:4f6209cb5c33 4370
mjr 35:e959ffba78fd 4371 case PlungerType_None:
mjr 35:e959ffba78fd 4372 default:
mjr 35:e959ffba78fd 4373 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4374 break;
mjr 35:e959ffba78fd 4375 }
mjr 33:d832bcab089e 4376 }
mjr 33:d832bcab089e 4377
mjr 52:8298b2a73eb2 4378 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4379 bool plungerCalMode;
mjr 52:8298b2a73eb2 4380
mjr 48:058ace2aed1d 4381 // Plunger reader
mjr 51:57eb311faafa 4382 //
mjr 51:57eb311faafa 4383 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4384 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4385 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4386 //
mjr 51:57eb311faafa 4387 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4388 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4389 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4390 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4391 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4392 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4393 // firing motion.
mjr 51:57eb311faafa 4394 //
mjr 51:57eb311faafa 4395 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4396 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4397 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4398 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4399 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4400 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4401 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4402 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4403 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4404 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4405 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4406 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4407 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4408 //
mjr 51:57eb311faafa 4409 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4410 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4411 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4412 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4413 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4414 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4415 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4416 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4417 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4418 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4419 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4420 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4421 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4422 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4423 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4424 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4425 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4426 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4427 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4428 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4429 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4430 //
mjr 48:058ace2aed1d 4431 class PlungerReader
mjr 48:058ace2aed1d 4432 {
mjr 48:058ace2aed1d 4433 public:
mjr 48:058ace2aed1d 4434 PlungerReader()
mjr 48:058ace2aed1d 4435 {
mjr 48:058ace2aed1d 4436 // not in a firing event yet
mjr 48:058ace2aed1d 4437 firing = 0;
mjr 48:058ace2aed1d 4438
mjr 48:058ace2aed1d 4439 // no history yet
mjr 48:058ace2aed1d 4440 histIdx = 0;
mjr 55:4db125cd11a0 4441
mjr 85:3c28aee81cde 4442 // clear the jitter filter
mjr 85:3c28aee81cde 4443 jfLow = jfHigh = 0;
mjr 48:058ace2aed1d 4444 }
mjr 76:7f5912b6340e 4445
mjr 48:058ace2aed1d 4446 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4447 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4448 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4449 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4450 void read()
mjr 48:058ace2aed1d 4451 {
mjr 76:7f5912b6340e 4452 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4453 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4454 return;
mjr 76:7f5912b6340e 4455
mjr 48:058ace2aed1d 4456 // Read a sample from the sensor
mjr 48:058ace2aed1d 4457 PlungerReading r;
mjr 48:058ace2aed1d 4458 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4459 {
mjr 51:57eb311faafa 4460 // Pull the previous reading from the history
mjr 50:40015764bbe6 4461 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 4462
mjr 69:cc5039284fac 4463 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 4464 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 4465 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 4466 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 4467 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 4468 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 4469 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 4470 // to throttle them artificially. E.g., the potentiometer only
mjr 82:4f6209cb5c33 4471 // needs one ADC sample per reading, which only takes about 15us;
mjr 82:4f6209cb5c33 4472 // the quadrature sensor needs no time at all since it keeps
mjr 82:4f6209cb5c33 4473 // track of the position continuously via interrupts. We don't
mjr 82:4f6209cb5c33 4474 // need to check which sensor type we have here; we just ignore
mjr 82:4f6209cb5c33 4475 // readings until the minimum interval has passed.
mjr 69:cc5039284fac 4476 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 4477 return;
mjr 53:9b2611964afc 4478
mjr 53:9b2611964afc 4479 // check for calibration mode
mjr 53:9b2611964afc 4480 if (plungerCalMode)
mjr 53:9b2611964afc 4481 {
mjr 53:9b2611964afc 4482 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4483 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4484 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4485 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4486 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4487 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4488 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4489
mjr 76:7f5912b6340e 4490 // update our cached calibration data
mjr 76:7f5912b6340e 4491 onUpdateCal();
mjr 50:40015764bbe6 4492
mjr 53:9b2611964afc 4493 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4494 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4495 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4496 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4497 if (calState == 0)
mjr 53:9b2611964afc 4498 {
mjr 53:9b2611964afc 4499 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4500 {
mjr 53:9b2611964afc 4501 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4502 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4503 {
mjr 53:9b2611964afc 4504 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4505 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4506 calZeroPosN += 1;
mjr 53:9b2611964afc 4507
mjr 53:9b2611964afc 4508 // update the zero position from the new average
mjr 53:9b2611964afc 4509 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4510 onUpdateCal();
mjr 53:9b2611964afc 4511
mjr 53:9b2611964afc 4512 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4513 calState = 1;
mjr 53:9b2611964afc 4514 }
mjr 53:9b2611964afc 4515 }
mjr 53:9b2611964afc 4516 else
mjr 53:9b2611964afc 4517 {
mjr 53:9b2611964afc 4518 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4519 calZeroStart = r;
mjr 53:9b2611964afc 4520 }
mjr 53:9b2611964afc 4521 }
mjr 53:9b2611964afc 4522
mjr 53:9b2611964afc 4523 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4524 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4525 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4526 r.pos = int(
mjr 53:9b2611964afc 4527 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4528 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4529 }
mjr 53:9b2611964afc 4530 else
mjr 53:9b2611964afc 4531 {
mjr 53:9b2611964afc 4532 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4533 // rescale to the joystick range.
mjr 76:7f5912b6340e 4534 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4535
mjr 53:9b2611964afc 4536 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4537 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4538 r.pos = JOYMAX;
mjr 53:9b2611964afc 4539 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4540 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4541 }
mjr 50:40015764bbe6 4542
mjr 50:40015764bbe6 4543 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 4544 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 4545 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 4546 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 4547 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 4548 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 4549 // large.
mjr 50:40015764bbe6 4550 //
mjr 50:40015764bbe6 4551 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 4552 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 4553 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 4554 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 4555 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 4556 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 4557 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 4558 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 4559 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 4560 //
mjr 50:40015764bbe6 4561 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 4562 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 4563 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 4564 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 4565 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 4566 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 4567 // a little CPU time by using the natural units of our inputs.
mjr 76:7f5912b6340e 4568 //
mjr 76:7f5912b6340e 4569 // We don't care about the absolute velocity; this is a purely
mjr 76:7f5912b6340e 4570 // relative calculation. So to speed things up, calculate it
mjr 76:7f5912b6340e 4571 // in the integer domain, using a fixed-point representation
mjr 76:7f5912b6340e 4572 // with a 64K scale. In other words, with the stored values
mjr 76:7f5912b6340e 4573 // shifted left 16 bits from the actual values: the value 1
mjr 76:7f5912b6340e 4574 // is stored as 1<<16. The position readings are in the range
mjr 76:7f5912b6340e 4575 // -JOYMAX..JOYMAX, which fits in 16 bits, and the time
mjr 76:7f5912b6340e 4576 // differences will generally be on the scale of a few
mjr 76:7f5912b6340e 4577 // milliseconds = thousands of microseconds. So the velocity
mjr 76:7f5912b6340e 4578 // figures will fit nicely into a 32-bit fixed point value with
mjr 76:7f5912b6340e 4579 // a 64K scale factor.
mjr 51:57eb311faafa 4580 const PlungerReading &prv2 = nthHist(1);
mjr 82:4f6209cb5c33 4581 int v = ((r.pos - prv2.pos) * 65536L)/int(r.t - prv2.t);
mjr 50:40015764bbe6 4582
mjr 50:40015764bbe6 4583 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 4584 z = r.pos;
mjr 48:058ace2aed1d 4585
mjr 50:40015764bbe6 4586 // Check firing events
mjr 50:40015764bbe6 4587 switch (firing)
mjr 50:40015764bbe6 4588 {
mjr 50:40015764bbe6 4589 case 0:
mjr 50:40015764bbe6 4590 // Default state - not in a firing event.
mjr 50:40015764bbe6 4591
mjr 50:40015764bbe6 4592 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 4593 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 4594 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 4595 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 4596 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4597 {
mjr 53:9b2611964afc 4598 // enter firing phase 1
mjr 50:40015764bbe6 4599 firingMode(1);
mjr 50:40015764bbe6 4600
mjr 53:9b2611964afc 4601 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 4602 // at rest)
mjr 53:9b2611964afc 4603 if (calState == 1)
mjr 53:9b2611964afc 4604 calState = 2;
mjr 53:9b2611964afc 4605
mjr 50:40015764bbe6 4606 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 4607 f1.pos = 0;
mjr 50:40015764bbe6 4608 f1.t = r.t;
mjr 50:40015764bbe6 4609
mjr 50:40015764bbe6 4610 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 4611 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 4612 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 4613 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 4614 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 4615 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 4616 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 4617 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 4618 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 4619 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 4620 }
mjr 50:40015764bbe6 4621 break;
mjr 50:40015764bbe6 4622
mjr 50:40015764bbe6 4623 case 1:
mjr 50:40015764bbe6 4624 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 4625 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 4626 // see acceleration in the forward direction.
mjr 50:40015764bbe6 4627 if (r.pos <= 0)
mjr 50:40015764bbe6 4628 {
mjr 50:40015764bbe6 4629 // switch to the synthetic firing mode
mjr 50:40015764bbe6 4630 firingMode(2);
mjr 50:40015764bbe6 4631 z = f2.pos;
mjr 50:40015764bbe6 4632
mjr 50:40015764bbe6 4633 // note the start time for the firing phase
mjr 50:40015764bbe6 4634 f2.t = r.t;
mjr 53:9b2611964afc 4635
mjr 53:9b2611964afc 4636 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4637 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4638 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4639 {
mjr 53:9b2611964afc 4640 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4641 // come to rest
mjr 53:9b2611964afc 4642 calState = 0;
mjr 53:9b2611964afc 4643
mjr 53:9b2611964afc 4644 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 4645 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 4646 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 4647 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 4648 {
mjr 53:9b2611964afc 4649 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4650 calRlsTimeN += 1;
mjr 53:9b2611964afc 4651 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4652 }
mjr 53:9b2611964afc 4653 }
mjr 50:40015764bbe6 4654 }
mjr 50:40015764bbe6 4655 else if (v < vprv2)
mjr 50:40015764bbe6 4656 {
mjr 50:40015764bbe6 4657 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 4658 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 4659 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4660 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4661 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4662 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4663
mjr 50:40015764bbe6 4664 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4665 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4666 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4667 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4668 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4669 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4670 if (f1.pos != 0)
mjr 50:40015764bbe6 4671 {
mjr 50:40015764bbe6 4672 // we have a reset point - freeze there
mjr 50:40015764bbe6 4673 z = f1.pos;
mjr 50:40015764bbe6 4674 }
mjr 50:40015764bbe6 4675 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4676 {
mjr 50:40015764bbe6 4677 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4678 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4679 }
mjr 50:40015764bbe6 4680 }
mjr 50:40015764bbe6 4681 else
mjr 50:40015764bbe6 4682 {
mjr 50:40015764bbe6 4683 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4684 firingMode(0);
mjr 53:9b2611964afc 4685 calState = 1;
mjr 50:40015764bbe6 4686 }
mjr 50:40015764bbe6 4687 break;
mjr 50:40015764bbe6 4688
mjr 50:40015764bbe6 4689 case 2:
mjr 50:40015764bbe6 4690 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4691 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4692 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4693 // report at least once.
mjr 50:40015764bbe6 4694 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4695 {
mjr 50:40015764bbe6 4696 // report the bounce position
mjr 50:40015764bbe6 4697 z = f2.pos;
mjr 50:40015764bbe6 4698 }
mjr 50:40015764bbe6 4699 else
mjr 50:40015764bbe6 4700 {
mjr 50:40015764bbe6 4701 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4702 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4703 // to rest
mjr 50:40015764bbe6 4704 firingMode(3);
mjr 50:40015764bbe6 4705 z = 0;
mjr 50:40015764bbe6 4706
mjr 50:40015764bbe6 4707 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4708 f3s.t = r.t;
mjr 50:40015764bbe6 4709 f3s.pos = 0;
mjr 50:40015764bbe6 4710
mjr 50:40015764bbe6 4711 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4712 f3r = r;
mjr 50:40015764bbe6 4713 }
mjr 50:40015764bbe6 4714 break;
mjr 50:40015764bbe6 4715
mjr 50:40015764bbe6 4716 case 3:
mjr 50:40015764bbe6 4717 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4718 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4719 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4720 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4721 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4722 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4723 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4724 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4725 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4726 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4727 // for longer.
mjr 50:40015764bbe6 4728 if (v >= 0)
mjr 50:40015764bbe6 4729 {
mjr 50:40015764bbe6 4730 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4731 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4732 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4733 {
mjr 50:40015764bbe6 4734 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4735 firingMode(0);
mjr 50:40015764bbe6 4736 break;
mjr 50:40015764bbe6 4737 }
mjr 50:40015764bbe6 4738 }
mjr 50:40015764bbe6 4739 else
mjr 50:40015764bbe6 4740 {
mjr 50:40015764bbe6 4741 // forward motion - reset retraction window
mjr 50:40015764bbe6 4742 f3r.t = r.t;
mjr 50:40015764bbe6 4743 }
mjr 50:40015764bbe6 4744
mjr 53:9b2611964afc 4745 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4746 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4747 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4748 // about 100 units.
mjr 53:9b2611964afc 4749 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4750 {
mjr 53:9b2611964afc 4751 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4752 // Consider it stable if this has been true for 300ms.
mjr 82:4f6209cb5c33 4753 if (uint32_t(r.t - f3s.t) > 300000UL)
mjr 50:40015764bbe6 4754 {
mjr 50:40015764bbe6 4755 // we're done with the firing event
mjr 50:40015764bbe6 4756 firingMode(0);
mjr 50:40015764bbe6 4757 }
mjr 50:40015764bbe6 4758 else
mjr 50:40015764bbe6 4759 {
mjr 50:40015764bbe6 4760 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4761 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4762 // to report the park position
mjr 50:40015764bbe6 4763 z = 0;
mjr 50:40015764bbe6 4764 }
mjr 50:40015764bbe6 4765 }
mjr 50:40015764bbe6 4766 else
mjr 50:40015764bbe6 4767 {
mjr 50:40015764bbe6 4768 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4769 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4770 f3s = r;
mjr 50:40015764bbe6 4771 z = 0;
mjr 50:40015764bbe6 4772 }
mjr 50:40015764bbe6 4773 break;
mjr 50:40015764bbe6 4774 }
mjr 50:40015764bbe6 4775
mjr 50:40015764bbe6 4776 // save the velocity reading for next time
mjr 50:40015764bbe6 4777 vprv2 = vprv;
mjr 50:40015764bbe6 4778 vprv = v;
mjr 50:40015764bbe6 4779
mjr 82:4f6209cb5c33 4780 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 4781 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 4782 {
mjr 82:4f6209cb5c33 4783 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 4784 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 4785 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 4786 // long, so auto-zero now.
mjr 82:4f6209cb5c33 4787 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 4788 {
mjr 82:4f6209cb5c33 4789 // movement detected - reset the timer
mjr 82:4f6209cb5c33 4790 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4791 autoZeroTimer.start();
mjr 82:4f6209cb5c33 4792 }
mjr 82:4f6209cb5c33 4793 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 4794 {
mjr 82:4f6209cb5c33 4795 // auto-zero now
mjr 82:4f6209cb5c33 4796 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 4797
mjr 82:4f6209cb5c33 4798 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 4799 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 4800 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 4801 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4802 }
mjr 82:4f6209cb5c33 4803 }
mjr 82:4f6209cb5c33 4804
mjr 50:40015764bbe6 4805 // add the new reading to the history
mjr 76:7f5912b6340e 4806 hist[histIdx] = r;
mjr 82:4f6209cb5c33 4807 if (++histIdx >= countof(hist))
mjr 76:7f5912b6340e 4808 histIdx = 0;
mjr 82:4f6209cb5c33 4809
mjr 85:3c28aee81cde 4810 // apply the jitter filter
mjr 85:3c28aee81cde 4811 zf = jitterFilter(z);
mjr 48:058ace2aed1d 4812 }
mjr 48:058ace2aed1d 4813 }
mjr 48:058ace2aed1d 4814
mjr 48:058ace2aed1d 4815 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4816 int16_t getPosition()
mjr 58:523fdcffbe6d 4817 {
mjr 58:523fdcffbe6d 4818 // return the last filtered reading
mjr 58:523fdcffbe6d 4819 return zf;
mjr 55:4db125cd11a0 4820 }
mjr 58:523fdcffbe6d 4821
mjr 48:058ace2aed1d 4822 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4823 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4824
mjr 48:058ace2aed1d 4825 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4826 void setCalMode(bool f)
mjr 48:058ace2aed1d 4827 {
mjr 52:8298b2a73eb2 4828 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4829 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4830 {
mjr 52:8298b2a73eb2 4831 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4832 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4833
mjr 52:8298b2a73eb2 4834 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4835 calState = 0;
mjr 52:8298b2a73eb2 4836 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4837 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4838 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4839 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4840
mjr 82:4f6209cb5c33 4841 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 4842 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 4843
mjr 52:8298b2a73eb2 4844 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4845 PlungerReading r;
mjr 52:8298b2a73eb2 4846 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4847 {
mjr 52:8298b2a73eb2 4848 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 4849 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4850 onUpdateCal();
mjr 52:8298b2a73eb2 4851
mjr 52:8298b2a73eb2 4852 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4853 calZeroStart = r;
mjr 52:8298b2a73eb2 4854 }
mjr 52:8298b2a73eb2 4855 else
mjr 52:8298b2a73eb2 4856 {
mjr 52:8298b2a73eb2 4857 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4858 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4859 onUpdateCal();
mjr 52:8298b2a73eb2 4860
mjr 52:8298b2a73eb2 4861 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4862 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4863 calZeroStart.t = 0;
mjr 53:9b2611964afc 4864 }
mjr 53:9b2611964afc 4865 }
mjr 53:9b2611964afc 4866 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4867 {
mjr 53:9b2611964afc 4868 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4869 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4870 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4871 // physically meaningless.
mjr 53:9b2611964afc 4872 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4873 {
mjr 53:9b2611964afc 4874 // bad settings - reset to defaults
mjr 53:9b2611964afc 4875 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4876 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4877 onUpdateCal();
mjr 52:8298b2a73eb2 4878 }
mjr 52:8298b2a73eb2 4879 }
mjr 52:8298b2a73eb2 4880
mjr 48:058ace2aed1d 4881 // remember the new mode
mjr 52:8298b2a73eb2 4882 plungerCalMode = f;
mjr 48:058ace2aed1d 4883 }
mjr 48:058ace2aed1d 4884
mjr 76:7f5912b6340e 4885 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4886 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4887 // cached inverse is calculated as
mjr 76:7f5912b6340e 4888 //
mjr 76:7f5912b6340e 4889 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4890 //
mjr 76:7f5912b6340e 4891 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4892 //
mjr 76:7f5912b6340e 4893 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4894 //
mjr 76:7f5912b6340e 4895 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4896 int invCalRange;
mjr 76:7f5912b6340e 4897
mjr 76:7f5912b6340e 4898 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4899 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4900 {
mjr 76:7f5912b6340e 4901 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4902 }
mjr 76:7f5912b6340e 4903
mjr 76:7f5912b6340e 4904 void onUpdateCal()
mjr 76:7f5912b6340e 4905 {
mjr 76:7f5912b6340e 4906 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4907 }
mjr 76:7f5912b6340e 4908
mjr 48:058ace2aed1d 4909 // is a firing event in progress?
mjr 53:9b2611964afc 4910 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4911
mjr 48:058ace2aed1d 4912 private:
mjr 85:3c28aee81cde 4913 // Apply the jitter filter
mjr 85:3c28aee81cde 4914 int jitterFilter(int z)
mjr 73:4e8ce0b18915 4915 {
mjr 85:3c28aee81cde 4916 // If the new reading is within the current window, simply re-use
mjr 85:3c28aee81cde 4917 // the last filtered reading.
mjr 85:3c28aee81cde 4918 if (z >= jfLow && z <= jfHigh)
mjr 85:3c28aee81cde 4919 return zf;
mjr 73:4e8ce0b18915 4920
mjr 85:3c28aee81cde 4921 // The new reading is outside the current window. Push the window
mjr 85:3c28aee81cde 4922 // over so that the new reading is at the outside edge.
mjr 85:3c28aee81cde 4923 if (z < jfLow)
mjr 85:3c28aee81cde 4924 {
mjr 85:3c28aee81cde 4925 // the new reading is below the current window, so move the
mjr 85:3c28aee81cde 4926 // window such that the new reading is at the bottom of the window
mjr 85:3c28aee81cde 4927 jfLow = z;
mjr 85:3c28aee81cde 4928 jfHigh = z + cfg.plunger.jitterWindow;
mjr 73:4e8ce0b18915 4929 }
mjr 73:4e8ce0b18915 4930 else
mjr 73:4e8ce0b18915 4931 {
mjr 85:3c28aee81cde 4932 // the new reading is above the current window, so move the
mjr 85:3c28aee81cde 4933 // window such that the new reading is at the top of the window
mjr 85:3c28aee81cde 4934 jfHigh = z;
mjr 85:3c28aee81cde 4935 jfLow = z - cfg.plunger.jitterWindow;
mjr 73:4e8ce0b18915 4936 }
mjr 69:cc5039284fac 4937
mjr 85:3c28aee81cde 4938 // use the new reading exactly as read from the sensor
mjr 69:cc5039284fac 4939 return z;
mjr 69:cc5039284fac 4940 }
mjr 85:3c28aee81cde 4941
mjr 52:8298b2a73eb2 4942 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 4943 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 4944 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 4945 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 4946 // 0 = waiting to settle
mjr 52:8298b2a73eb2 4947 // 1 = at rest
mjr 52:8298b2a73eb2 4948 // 2 = retracting
mjr 52:8298b2a73eb2 4949 // 3 = possibly releasing
mjr 52:8298b2a73eb2 4950 uint8_t calState;
mjr 52:8298b2a73eb2 4951
mjr 52:8298b2a73eb2 4952 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 4953 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 4954 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 4955 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 4956 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 4957 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 4958 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 4959 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 4960 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 4961 long calZeroPosSum;
mjr 52:8298b2a73eb2 4962 int calZeroPosN;
mjr 52:8298b2a73eb2 4963
mjr 52:8298b2a73eb2 4964 // Calibration release time statistics.
mjr 52:8298b2a73eb2 4965 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 4966 long calRlsTimeSum;
mjr 52:8298b2a73eb2 4967 int calRlsTimeN;
mjr 52:8298b2a73eb2 4968
mjr 85:3c28aee81cde 4969 // Auto-zeroing timer
mjr 85:3c28aee81cde 4970 Timer autoZeroTimer;
mjr 85:3c28aee81cde 4971
mjr 85:3c28aee81cde 4972 // Current jitter filter window
mjr 85:3c28aee81cde 4973 int jfLow, jfHigh;
mjr 85:3c28aee81cde 4974
mjr 48:058ace2aed1d 4975 // set a firing mode
mjr 48:058ace2aed1d 4976 inline void firingMode(int m)
mjr 48:058ace2aed1d 4977 {
mjr 48:058ace2aed1d 4978 firing = m;
mjr 48:058ace2aed1d 4979 }
mjr 48:058ace2aed1d 4980
mjr 48:058ace2aed1d 4981 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 4982 // the given time limit.
mjr 48:058ace2aed1d 4983 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 4984 {
mjr 48:058ace2aed1d 4985 // start with the prior entry
mjr 48:058ace2aed1d 4986 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 4987 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 4988
mjr 48:058ace2aed1d 4989 // scan backwards for a local maximum
mjr 48:058ace2aed1d 4990 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 4991 {
mjr 48:058ace2aed1d 4992 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 4993 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 4994 break;
mjr 48:058ace2aed1d 4995
mjr 48:058ace2aed1d 4996 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 4997 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 4998 break;
mjr 48:058ace2aed1d 4999
mjr 48:058ace2aed1d 5000 // this is the new high
mjr 48:058ace2aed1d 5001 hi = hist[idx].pos;
mjr 48:058ace2aed1d 5002 }
mjr 48:058ace2aed1d 5003
mjr 48:058ace2aed1d 5004 // return the local maximum
mjr 48:058ace2aed1d 5005 return hi;
mjr 48:058ace2aed1d 5006 }
mjr 48:058ace2aed1d 5007
mjr 50:40015764bbe6 5008 // velocity at previous reading, and the one before that
mjr 76:7f5912b6340e 5009 int vprv, vprv2;
mjr 48:058ace2aed1d 5010
mjr 48:058ace2aed1d 5011 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 5012 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 5013 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 5014 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 5015 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 5016 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 5017 // array.
mjr 74:822a92bc11d2 5018 PlungerReading hist[32];
mjr 48:058ace2aed1d 5019 int histIdx;
mjr 49:37bd97eb7688 5020
mjr 50:40015764bbe6 5021 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 5022 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 5023 {
mjr 50:40015764bbe6 5024 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 5025 n = histIdx - 1 - n;
mjr 50:40015764bbe6 5026
mjr 50:40015764bbe6 5027 // adjust for wrapping
mjr 50:40015764bbe6 5028 if (n < 0)
mjr 50:40015764bbe6 5029 n += countof(hist);
mjr 50:40015764bbe6 5030
mjr 50:40015764bbe6 5031 // return the item
mjr 50:40015764bbe6 5032 return hist[n];
mjr 50:40015764bbe6 5033 }
mjr 48:058ace2aed1d 5034
mjr 48:058ace2aed1d 5035 // Firing event state.
mjr 48:058ace2aed1d 5036 //
mjr 48:058ace2aed1d 5037 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 5038 // position to the joystick interface.
mjr 48:058ace2aed1d 5039 //
mjr 53:9b2611964afc 5040 // 1 - Moving forward
mjr 48:058ace2aed1d 5041 //
mjr 53:9b2611964afc 5042 // 2 - Accelerating
mjr 48:058ace2aed1d 5043 //
mjr 53:9b2611964afc 5044 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 5045 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 5046 //
mjr 48:058ace2aed1d 5047 int firing;
mjr 48:058ace2aed1d 5048
mjr 51:57eb311faafa 5049 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 5050 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 5051 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 5052 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 5053 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 5054 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 5055 PlungerReading f1;
mjr 48:058ace2aed1d 5056
mjr 48:058ace2aed1d 5057 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 5058 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 5059 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 5060 // after enough time elapses.
mjr 48:058ace2aed1d 5061 PlungerReading f2;
mjr 48:058ace2aed1d 5062
mjr 48:058ace2aed1d 5063 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 5064 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 5065 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 5066 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 5067 PlungerReading f3s;
mjr 48:058ace2aed1d 5068
mjr 48:058ace2aed1d 5069 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 5070 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 5071 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 5072 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 5073 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 5074 // freely.
mjr 48:058ace2aed1d 5075 PlungerReading f3r;
mjr 48:058ace2aed1d 5076
mjr 58:523fdcffbe6d 5077 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5078 // (in joystick distance units)
mjr 48:058ace2aed1d 5079 int z;
mjr 48:058ace2aed1d 5080
mjr 58:523fdcffbe6d 5081 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5082 int zf;
mjr 48:058ace2aed1d 5083 };
mjr 48:058ace2aed1d 5084
mjr 48:058ace2aed1d 5085 // plunger reader singleton
mjr 48:058ace2aed1d 5086 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5087
mjr 48:058ace2aed1d 5088 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5089 //
mjr 48:058ace2aed1d 5090 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5091 //
mjr 48:058ace2aed1d 5092 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5093 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5094 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5095 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5096 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5097 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5098 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5099 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5100 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5101 //
mjr 48:058ace2aed1d 5102 // This feature has two configuration components:
mjr 48:058ace2aed1d 5103 //
mjr 48:058ace2aed1d 5104 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5105 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5106 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5107 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5108 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5109 // plunger/launch button connection.
mjr 48:058ace2aed1d 5110 //
mjr 48:058ace2aed1d 5111 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5112 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5113 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5114 // position.
mjr 48:058ace2aed1d 5115 //
mjr 48:058ace2aed1d 5116 class ZBLaunchBall
mjr 48:058ace2aed1d 5117 {
mjr 48:058ace2aed1d 5118 public:
mjr 48:058ace2aed1d 5119 ZBLaunchBall()
mjr 48:058ace2aed1d 5120 {
mjr 48:058ace2aed1d 5121 // start in the default state
mjr 48:058ace2aed1d 5122 lbState = 0;
mjr 53:9b2611964afc 5123 btnState = false;
mjr 48:058ace2aed1d 5124 }
mjr 48:058ace2aed1d 5125
mjr 48:058ace2aed1d 5126 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5127 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5128 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5129 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5130 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5131 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5132 void update()
mjr 48:058ace2aed1d 5133 {
mjr 53:9b2611964afc 5134 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5135 // plunger firing event
mjr 53:9b2611964afc 5136 if (zbLaunchOn)
mjr 48:058ace2aed1d 5137 {
mjr 53:9b2611964afc 5138 // note the new position
mjr 48:058ace2aed1d 5139 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5140
mjr 53:9b2611964afc 5141 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5142 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5143
mjr 53:9b2611964afc 5144 // check the state
mjr 48:058ace2aed1d 5145 switch (lbState)
mjr 48:058ace2aed1d 5146 {
mjr 48:058ace2aed1d 5147 case 0:
mjr 53:9b2611964afc 5148 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5149 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5150 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5151 // the button.
mjr 53:9b2611964afc 5152 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5153 {
mjr 53:9b2611964afc 5154 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5155 lbTimer.reset();
mjr 53:9b2611964afc 5156 lbTimer.start();
mjr 53:9b2611964afc 5157 setButton(true);
mjr 53:9b2611964afc 5158
mjr 53:9b2611964afc 5159 // switch to state 1
mjr 53:9b2611964afc 5160 lbState = 1;
mjr 53:9b2611964afc 5161 }
mjr 48:058ace2aed1d 5162 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5163 {
mjr 53:9b2611964afc 5164 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5165 // button as long as we're pushed forward
mjr 53:9b2611964afc 5166 setButton(true);
mjr 53:9b2611964afc 5167 }
mjr 53:9b2611964afc 5168 else
mjr 53:9b2611964afc 5169 {
mjr 53:9b2611964afc 5170 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5171 setButton(false);
mjr 53:9b2611964afc 5172 }
mjr 48:058ace2aed1d 5173 break;
mjr 48:058ace2aed1d 5174
mjr 48:058ace2aed1d 5175 case 1:
mjr 53:9b2611964afc 5176 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5177 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5178 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5179 {
mjr 53:9b2611964afc 5180 // timer expired - turn off the button
mjr 53:9b2611964afc 5181 setButton(false);
mjr 53:9b2611964afc 5182
mjr 53:9b2611964afc 5183 // switch to state 2
mjr 53:9b2611964afc 5184 lbState = 2;
mjr 53:9b2611964afc 5185 }
mjr 48:058ace2aed1d 5186 break;
mjr 48:058ace2aed1d 5187
mjr 48:058ace2aed1d 5188 case 2:
mjr 53:9b2611964afc 5189 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5190 // plunger launch event to end.
mjr 53:9b2611964afc 5191 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5192 {
mjr 53:9b2611964afc 5193 // firing event done - return to default state
mjr 53:9b2611964afc 5194 lbState = 0;
mjr 53:9b2611964afc 5195 }
mjr 48:058ace2aed1d 5196 break;
mjr 48:058ace2aed1d 5197 }
mjr 53:9b2611964afc 5198 }
mjr 53:9b2611964afc 5199 else
mjr 53:9b2611964afc 5200 {
mjr 53:9b2611964afc 5201 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5202 setButton(false);
mjr 48:058ace2aed1d 5203
mjr 53:9b2611964afc 5204 // return to the default state
mjr 53:9b2611964afc 5205 lbState = 0;
mjr 48:058ace2aed1d 5206 }
mjr 48:058ace2aed1d 5207 }
mjr 53:9b2611964afc 5208
mjr 53:9b2611964afc 5209 // Set the button state
mjr 53:9b2611964afc 5210 void setButton(bool on)
mjr 53:9b2611964afc 5211 {
mjr 53:9b2611964afc 5212 if (btnState != on)
mjr 53:9b2611964afc 5213 {
mjr 53:9b2611964afc 5214 // remember the new state
mjr 53:9b2611964afc 5215 btnState = on;
mjr 53:9b2611964afc 5216
mjr 53:9b2611964afc 5217 // update the virtual button state
mjr 65:739875521aae 5218 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5219 }
mjr 53:9b2611964afc 5220 }
mjr 53:9b2611964afc 5221
mjr 48:058ace2aed1d 5222 private:
mjr 48:058ace2aed1d 5223 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5224 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5225 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5226 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5227 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5228 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5229 //
mjr 48:058ace2aed1d 5230 // States:
mjr 48:058ace2aed1d 5231 // 0 = default
mjr 53:9b2611964afc 5232 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5233 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5234 // firing event to end)
mjr 53:9b2611964afc 5235 uint8_t lbState;
mjr 48:058ace2aed1d 5236
mjr 53:9b2611964afc 5237 // button state
mjr 53:9b2611964afc 5238 bool btnState;
mjr 48:058ace2aed1d 5239
mjr 48:058ace2aed1d 5240 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5241 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5242 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5243 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5244 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5245 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5246 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5247 Timer lbTimer;
mjr 48:058ace2aed1d 5248 };
mjr 48:058ace2aed1d 5249
mjr 35:e959ffba78fd 5250 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5251 //
mjr 35:e959ffba78fd 5252 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5253 //
mjr 54:fd77a6b2f76c 5254 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5255 {
mjr 35:e959ffba78fd 5256 // disconnect from USB
mjr 54:fd77a6b2f76c 5257 if (disconnect)
mjr 54:fd77a6b2f76c 5258 js.disconnect();
mjr 35:e959ffba78fd 5259
mjr 35:e959ffba78fd 5260 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5261 wait_us(pause_us);
mjr 35:e959ffba78fd 5262
mjr 35:e959ffba78fd 5263 // reset the device
mjr 35:e959ffba78fd 5264 NVIC_SystemReset();
mjr 35:e959ffba78fd 5265 while (true) { }
mjr 35:e959ffba78fd 5266 }
mjr 35:e959ffba78fd 5267
mjr 35:e959ffba78fd 5268 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5269 //
mjr 35:e959ffba78fd 5270 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5271 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5272 //
mjr 35:e959ffba78fd 5273 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5274 {
mjr 35:e959ffba78fd 5275 int tmp;
mjr 78:1e00b3fa11af 5276 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5277 {
mjr 35:e959ffba78fd 5278 case OrientationFront:
mjr 35:e959ffba78fd 5279 tmp = x;
mjr 35:e959ffba78fd 5280 x = y;
mjr 35:e959ffba78fd 5281 y = tmp;
mjr 35:e959ffba78fd 5282 break;
mjr 35:e959ffba78fd 5283
mjr 35:e959ffba78fd 5284 case OrientationLeft:
mjr 35:e959ffba78fd 5285 x = -x;
mjr 35:e959ffba78fd 5286 break;
mjr 35:e959ffba78fd 5287
mjr 35:e959ffba78fd 5288 case OrientationRight:
mjr 35:e959ffba78fd 5289 y = -y;
mjr 35:e959ffba78fd 5290 break;
mjr 35:e959ffba78fd 5291
mjr 35:e959ffba78fd 5292 case OrientationRear:
mjr 35:e959ffba78fd 5293 tmp = -x;
mjr 35:e959ffba78fd 5294 x = -y;
mjr 35:e959ffba78fd 5295 y = tmp;
mjr 35:e959ffba78fd 5296 break;
mjr 35:e959ffba78fd 5297 }
mjr 35:e959ffba78fd 5298 }
mjr 35:e959ffba78fd 5299
mjr 35:e959ffba78fd 5300 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5301 //
mjr 35:e959ffba78fd 5302 // Calibration button state:
mjr 35:e959ffba78fd 5303 // 0 = not pushed
mjr 35:e959ffba78fd 5304 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5305 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5306 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5307 int calBtnState = 0;
mjr 35:e959ffba78fd 5308
mjr 35:e959ffba78fd 5309 // calibration button debounce timer
mjr 35:e959ffba78fd 5310 Timer calBtnTimer;
mjr 35:e959ffba78fd 5311
mjr 35:e959ffba78fd 5312 // calibration button light state
mjr 35:e959ffba78fd 5313 int calBtnLit = false;
mjr 35:e959ffba78fd 5314
mjr 35:e959ffba78fd 5315
mjr 35:e959ffba78fd 5316 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5317 //
mjr 40:cc0d9814522b 5318 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5319 //
mjr 40:cc0d9814522b 5320
mjr 40:cc0d9814522b 5321 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5322 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5323 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5324 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5325 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5326 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5327 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5328 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5329 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5330 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5331 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5332
mjr 40:cc0d9814522b 5333 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5334 #undef if_msg_valid
mjr 40:cc0d9814522b 5335 #undef v_byte
mjr 40:cc0d9814522b 5336 #undef v_ui16
mjr 77:0b96f6867312 5337 #undef v_ui32
mjr 40:cc0d9814522b 5338 #undef v_pin
mjr 53:9b2611964afc 5339 #undef v_byte_ro
mjr 74:822a92bc11d2 5340 #undef v_ui32_ro
mjr 74:822a92bc11d2 5341 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5342 #undef v_func
mjr 38:091e511ce8a0 5343
mjr 40:cc0d9814522b 5344 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5345 #define if_msg_valid(test)
mjr 53:9b2611964afc 5346 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5347 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5348 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5349 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5350 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5351 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5352 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5353 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5354 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5355
mjr 35:e959ffba78fd 5356
mjr 35:e959ffba78fd 5357 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5358 //
mjr 35:e959ffba78fd 5359 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5360 // LedWiz protocol.
mjr 33:d832bcab089e 5361 //
mjr 78:1e00b3fa11af 5362 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5363 {
mjr 38:091e511ce8a0 5364 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5365 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5366 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5367 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5368 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5369 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5370 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5371 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5372 //
mjr 38:091e511ce8a0 5373 // first byte =
mjr 74:822a92bc11d2 5374 // 0-48 -> PBA
mjr 74:822a92bc11d2 5375 // 64 -> SBA
mjr 38:091e511ce8a0 5376 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5377 // 129-132 -> PBA
mjr 38:091e511ce8a0 5378 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5379 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5380 // other -> reserved for future use
mjr 38:091e511ce8a0 5381 //
mjr 39:b3815a1c3802 5382 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5383 if (data[0] == 64)
mjr 35:e959ffba78fd 5384 {
mjr 74:822a92bc11d2 5385 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5386 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5387 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5388 sba_sbx(0, data);
mjr 74:822a92bc11d2 5389
mjr 74:822a92bc11d2 5390 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5391 pbaIdx = 0;
mjr 38:091e511ce8a0 5392 }
mjr 38:091e511ce8a0 5393 else if (data[0] == 65)
mjr 38:091e511ce8a0 5394 {
mjr 38:091e511ce8a0 5395 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5396 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5397 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5398 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5399 // message type.
mjr 39:b3815a1c3802 5400 switch (data[1])
mjr 38:091e511ce8a0 5401 {
mjr 39:b3815a1c3802 5402 case 0:
mjr 39:b3815a1c3802 5403 // No Op
mjr 39:b3815a1c3802 5404 break;
mjr 39:b3815a1c3802 5405
mjr 39:b3815a1c3802 5406 case 1:
mjr 38:091e511ce8a0 5407 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5408 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5409 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5410 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5411 {
mjr 39:b3815a1c3802 5412
mjr 39:b3815a1c3802 5413 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5414 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5415 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5416
mjr 39:b3815a1c3802 5417 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 5418 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5419
mjr 39:b3815a1c3802 5420 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5421 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5422 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5423
mjr 77:0b96f6867312 5424 // set the flag to do the save
mjr 85:3c28aee81cde 5425 saveConfigState = needReset ? SAVE_CONFIG_AND_REBOOT : SAVE_CONFIG_ONLY;
mjr 85:3c28aee81cde 5426 saveConfigPostTime = 0;
mjr 39:b3815a1c3802 5427 }
mjr 39:b3815a1c3802 5428 break;
mjr 38:091e511ce8a0 5429
mjr 39:b3815a1c3802 5430 case 2:
mjr 38:091e511ce8a0 5431 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5432 // (No parameters)
mjr 38:091e511ce8a0 5433
mjr 38:091e511ce8a0 5434 // enter calibration mode
mjr 38:091e511ce8a0 5435 calBtnState = 3;
mjr 52:8298b2a73eb2 5436 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5437 calBtnTimer.reset();
mjr 39:b3815a1c3802 5438 break;
mjr 39:b3815a1c3802 5439
mjr 39:b3815a1c3802 5440 case 3:
mjr 52:8298b2a73eb2 5441 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5442 // data[2] = flag bits
mjr 53:9b2611964afc 5443 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5444 reportPlungerStat = true;
mjr 53:9b2611964afc 5445 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5446 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5447
mjr 38:091e511ce8a0 5448 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5449 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5450 break;
mjr 39:b3815a1c3802 5451
mjr 39:b3815a1c3802 5452 case 4:
mjr 38:091e511ce8a0 5453 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5454 // (No parameters)
mjr 38:091e511ce8a0 5455 js.reportConfig(
mjr 38:091e511ce8a0 5456 numOutputs,
mjr 38:091e511ce8a0 5457 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5458 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5459 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5460 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5461 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5462 true, // we support the "flash write ok" status bit in joystick reports
mjr 79:682ae3171a08 5463 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5464 break;
mjr 39:b3815a1c3802 5465
mjr 39:b3815a1c3802 5466 case 5:
mjr 38:091e511ce8a0 5467 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5468 allOutputsOff();
mjr 39:b3815a1c3802 5469 break;
mjr 39:b3815a1c3802 5470
mjr 39:b3815a1c3802 5471 case 6:
mjr 85:3c28aee81cde 5472 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5473 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5474 //
mjr 85:3c28aee81cde 5475 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5476 // data[3] = flags:
mjr 85:3c28aee81cde 5477 // 0x01 -> do not reboot
mjr 85:3c28aee81cde 5478 saveConfigState =
mjr 85:3c28aee81cde 5479 (data[3] & 0x01) != 0 ? SAVE_CONFIG_ONLY : SAVE_CONFIG_AND_REBOOT;
mjr 85:3c28aee81cde 5480 saveConfigPostTime = data[2];
mjr 39:b3815a1c3802 5481 break;
mjr 40:cc0d9814522b 5482
mjr 40:cc0d9814522b 5483 case 7:
mjr 40:cc0d9814522b 5484 // 7 = Device ID report
mjr 53:9b2611964afc 5485 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5486 js.reportID(data[2]);
mjr 40:cc0d9814522b 5487 break;
mjr 40:cc0d9814522b 5488
mjr 40:cc0d9814522b 5489 case 8:
mjr 40:cc0d9814522b 5490 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5491 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5492 setNightMode(data[2]);
mjr 40:cc0d9814522b 5493 break;
mjr 52:8298b2a73eb2 5494
mjr 52:8298b2a73eb2 5495 case 9:
mjr 52:8298b2a73eb2 5496 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5497 // data[2] = config var ID
mjr 52:8298b2a73eb2 5498 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5499 {
mjr 53:9b2611964afc 5500 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5501 // the rest of the buffer
mjr 52:8298b2a73eb2 5502 uint8_t reply[8];
mjr 52:8298b2a73eb2 5503 reply[1] = data[2];
mjr 52:8298b2a73eb2 5504 reply[2] = data[3];
mjr 53:9b2611964afc 5505 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5506
mjr 52:8298b2a73eb2 5507 // query the value
mjr 52:8298b2a73eb2 5508 configVarGet(reply);
mjr 52:8298b2a73eb2 5509
mjr 52:8298b2a73eb2 5510 // send the reply
mjr 52:8298b2a73eb2 5511 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5512 }
mjr 52:8298b2a73eb2 5513 break;
mjr 53:9b2611964afc 5514
mjr 53:9b2611964afc 5515 case 10:
mjr 53:9b2611964afc 5516 // 10 = Build ID query.
mjr 53:9b2611964afc 5517 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5518 break;
mjr 73:4e8ce0b18915 5519
mjr 73:4e8ce0b18915 5520 case 11:
mjr 73:4e8ce0b18915 5521 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5522 // data[2] = operation:
mjr 73:4e8ce0b18915 5523 // 0 = turn relay off
mjr 73:4e8ce0b18915 5524 // 1 = turn relay on
mjr 73:4e8ce0b18915 5525 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5526 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5527 break;
mjr 73:4e8ce0b18915 5528
mjr 73:4e8ce0b18915 5529 case 12:
mjr 77:0b96f6867312 5530 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5531 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5532 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5533 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5534 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5535
mjr 77:0b96f6867312 5536 // enter IR learning mode
mjr 77:0b96f6867312 5537 IRLearningMode = 1;
mjr 77:0b96f6867312 5538
mjr 77:0b96f6867312 5539 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5540 IRCommandIn = 0;
mjr 77:0b96f6867312 5541
mjr 77:0b96f6867312 5542 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5543 IRTimer.reset();
mjr 73:4e8ce0b18915 5544 break;
mjr 73:4e8ce0b18915 5545
mjr 73:4e8ce0b18915 5546 case 13:
mjr 73:4e8ce0b18915 5547 // 13 = Send button status report
mjr 73:4e8ce0b18915 5548 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5549 break;
mjr 78:1e00b3fa11af 5550
mjr 78:1e00b3fa11af 5551 case 14:
mjr 78:1e00b3fa11af 5552 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5553 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5554 break;
mjr 78:1e00b3fa11af 5555
mjr 78:1e00b3fa11af 5556 case 15:
mjr 78:1e00b3fa11af 5557 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5558 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5559 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5560 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5561 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5562 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5563 break;
mjr 78:1e00b3fa11af 5564
mjr 78:1e00b3fa11af 5565 case 16:
mjr 78:1e00b3fa11af 5566 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5567 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5568 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5569 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5570 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5571 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5572 break;
mjr 38:091e511ce8a0 5573 }
mjr 38:091e511ce8a0 5574 }
mjr 38:091e511ce8a0 5575 else if (data[0] == 66)
mjr 38:091e511ce8a0 5576 {
mjr 38:091e511ce8a0 5577 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5578 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5579 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5580 // in a variable-dependent format.
mjr 40:cc0d9814522b 5581 configVarSet(data);
mjr 38:091e511ce8a0 5582 }
mjr 74:822a92bc11d2 5583 else if (data[0] == 67)
mjr 74:822a92bc11d2 5584 {
mjr 74:822a92bc11d2 5585 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5586 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5587 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5588 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5589 }
mjr 74:822a92bc11d2 5590 else if (data[0] == 68)
mjr 74:822a92bc11d2 5591 {
mjr 74:822a92bc11d2 5592 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5593 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5594 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5595
mjr 74:822a92bc11d2 5596 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5597 int portGroup = data[1];
mjr 74:822a92bc11d2 5598
mjr 74:822a92bc11d2 5599 // unpack the brightness values
mjr 74:822a92bc11d2 5600 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5601 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5602 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5603 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5604 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5605 };
mjr 74:822a92bc11d2 5606
mjr 74:822a92bc11d2 5607 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5608 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5609 {
mjr 74:822a92bc11d2 5610 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5611 bri[i] += 129-60;
mjr 74:822a92bc11d2 5612 }
mjr 74:822a92bc11d2 5613
mjr 74:822a92bc11d2 5614 // Carry out the PBA
mjr 74:822a92bc11d2 5615 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5616 }
mjr 38:091e511ce8a0 5617 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5618 {
mjr 38:091e511ce8a0 5619 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5620 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5621 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5622 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5623 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5624 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5625 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5626 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5627 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5628 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5629 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5630 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5631 //
mjr 38:091e511ce8a0 5632 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5633 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5634 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5635 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5636 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5637 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5638
mjr 63:5cd1a5f3a41b 5639 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5640 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5641 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5642
mjr 63:5cd1a5f3a41b 5643 // update each port
mjr 38:091e511ce8a0 5644 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5645 {
mjr 38:091e511ce8a0 5646 // set the brightness level for the output
mjr 40:cc0d9814522b 5647 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5648 outLevel[i] = b;
mjr 38:091e511ce8a0 5649
mjr 74:822a92bc11d2 5650 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5651 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5652 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5653 if (b != 0)
mjr 76:7f5912b6340e 5654 {
mjr 76:7f5912b6340e 5655 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5656 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5657 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5658 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5659 // forward unchanged.
mjr 76:7f5912b6340e 5660 wizOn[i] = 1;
mjr 76:7f5912b6340e 5661 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5662 }
mjr 76:7f5912b6340e 5663 else
mjr 76:7f5912b6340e 5664 {
mjr 76:7f5912b6340e 5665 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5666 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5667 wizOn[i] = 0;
mjr 76:7f5912b6340e 5668 }
mjr 74:822a92bc11d2 5669
mjr 38:091e511ce8a0 5670 // set the output
mjr 40:cc0d9814522b 5671 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5672 }
mjr 38:091e511ce8a0 5673
mjr 38:091e511ce8a0 5674 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5675 if (hc595 != 0)
mjr 38:091e511ce8a0 5676 hc595->update();
mjr 38:091e511ce8a0 5677 }
mjr 38:091e511ce8a0 5678 else
mjr 38:091e511ce8a0 5679 {
mjr 74:822a92bc11d2 5680 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5681 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5682 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5683 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5684 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5685 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5686 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5687 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5688 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5689 //
mjr 38:091e511ce8a0 5690 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5691 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5692 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5693 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5694 // protocol mode.
mjr 38:091e511ce8a0 5695 //
mjr 38:091e511ce8a0 5696 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5697 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5698
mjr 74:822a92bc11d2 5699 // carry out the PBA
mjr 74:822a92bc11d2 5700 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5701
mjr 74:822a92bc11d2 5702 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5703 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5704 }
mjr 38:091e511ce8a0 5705 }
mjr 35:e959ffba78fd 5706
mjr 38:091e511ce8a0 5707 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5708 //
mjr 5:a70c0bce770d 5709 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5710 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5711 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5712 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5713 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5714 // port outputs.
mjr 5:a70c0bce770d 5715 //
mjr 0:5acbbe3f4cf4 5716 int main(void)
mjr 0:5acbbe3f4cf4 5717 {
mjr 60:f38da020aa13 5718 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5719 printf("\r\nPinscape Controller starting\r\n");
mjr 82:4f6209cb5c33 5720
mjr 76:7f5912b6340e 5721 // clear the I2C connection
mjr 35:e959ffba78fd 5722 clear_i2c();
mjr 82:4f6209cb5c33 5723
mjr 82:4f6209cb5c33 5724 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 5725 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 5726 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 5727 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 5728 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 5729 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 5730
mjr 76:7f5912b6340e 5731 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5732 // configuration data:
mjr 76:7f5912b6340e 5733 //
mjr 76:7f5912b6340e 5734 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5735 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5736 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5737 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5738 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5739 // to store user settings updates.
mjr 76:7f5912b6340e 5740 //
mjr 76:7f5912b6340e 5741 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5742 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5743 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5744 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5745 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5746 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5747 // without a separate download of the config data.
mjr 76:7f5912b6340e 5748 //
mjr 76:7f5912b6340e 5749 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5750 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5751 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5752 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5753 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5754 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5755 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5756 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5757 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5758 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5759 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5760 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5761 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5762
mjr 38:091e511ce8a0 5763 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5764 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5765
mjr 33:d832bcab089e 5766 // we're not connected/awake yet
mjr 33:d832bcab089e 5767 bool connected = false;
mjr 40:cc0d9814522b 5768 Timer connectChangeTimer;
mjr 33:d832bcab089e 5769
mjr 35:e959ffba78fd 5770 // create the plunger sensor interface
mjr 35:e959ffba78fd 5771 createPlunger();
mjr 76:7f5912b6340e 5772
mjr 76:7f5912b6340e 5773 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5774 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5775
mjr 60:f38da020aa13 5776 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5777 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5778
mjr 60:f38da020aa13 5779 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5780 init_hc595(cfg);
mjr 6:cc35eb643e8f 5781
mjr 54:fd77a6b2f76c 5782 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5783 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5784 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5785 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5786 initLwOut(cfg);
mjr 48:058ace2aed1d 5787
mjr 60:f38da020aa13 5788 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5789 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5790 tlc5940->start();
mjr 77:0b96f6867312 5791
mjr 77:0b96f6867312 5792 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 5793 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 5794 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 5795 // USB keyboard interface.
mjr 77:0b96f6867312 5796 bool kbKeys = false;
mjr 77:0b96f6867312 5797
mjr 77:0b96f6867312 5798 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 5799 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 5800
mjr 77:0b96f6867312 5801 // start the power status time, if applicable
mjr 77:0b96f6867312 5802 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 5803
mjr 35:e959ffba78fd 5804 // initialize the button input ports
mjr 35:e959ffba78fd 5805 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5806
mjr 60:f38da020aa13 5807 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5808 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5809 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5810 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5811 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5812 // to the joystick interface.
mjr 51:57eb311faafa 5813 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5814 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5815
mjr 60:f38da020aa13 5816 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5817 // flash pattern while waiting.
mjr 70:9f58735a1732 5818 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5819 connTimeoutTimer.start();
mjr 70:9f58735a1732 5820 connFlashTimer.start();
mjr 51:57eb311faafa 5821 while (!js.configured())
mjr 51:57eb311faafa 5822 {
mjr 51:57eb311faafa 5823 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5824 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5825 {
mjr 51:57eb311faafa 5826 // short yellow flash
mjr 51:57eb311faafa 5827 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5828 wait_us(50000);
mjr 51:57eb311faafa 5829 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5830
mjr 51:57eb311faafa 5831 // reset the flash timer
mjr 70:9f58735a1732 5832 connFlashTimer.reset();
mjr 51:57eb311faafa 5833 }
mjr 70:9f58735a1732 5834
mjr 77:0b96f6867312 5835 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 5836 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 5837 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 5838 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 70:9f58735a1732 5839 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5840 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 5841 reboot(js, false, 0);
mjr 77:0b96f6867312 5842
mjr 77:0b96f6867312 5843 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5844 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 5845 }
mjr 60:f38da020aa13 5846
mjr 60:f38da020aa13 5847 // we're now connected to the host
mjr 54:fd77a6b2f76c 5848 connected = true;
mjr 40:cc0d9814522b 5849
mjr 60:f38da020aa13 5850 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5851 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5852 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5853 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5854 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5855 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5856 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5857 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5858 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5859 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5860 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5861 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5862 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5863 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5864 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5865 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5866 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5867 // around to polling.
mjr 38:091e511ce8a0 5868 Timer jsReportTimer;
mjr 38:091e511ce8a0 5869 jsReportTimer.start();
mjr 38:091e511ce8a0 5870
mjr 60:f38da020aa13 5871 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5872 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5873 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5874 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5875 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5876 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5877 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5878 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5879 Timer jsOKTimer;
mjr 38:091e511ce8a0 5880 jsOKTimer.start();
mjr 35:e959ffba78fd 5881
mjr 55:4db125cd11a0 5882 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5883 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5884 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5885 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5886 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5887
mjr 55:4db125cd11a0 5888 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 5889 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 5890 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 5891
mjr 55:4db125cd11a0 5892 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 5893 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 5894 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 5895
mjr 35:e959ffba78fd 5896 // initialize the calibration button
mjr 1:d913e0afb2ac 5897 calBtnTimer.start();
mjr 35:e959ffba78fd 5898 calBtnState = 0;
mjr 1:d913e0afb2ac 5899
mjr 1:d913e0afb2ac 5900 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 5901 Timer hbTimer;
mjr 1:d913e0afb2ac 5902 hbTimer.start();
mjr 1:d913e0afb2ac 5903 int hb = 0;
mjr 5:a70c0bce770d 5904 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 5905
mjr 1:d913e0afb2ac 5906 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 5907 Timer acTimer;
mjr 1:d913e0afb2ac 5908 acTimer.start();
mjr 1:d913e0afb2ac 5909
mjr 0:5acbbe3f4cf4 5910 // create the accelerometer object
mjr 77:0b96f6867312 5911 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 5912 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 5913
mjr 17:ab3cec0c8bf4 5914 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 5915 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 5916 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 5917
mjr 48:058ace2aed1d 5918 // initialize the plunger sensor
mjr 35:e959ffba78fd 5919 plungerSensor->init();
mjr 10:976666ffa4ef 5920
mjr 48:058ace2aed1d 5921 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 5922 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 5923
mjr 54:fd77a6b2f76c 5924 // enable the peripheral chips
mjr 54:fd77a6b2f76c 5925 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5926 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5927 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5928 hc595->enable(true);
mjr 74:822a92bc11d2 5929
mjr 76:7f5912b6340e 5930 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 5931 wizCycleTimer.start();
mjr 74:822a92bc11d2 5932
mjr 74:822a92bc11d2 5933 // start the PWM update polling timer
mjr 74:822a92bc11d2 5934 polledPwmTimer.start();
mjr 43:7a6364d82a41 5935
mjr 85:3c28aee81cde 5936 // Timer for configuration change followup timer
mjr 85:3c28aee81cde 5937 ExtTimer saveConfigPostTimer;
mjr 77:0b96f6867312 5938
mjr 1:d913e0afb2ac 5939 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 5940 // host requests
mjr 0:5acbbe3f4cf4 5941 for (;;)
mjr 0:5acbbe3f4cf4 5942 {
mjr 74:822a92bc11d2 5943 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 5944 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 5945
mjr 48:058ace2aed1d 5946 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 5947 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 5948 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 5949 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 5950 LedWizMsg lwm;
mjr 48:058ace2aed1d 5951 Timer lwt;
mjr 48:058ace2aed1d 5952 lwt.start();
mjr 77:0b96f6867312 5953 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 5954 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 5955 {
mjr 78:1e00b3fa11af 5956 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 5957 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 5958 }
mjr 74:822a92bc11d2 5959
mjr 74:822a92bc11d2 5960 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 5961 IF_DIAG(
mjr 74:822a92bc11d2 5962 if (msgCount != 0)
mjr 74:822a92bc11d2 5963 {
mjr 76:7f5912b6340e 5964 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 5965 mainLoopMsgCount++;
mjr 74:822a92bc11d2 5966 }
mjr 74:822a92bc11d2 5967 )
mjr 74:822a92bc11d2 5968
mjr 77:0b96f6867312 5969 // process IR input
mjr 77:0b96f6867312 5970 process_IR(cfg, js);
mjr 77:0b96f6867312 5971
mjr 77:0b96f6867312 5972 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5973 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 5974
mjr 74:822a92bc11d2 5975 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 5976 wizPulse();
mjr 74:822a92bc11d2 5977
mjr 74:822a92bc11d2 5978 // update PWM outputs
mjr 74:822a92bc11d2 5979 pollPwmUpdates();
mjr 77:0b96f6867312 5980
mjr 77:0b96f6867312 5981 // poll the accelerometer
mjr 77:0b96f6867312 5982 accel.poll();
mjr 55:4db125cd11a0 5983
mjr 76:7f5912b6340e 5984 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 5985 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5986
mjr 55:4db125cd11a0 5987 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 5988 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5989 tlc5940->send();
mjr 1:d913e0afb2ac 5990
mjr 76:7f5912b6340e 5991 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 5992 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 5993
mjr 1:d913e0afb2ac 5994 // check for plunger calibration
mjr 17:ab3cec0c8bf4 5995 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 5996 {
mjr 1:d913e0afb2ac 5997 // check the state
mjr 1:d913e0afb2ac 5998 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5999 {
mjr 1:d913e0afb2ac 6000 case 0:
mjr 1:d913e0afb2ac 6001 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6002 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6003 calBtnState = 1;
mjr 1:d913e0afb2ac 6004 break;
mjr 1:d913e0afb2ac 6005
mjr 1:d913e0afb2ac 6006 case 1:
mjr 1:d913e0afb2ac 6007 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6008 // passed, start the hold period
mjr 48:058ace2aed1d 6009 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6010 calBtnState = 2;
mjr 1:d913e0afb2ac 6011 break;
mjr 1:d913e0afb2ac 6012
mjr 1:d913e0afb2ac 6013 case 2:
mjr 1:d913e0afb2ac 6014 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6015 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6016 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6017 {
mjr 1:d913e0afb2ac 6018 // enter calibration mode
mjr 1:d913e0afb2ac 6019 calBtnState = 3;
mjr 9:fd65b0a94720 6020 calBtnTimer.reset();
mjr 35:e959ffba78fd 6021
mjr 44:b5ac89b9cd5d 6022 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6023 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6024 }
mjr 1:d913e0afb2ac 6025 break;
mjr 2:c174f9ee414a 6026
mjr 2:c174f9ee414a 6027 case 3:
mjr 9:fd65b0a94720 6028 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6029 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6030 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6031 break;
mjr 0:5acbbe3f4cf4 6032 }
mjr 0:5acbbe3f4cf4 6033 }
mjr 1:d913e0afb2ac 6034 else
mjr 1:d913e0afb2ac 6035 {
mjr 2:c174f9ee414a 6036 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6037 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6038 // and save the results to flash.
mjr 2:c174f9ee414a 6039 //
mjr 2:c174f9ee414a 6040 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6041 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6042 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6043 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6044 {
mjr 2:c174f9ee414a 6045 // exit calibration mode
mjr 1:d913e0afb2ac 6046 calBtnState = 0;
mjr 52:8298b2a73eb2 6047 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6048
mjr 6:cc35eb643e8f 6049 // save the updated configuration
mjr 35:e959ffba78fd 6050 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 6051 saveConfigToFlash();
mjr 2:c174f9ee414a 6052 }
mjr 2:c174f9ee414a 6053 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6054 {
mjr 2:c174f9ee414a 6055 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6056 calBtnState = 0;
mjr 2:c174f9ee414a 6057 }
mjr 1:d913e0afb2ac 6058 }
mjr 1:d913e0afb2ac 6059
mjr 1:d913e0afb2ac 6060 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6061 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6062 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6063 {
mjr 1:d913e0afb2ac 6064 case 2:
mjr 1:d913e0afb2ac 6065 // in the hold period - flash the light
mjr 48:058ace2aed1d 6066 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6067 break;
mjr 1:d913e0afb2ac 6068
mjr 1:d913e0afb2ac 6069 case 3:
mjr 1:d913e0afb2ac 6070 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6071 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6072 break;
mjr 1:d913e0afb2ac 6073
mjr 1:d913e0afb2ac 6074 default:
mjr 1:d913e0afb2ac 6075 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6076 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6077 break;
mjr 1:d913e0afb2ac 6078 }
mjr 3:3514575d4f86 6079
mjr 3:3514575d4f86 6080 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6081 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6082 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6083 {
mjr 1:d913e0afb2ac 6084 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6085 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6086 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6087 calBtnLed->write(1);
mjr 38:091e511ce8a0 6088 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6089 }
mjr 2:c174f9ee414a 6090 else {
mjr 17:ab3cec0c8bf4 6091 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6092 calBtnLed->write(0);
mjr 38:091e511ce8a0 6093 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6094 }
mjr 1:d913e0afb2ac 6095 }
mjr 35:e959ffba78fd 6096
mjr 76:7f5912b6340e 6097 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6098 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6099
mjr 48:058ace2aed1d 6100 // read the plunger sensor
mjr 48:058ace2aed1d 6101 plungerReader.read();
mjr 48:058ace2aed1d 6102
mjr 76:7f5912b6340e 6103 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6104 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6105
mjr 53:9b2611964afc 6106 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6107 zbLaunchBall.update();
mjr 37:ed52738445fc 6108
mjr 76:7f5912b6340e 6109 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6110 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6111
mjr 53:9b2611964afc 6112 // process button updates
mjr 53:9b2611964afc 6113 processButtons(cfg);
mjr 53:9b2611964afc 6114
mjr 76:7f5912b6340e 6115 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6116 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6117
mjr 38:091e511ce8a0 6118 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6119 if (kbState.changed)
mjr 37:ed52738445fc 6120 {
mjr 38:091e511ce8a0 6121 // send a keyboard report
mjr 37:ed52738445fc 6122 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6123 kbState.changed = false;
mjr 37:ed52738445fc 6124 }
mjr 38:091e511ce8a0 6125
mjr 38:091e511ce8a0 6126 // likewise for the media controller
mjr 37:ed52738445fc 6127 if (mediaState.changed)
mjr 37:ed52738445fc 6128 {
mjr 38:091e511ce8a0 6129 // send a media report
mjr 37:ed52738445fc 6130 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6131 mediaState.changed = false;
mjr 37:ed52738445fc 6132 }
mjr 38:091e511ce8a0 6133
mjr 76:7f5912b6340e 6134 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6135 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6136
mjr 38:091e511ce8a0 6137 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6138 bool jsOK = false;
mjr 55:4db125cd11a0 6139
mjr 55:4db125cd11a0 6140 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6141 uint16_t statusFlags =
mjr 77:0b96f6867312 6142 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6143 | nightMode // 0x02
mjr 79:682ae3171a08 6144 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6145 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6146 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6147 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6148
mjr 50:40015764bbe6 6149 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6150 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6151 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6152 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6153 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6154 {
mjr 17:ab3cec0c8bf4 6155 // read the accelerometer
mjr 17:ab3cec0c8bf4 6156 int xa, ya;
mjr 17:ab3cec0c8bf4 6157 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6158
mjr 17:ab3cec0c8bf4 6159 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6160 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6161 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6162 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6163 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6164
mjr 17:ab3cec0c8bf4 6165 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6166 x = xa;
mjr 17:ab3cec0c8bf4 6167 y = ya;
mjr 17:ab3cec0c8bf4 6168
mjr 48:058ace2aed1d 6169 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6170 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6171 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6172 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6173 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6174 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6175 // regular plunger inputs.
mjr 48:058ace2aed1d 6176 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6177 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6178
mjr 35:e959ffba78fd 6179 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6180 accelRotate(x, y);
mjr 35:e959ffba78fd 6181
mjr 35:e959ffba78fd 6182 // send the joystick report
mjr 53:9b2611964afc 6183 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6184
mjr 17:ab3cec0c8bf4 6185 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6186 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6187 }
mjr 21:5048e16cc9ef 6188
mjr 52:8298b2a73eb2 6189 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6190 if (reportPlungerStat)
mjr 10:976666ffa4ef 6191 {
mjr 17:ab3cec0c8bf4 6192 // send the report
mjr 53:9b2611964afc 6193 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6194
mjr 10:976666ffa4ef 6195 // we have satisfied this request
mjr 52:8298b2a73eb2 6196 reportPlungerStat = false;
mjr 10:976666ffa4ef 6197 }
mjr 10:976666ffa4ef 6198
mjr 35:e959ffba78fd 6199 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6200 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6201 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6202 {
mjr 55:4db125cd11a0 6203 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6204 jsReportTimer.reset();
mjr 38:091e511ce8a0 6205 }
mjr 38:091e511ce8a0 6206
mjr 38:091e511ce8a0 6207 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6208 if (jsOK)
mjr 38:091e511ce8a0 6209 {
mjr 38:091e511ce8a0 6210 jsOKTimer.reset();
mjr 38:091e511ce8a0 6211 jsOKTimer.start();
mjr 21:5048e16cc9ef 6212 }
mjr 21:5048e16cc9ef 6213
mjr 76:7f5912b6340e 6214 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6215 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6216
mjr 6:cc35eb643e8f 6217 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6218 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6219 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6220 #endif
mjr 6:cc35eb643e8f 6221
mjr 33:d832bcab089e 6222 // check for connection status changes
mjr 54:fd77a6b2f76c 6223 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6224 if (newConnected != connected)
mjr 33:d832bcab089e 6225 {
mjr 54:fd77a6b2f76c 6226 // give it a moment to stabilize
mjr 40:cc0d9814522b 6227 connectChangeTimer.start();
mjr 55:4db125cd11a0 6228 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6229 {
mjr 33:d832bcab089e 6230 // note the new status
mjr 33:d832bcab089e 6231 connected = newConnected;
mjr 40:cc0d9814522b 6232
mjr 40:cc0d9814522b 6233 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6234 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6235 connectChangeTimer.reset();
mjr 33:d832bcab089e 6236
mjr 54:fd77a6b2f76c 6237 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6238 if (!connected)
mjr 40:cc0d9814522b 6239 {
mjr 54:fd77a6b2f76c 6240 // turn off all outputs
mjr 33:d832bcab089e 6241 allOutputsOff();
mjr 40:cc0d9814522b 6242
mjr 40:cc0d9814522b 6243 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6244 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6245 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6246 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6247 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6248 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6249 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6250 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6251 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6252 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6253 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6254 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6255 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6256 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6257 // the power first comes on.
mjr 40:cc0d9814522b 6258 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6259 tlc5940->enable(false);
mjr 40:cc0d9814522b 6260 if (hc595 != 0)
mjr 40:cc0d9814522b 6261 hc595->enable(false);
mjr 40:cc0d9814522b 6262 }
mjr 33:d832bcab089e 6263 }
mjr 33:d832bcab089e 6264 }
mjr 48:058ace2aed1d 6265
mjr 53:9b2611964afc 6266 // if we have a reboot timer pending, check for completion
mjr 85:3c28aee81cde 6267 if (saveConfigPostTimer.isRunning()
mjr 85:3c28aee81cde 6268 && saveConfigPostTimer.read() > saveConfigPostTime)
mjr 85:3c28aee81cde 6269 {
mjr 85:3c28aee81cde 6270 // if a reboot is pending, execute it now
mjr 85:3c28aee81cde 6271 if (saveConfigState == SAVE_CONFIG_REBOOT)
mjr 85:3c28aee81cde 6272 reboot(js);
mjr 77:0b96f6867312 6273
mjr 85:3c28aee81cde 6274 // done with the timer - reset it
mjr 85:3c28aee81cde 6275 saveConfigPostTimer.stop();
mjr 85:3c28aee81cde 6276 saveConfigPostTimer.reset();
mjr 85:3c28aee81cde 6277
mjr 85:3c28aee81cde 6278 // clear the save-config success flag
mjr 85:3c28aee81cde 6279 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6280 }
mjr 85:3c28aee81cde 6281
mjr 77:0b96f6867312 6282 // if a config save is pending, do it now
mjr 85:3c28aee81cde 6283 if (saveConfigState == SAVE_CONFIG_ONLY
mjr 85:3c28aee81cde 6284 || saveConfigState == SAVE_CONFIG_AND_REBOOT)
mjr 77:0b96f6867312 6285 {
mjr 77:0b96f6867312 6286 // save the configuration
mjr 79:682ae3171a08 6287 if (saveConfigToFlash())
mjr 82:4f6209cb5c33 6288 {
mjr 82:4f6209cb5c33 6289 // report success in the status flags
mjr 79:682ae3171a08 6290 saveConfigSucceededFlag = 0x40;
mjr 77:0b96f6867312 6291
mjr 85:3c28aee81cde 6292 // start the followup timer
mjr 85:3c28aee81cde 6293 saveConfigPostTimer.start();
mjr 85:3c28aee81cde 6294
mjr 85:3c28aee81cde 6295 // The save is no longer pending. Switch to reboot pending
mjr 85:3c28aee81cde 6296 // mode if desired.
mjr 85:3c28aee81cde 6297 saveConfigState = (saveConfigState == SAVE_CONFIG_AND_REBOOT ?
mjr 85:3c28aee81cde 6298 SAVE_CONFIG_REBOOT : SAVE_CONFIG_IDLE);
mjr 82:4f6209cb5c33 6299 }
mjr 85:3c28aee81cde 6300 else
mjr 85:3c28aee81cde 6301 {
mjr 85:3c28aee81cde 6302 // save failed - return to idle state
mjr 85:3c28aee81cde 6303 saveConfigState = SAVE_CONFIG_IDLE;
mjr 85:3c28aee81cde 6304 }
mjr 77:0b96f6867312 6305 }
mjr 53:9b2611964afc 6306
mjr 48:058ace2aed1d 6307 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6308 if (!connected)
mjr 48:058ace2aed1d 6309 {
mjr 54:fd77a6b2f76c 6310 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6311 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6312 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6313
mjr 54:fd77a6b2f76c 6314 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6315 js.diagFlash();
mjr 54:fd77a6b2f76c 6316
mjr 54:fd77a6b2f76c 6317 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6318 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6319
mjr 51:57eb311faafa 6320 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6321 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6322 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6323
mjr 54:fd77a6b2f76c 6324 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6325 Timer diagTimer;
mjr 54:fd77a6b2f76c 6326 diagTimer.reset();
mjr 54:fd77a6b2f76c 6327 diagTimer.start();
mjr 74:822a92bc11d2 6328
mjr 74:822a92bc11d2 6329 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6330 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6331
mjr 54:fd77a6b2f76c 6332 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6333 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6334 {
mjr 54:fd77a6b2f76c 6335 // try to recover the connection
mjr 54:fd77a6b2f76c 6336 js.recoverConnection();
mjr 54:fd77a6b2f76c 6337
mjr 55:4db125cd11a0 6338 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6339 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6340 tlc5940->send();
mjr 55:4db125cd11a0 6341
mjr 54:fd77a6b2f76c 6342 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6343 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6344 {
mjr 54:fd77a6b2f76c 6345 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6346 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6347
mjr 54:fd77a6b2f76c 6348 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6349 js.diagFlash();
mjr 51:57eb311faafa 6350
mjr 51:57eb311faafa 6351 // reset the flash timer
mjr 54:fd77a6b2f76c 6352 diagTimer.reset();
mjr 51:57eb311faafa 6353 }
mjr 51:57eb311faafa 6354
mjr 77:0b96f6867312 6355 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6356 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6357 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6358 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6359 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6360 // reliable way to get Windows to notice us again after one
mjr 77:0b96f6867312 6361 // of these events and make it reconnect.
mjr 51:57eb311faafa 6362 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6363 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6364 reboot(js, false, 0);
mjr 77:0b96f6867312 6365
mjr 77:0b96f6867312 6366 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6367 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6368 }
mjr 54:fd77a6b2f76c 6369
mjr 74:822a92bc11d2 6370 // resume the main loop timer
mjr 74:822a92bc11d2 6371 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6372
mjr 54:fd77a6b2f76c 6373 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6374 connected = true;
mjr 54:fd77a6b2f76c 6375 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6376
mjr 54:fd77a6b2f76c 6377 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6378 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6379 {
mjr 55:4db125cd11a0 6380 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6381 tlc5940->update(true);
mjr 54:fd77a6b2f76c 6382 }
mjr 54:fd77a6b2f76c 6383 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6384 {
mjr 55:4db125cd11a0 6385 hc595->enable(true);
mjr 54:fd77a6b2f76c 6386 hc595->update(true);
mjr 51:57eb311faafa 6387 }
mjr 48:058ace2aed1d 6388 }
mjr 43:7a6364d82a41 6389
mjr 6:cc35eb643e8f 6390 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6391 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6392 {
mjr 54:fd77a6b2f76c 6393 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6394 {
mjr 39:b3815a1c3802 6395 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6396 //
mjr 54:fd77a6b2f76c 6397 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6398 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6399 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6400 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6401 hb = !hb;
mjr 38:091e511ce8a0 6402 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6403
mjr 54:fd77a6b2f76c 6404 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6405 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6406 // with the USB connection.
mjr 54:fd77a6b2f76c 6407 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6408 {
mjr 54:fd77a6b2f76c 6409 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6410 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6411 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 6412 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 6413 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6414 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6415 }
mjr 54:fd77a6b2f76c 6416 else
mjr 54:fd77a6b2f76c 6417 {
mjr 54:fd77a6b2f76c 6418 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6419 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6420 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6421 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6422 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6423 }
mjr 38:091e511ce8a0 6424 }
mjr 73:4e8ce0b18915 6425 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6426 {
mjr 73:4e8ce0b18915 6427 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6428 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6429 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6430 }
mjr 35:e959ffba78fd 6431 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6432 {
mjr 6:cc35eb643e8f 6433 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6434 hb = !hb;
mjr 38:091e511ce8a0 6435 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6436 }
mjr 6:cc35eb643e8f 6437 else
mjr 6:cc35eb643e8f 6438 {
mjr 6:cc35eb643e8f 6439 // connected - flash blue/green
mjr 2:c174f9ee414a 6440 hb = !hb;
mjr 38:091e511ce8a0 6441 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6442 }
mjr 1:d913e0afb2ac 6443
mjr 1:d913e0afb2ac 6444 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6445 hbTimer.reset();
mjr 5:a70c0bce770d 6446 ++hbcnt;
mjr 1:d913e0afb2ac 6447 }
mjr 74:822a92bc11d2 6448
mjr 74:822a92bc11d2 6449 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6450 IF_DIAG(
mjr 76:7f5912b6340e 6451 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6452 mainLoopIterCount++;
mjr 74:822a92bc11d2 6453 )
mjr 1:d913e0afb2ac 6454 }
mjr 0:5acbbe3f4cf4 6455 }