An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Nov 28 23:18:23 2019 +0000
Revision:
100:1ff35c07217c
Parent:
99:8139b0c274f4
Child:
105:6a25bbfae1e4
Added preliminary support for AEAT-6012 and TCD1103 sensors; use continuous averaging for pot sensor analog in; more AltAnalogIn options for timing and resolution

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 79:682ae3171a08 64 // 0x40 -> configuration saved successfully (see below)
mjr 40:cc0d9814522b 65 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 66 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 67 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 68 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 70 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 71 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 72 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 73 // xx high byte of X position
mjr 39:b3815a1c3802 74 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 75 // yy high byte of Y position
mjr 39:b3815a1c3802 76 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 77 // zz high byte of Z position
mjr 39:b3815a1c3802 78 //
mjr 39:b3815a1c3802 79 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 80 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 81 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 82 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 83 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 84 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 85 // is pushed forward of the park position.
mjr 39:b3815a1c3802 86 //
mjr 79:682ae3171a08 87 // Status bit 0x40 is set after a successful configuration update via special
mjr 79:682ae3171a08 88 // command 65 6 (save config to flash). The device always reboots after this
mjr 79:682ae3171a08 89 // command, so if the host wants to receive a status update verifying the
mjr 79:682ae3171a08 90 // save, it has to request a non-zero reboot delay in the message to allow
mjr 79:682ae3171a08 91 // us time to send at least one of these status reports after the save.
mjr 79:682ae3171a08 92 // This bit is only sent after a successful save, which means that the flash
mjr 79:682ae3171a08 93 // write succeeded and the written sectors verified as correct.
mjr 82:4f6209cb5c33 94 // NOTE: older firmware versions didn't support this status bit, so clients
mjr 82:4f6209cb5c33 95 // can't interpret the lack of a response as a failure for older versions.
mjr 82:4f6209cb5c33 96 // To determine if the flag is supported, check the config report feature
mjr 82:4f6209cb5c33 97 // flags.
mjr 82:4f6209cb5c33 98 //
mjr 79:682ae3171a08 99 //
mjr 39:b3815a1c3802 100 // 2. Special reports
mjr 35:e959ffba78fd 101 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 102 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 103 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 104 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 105 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 106 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 107 //
mjr 39:b3815a1c3802 108 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 109 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 110 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 111 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 112 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 113 //
mjr 52:8298b2a73eb2 114 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 115 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 116 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 117 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 118 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 119 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 120 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 121 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 122 //
mjr 52:8298b2a73eb2 123 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 124 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 125 //
mjr 52:8298b2a73eb2 126 // bytes 0:1 = 0x87FF
mjr 86:e30a1f60f783 127 // byte 2 = 0 -> first status report packet
mjr 52:8298b2a73eb2 128 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 129 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 130 // the sensor isn't an imaging type.
mjr 86:e30a1f60f783 131 // bytes 5:6 = current plunger position registered on the sensor. This
mjr 86:e30a1f60f783 132 // is on the *native* scale for the sensor, which might be
mjr 86:e30a1f60f783 133 // different from joystick units. By default, the native
mjr 86:e30a1f60f783 134 // scale is the number of pixels for an imaging sensor, or
mjr 86:e30a1f60f783 135 // 4096 for other sensor types. The actual native scale can
mjr 86:e30a1f60f783 136 // be reported separately via a second status report message
mjr 86:e30a1f60f783 137 // (see below).
mjr 52:8298b2a73eb2 138 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 139 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 140 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 141 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 142 // are sent for this reading)
mjr 52:8298b2a73eb2 143 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 144 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 145 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 146 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 147 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 148 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 149 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 150 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 151 // sample.
mjr 52:8298b2a73eb2 152 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 153 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 154 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 155 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 156 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 157 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 158 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 159 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 160 // the ADC sample.
mjr 52:8298b2a73eb2 161 //
mjr 86:e30a1f60f783 162 // An optional second message provides additional information:
mjr 86:e30a1f60f783 163 //
mjr 86:e30a1f60f783 164 // bytes 0:1 = 0x87FF
mjr 86:e30a1f60f783 165 // byte 2 = 1 -> second status report packet
mjr 86:e30a1f60f783 166 // bytes 3:4 = Native sensor scale. This is the actual native scale
mjr 86:e30a1f60f783 167 // used for the position report in the first status report
mjr 86:e30a1f60f783 168 // packet above.
mjr 86:e30a1f60f783 169 // bytes 5:6 = Jitter window lower bound, in native sensor scale units.
mjr 86:e30a1f60f783 170 // bytes 7:8 = Jitter window upper bound, in native sensor scale units.
mjr 86:e30a1f60f783 171 // The jitter window bounds reflect the current jitter filter
mjr 86:e30a1f60f783 172 // status as of this reading.
mjr 86:e30a1f60f783 173 // bytes 9:10 = Raw sensor reading before jitter filter was applied.
mjr 86:e30a1f60f783 174 // bytes 11:12 = Auto-exposure time in microseconds
mjr 87:8d35c74403af 175 //
mjr 87:8d35c74403af 176 // An optional third message provides additional information specifically
mjr 87:8d35c74403af 177 // for bar-code sensors:
mjr 87:8d35c74403af 178 //
mjr 87:8d35c74403af 179 // bytes 0:1 = 0x87FF
mjr 87:8d35c74403af 180 // byte 2 = 2 -> bar code status report
mjr 87:8d35c74403af 181 // byte 3 = number of bits in bar code
mjr 87:8d35c74403af 182 // byte 4 = bar code type:
mjr 87:8d35c74403af 183 // 1 = Gray code/Manchester bit coding
mjr 87:8d35c74403af 184 // bytes 5:6 = pixel offset of first bit
mjr 87:8d35c74403af 185 // byte 7 = width in pixels of each bit
mjr 87:8d35c74403af 186 // bytes 8:9 = raw bar code bits
mjr 87:8d35c74403af 187 // bytes 10:11 = mask of successfully read bar code bits; a '1' bit means
mjr 87:8d35c74403af 188 // that the bit was read successfully, '0' means the bit was
mjr 87:8d35c74403af 189 // unreadable
mjr 86:e30a1f60f783 190 //
mjr 86:e30a1f60f783 191 //
mjr 52:8298b2a73eb2 192 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 193 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 194 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 195 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 196 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 197 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 198 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 199 // if the sensor is an imaging type, since the transmission time for the
mjr 87:8d35c74403af 200 // pixels would interfere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 201 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 202 // pixel packet is:
mjr 35:e959ffba78fd 203 //
mjr 35:e959ffba78fd 204 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 205 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 206 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 207 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 208 // indicate pixel #0.
mjr 47:df7a88cd249c 209 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 210 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 211 // etc for the rest of the packet
mjr 35:e959ffba78fd 212 //
mjr 52:8298b2a73eb2 213 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 214 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 215 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 216 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 217 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 218 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 219 // format here accordingly.
mjr 51:57eb311faafa 220 //
mjr 51:57eb311faafa 221 //
mjr 53:9b2611964afc 222 // 2B. Configuration report.
mjr 39:b3815a1c3802 223 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 224 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 225 //
mjr 35:e959ffba78fd 226 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 227 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 228 // reports and from other special report types.
mjr 74:822a92bc11d2 229 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 230 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 231 // active configuration.
mjr 98:4df3c0f7e707 232 // byte 4 = Pinscape unit number (0-15)
mjr 75:677892300e7a 233 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 234 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 235 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 236 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 237 // byte 11 = bit flags:
mjr 40:cc0d9814522b 238 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 239 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 240 // has been sent from the host
mjr 74:822a92bc11d2 241 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 242 // that these features are present in this version.
mjr 78:1e00b3fa11af 243 // 0x04 -> new accelerometer features supported (adjustable
mjr 78:1e00b3fa11af 244 // dynamic range, auto-centering on/off, adjustable
mjr 78:1e00b3fa11af 245 // auto-centering time)
mjr 82:4f6209cb5c33 246 // 0x08 -> flash write status flag supported (see flag 0x40
mjr 82:4f6209cb5c33 247 // in normal joystick status report)
mjr 92:f264fbaa1be5 248 // 0x10 -> joystick report timing features supports
mjr 92:f264fbaa1be5 249 // (configurable joystick report interval, acceler-
mjr 92:f264fbaa1be5 250 // ometer stutter counter)
mjr 99:8139b0c274f4 251 // 0x20 -> chime logic is supported
mjr 73:4e8ce0b18915 252 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 253 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 254 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 255 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 256 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 257 // the set of features enabled.
mjr 35:e959ffba78fd 258 //
mjr 53:9b2611964afc 259 // 2C. Device ID report.
mjr 40:cc0d9814522b 260 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 261 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 262 //
mjr 52:8298b2a73eb2 263 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 264 // to distinguish this from other report types.
mjr 53:9b2611964afc 265 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 266 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 267 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 268 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 269 //
mjr 53:9b2611964afc 270 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 271 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 272 //
mjr 53:9b2611964afc 273 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 274 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 275 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 276 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 277 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 278 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 279 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 280 //
mjr 53:9b2611964afc 281 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 282 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 283 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 284 //
mjr 52:8298b2a73eb2 285 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 286 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 287 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 288 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 289 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 290 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 291 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 292 //
mjr 53:9b2611964afc 293 // 2E. Software build information report.
mjr 53:9b2611964afc 294 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 295 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 296 //
mjr 73:4e8ce0b18915 297 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 298 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 299 // other report types.
mjr 53:9b2611964afc 300 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 301 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 302 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 303 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 304 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 305 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 306 // build time on a 24-hour clock.
mjr 53:9b2611964afc 307 //
mjr 73:4e8ce0b18915 308 // 2F. Button status report.
mjr 73:4e8ce0b18915 309 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 310 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 311 //
mjr 77:0b96f6867312 312 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 313 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 314 // report types.
mjr 73:4e8ce0b18915 315 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 316 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 317 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 318 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 319 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 320 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 321 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 322 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 323 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 324 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 325 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 326 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 327 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 328 //
mjr 77:0b96f6867312 329 // 2G. IR sensor data report.
mjr 77:0b96f6867312 330 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 331 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 332 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 333 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 334 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 335 // the command.
mjr 52:8298b2a73eb2 336 //
mjr 77:0b96f6867312 337 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 338 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 339 // report types.
mjr 77:0b96f6867312 340 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 341 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 342 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 343 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 344 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 345 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 346 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 347 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 348 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 349 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 350 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 351 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 352 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 353 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 354 // nothing is being transmitted.
mjr 77:0b96f6867312 355 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 356 // (etc for remaining reports)
mjr 77:0b96f6867312 357 //
mjr 77:0b96f6867312 358 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 359 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 360 // session.
mjr 77:0b96f6867312 361 //
mjr 77:0b96f6867312 362 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 363 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 364 // of the raw data:
mjr 77:0b96f6867312 365 //
mjr 77:0b96f6867312 366 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 367 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 368 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 369 // byte 4 = bit flags:
mjr 77:0b96f6867312 370 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 371 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 372 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 373 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 374 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 375 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 376 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 377 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 378 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 379 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 380 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 381 // bits or sequencing codes).
mjr 77:0b96f6867312 382 //
mjr 77:0b96f6867312 383 //
mjr 77:0b96f6867312 384 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 385 //
mjr 35:e959ffba78fd 386 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 387 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 388 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 389 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 390 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 391 //
mjr 77:0b96f6867312 392 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 393 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 394 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 395 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 396 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 397 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 398 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 399 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 400 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 401 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 402 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 403 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 404 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 405 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 406 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 407 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 408 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 409 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 410 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 411 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 412
mjr 35:e959ffba78fd 413
mjr 35:e959ffba78fd 414
mjr 35:e959ffba78fd 415 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 416 //
mjr 35:e959ffba78fd 417 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 418 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 419 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 420 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 421 //
mjr 35:e959ffba78fd 422 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 423 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 424 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 425 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 426 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 427 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 428 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 429
mjr 35:e959ffba78fd 430 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 431 //
mjr 74:822a92bc11d2 432 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 433 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 434 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 435 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 436 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 437 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 438 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 439 // meaning in the original protocol.
mjr 35:e959ffba78fd 440 //
mjr 74:822a92bc11d2 441 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 442 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 443 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 444 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 445 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 446 //
mjr 35:e959ffba78fd 447 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 448 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 449 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 450 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 451 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 452 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 453 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 454 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 455 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 456 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 457 //
mjr 35:e959ffba78fd 458 //
mjr 74:822a92bc11d2 459 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 460 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 461 //
mjr 74:822a92bc11d2 462 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 463 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 464 // ranges.
mjr 74:822a92bc11d2 465 //
mjr 74:822a92bc11d2 466 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 467 // The valid values are:
mjr 35:e959ffba78fd 468 //
mjr 35:e959ffba78fd 469 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 470 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 471 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 472 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 473 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 474 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 475 //
mjr 74:822a92bc11d2 476 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 477 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 478 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 479 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 480 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 481 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 482 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 483 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 484 //
mjr 74:822a92bc11d2 485 //
mjr 35:e959ffba78fd 486
mjr 35:e959ffba78fd 487 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 488 //
mjr 35:e959ffba78fd 489 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 490 //
mjr 35:e959ffba78fd 491 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 492 // operation:
mjr 35:e959ffba78fd 493 //
mjr 39:b3815a1c3802 494 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 495 // USB endpoint.)
mjr 39:b3815a1c3802 496 //
mjr 88:98bce687e6c0 497 // 1 -> Set the device's LedWiz unit number and plunger status, and save the
mjr 88:98bce687e6c0 498 // changes to flash. The device automatically reboots after the changes
mjr 88:98bce687e6c0 499 // are saved if the unit number is changed, since this changes the USB
mjr 88:98bce687e6c0 500 // product ID code. The additional bytes of the message give the
mjr 88:98bce687e6c0 501 // parameters:
mjr 35:e959ffba78fd 502 //
mjr 88:98bce687e6c0 503 // third byte = new LedWiz unit number (0-15, corresponding to nominal
mjr 88:98bce687e6c0 504 // LedWiz unit numbers 1-16)
mjr 35:e959ffba78fd 505 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 506 //
mjr 88:98bce687e6c0 507 // Note that this command is from the original version and isn't typically
mjr 88:98bce687e6c0 508 // used any more, since the same information has been subsumed into more
mjr 88:98bce687e6c0 509 // generalized option settings via the config variable system.
mjr 88:98bce687e6c0 510 //
mjr 35:e959ffba78fd 511 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 512 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 513 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 514 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 515 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 516 //
mjr 51:57eb311faafa 517 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 518 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 519 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 520 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 521 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 522 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 523 // sent. Parameters:
mjr 48:058ace2aed1d 524 //
mjr 48:058ace2aed1d 525 // third byte = bit flags:
mjr 51:57eb311faafa 526 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 527 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 528 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 529 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 530 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 531 // viewing in the config tool.
mjr 35:e959ffba78fd 532 //
mjr 53:9b2611964afc 533 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 534 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 535 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 536 // level for calibration purposes.
mjr 53:9b2611964afc 537 //
mjr 35:e959ffba78fd 538 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 539 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 540 // joystick reports.
mjr 35:e959ffba78fd 541 //
mjr 74:822a92bc11d2 542 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 543 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 544 // global flash speed to 2.
mjr 35:e959ffba78fd 545 //
mjr 35:e959ffba78fd 546 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 85:3c28aee81cde 547 // type 66 messages since the last reboot, then optionally reboots the
mjr 82:4f6209cb5c33 548 // device to put the changes into effect. If the flash write succeeds,
mjr 82:4f6209cb5c33 549 // we set the "flash write OK" bit in our status reports, which we
mjr 82:4f6209cb5c33 550 // continue sending between the successful write and the delayed reboot.
mjr 85:3c28aee81cde 551 // We don't set the bit or reboot if the write fails. If the "do not
mjr 85:3c28aee81cde 552 // reboot" flag is set, we still set the flag on success for the delay
mjr 85:3c28aee81cde 553 // time, then clear the flag.
mjr 35:e959ffba78fd 554 //
mjr 53:9b2611964afc 555 // third byte = delay time in seconds. The device will wait this long
mjr 82:4f6209cb5c33 556 // before disconnecting, to allow the PC to test for the success bit
mjr 82:4f6209cb5c33 557 // in the status report, and to perform any cleanup tasks while the
mjr 82:4f6209cb5c33 558 // device is still attached (e.g., modifying Windows device driver
mjr 82:4f6209cb5c33 559 // settings)
mjr 53:9b2611964afc 560 //
mjr 85:3c28aee81cde 561 // fourth byte = flags:
mjr 85:3c28aee81cde 562 // 0x01 -> do not reboot
mjr 85:3c28aee81cde 563 //
mjr 40:cc0d9814522b 564 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 565 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 566 // joystick reports.
mjr 40:cc0d9814522b 567 //
mjr 53:9b2611964afc 568 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 569 //
mjr 53:9b2611964afc 570 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 571 //
mjr 53:9b2611964afc 572 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 573 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 574 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 575 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 576 //
mjr 40:cc0d9814522b 577 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 578 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 579 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 580 //
mjr 52:8298b2a73eb2 581 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 582 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 583 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 584 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 585 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 586 //
mjr 53:9b2611964afc 587 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 588 // the software build information report (see above).
mjr 53:9b2611964afc 589 //
mjr 73:4e8ce0b18915 590 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 591 // relay from the PC. This doesn't change the power-up configuration;
mjr 88:98bce687e6c0 592 // it merely allows the relay to be controlled directly. The third
mjr 88:98bce687e6c0 593 // byte specifies the relay operation to perform:
mjr 73:4e8ce0b18915 594 //
mjr 73:4e8ce0b18915 595 // 0 = turn relay off
mjr 73:4e8ce0b18915 596 // 1 = turn relay on
mjr 73:4e8ce0b18915 597 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 598 //
mjr 77:0b96f6867312 599 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 600 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 601 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 602 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 603 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 604 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 605 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 606 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 607 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 608 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 609 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 610 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 611 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 612 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 613 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 614 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 615 // press.
mjr 77:0b96f6867312 616 //
mjr 78:1e00b3fa11af 617 // 13 -> Get button status report. The device sends one button status
mjr 78:1e00b3fa11af 618 // report in response (see section "2F" above).
mjr 78:1e00b3fa11af 619 //
mjr 78:1e00b3fa11af 620 // 14 -> Manually center the accelerometer. This sets the accelerometer
mjr 78:1e00b3fa11af 621 // zero point to the running average of readings over the past few
mjr 78:1e00b3fa11af 622 // seconds.
mjr 78:1e00b3fa11af 623 //
mjr 78:1e00b3fa11af 624 // 15 -> Set up ad hoc IR command, part 1. This sets up the first part
mjr 78:1e00b3fa11af 625 // of an IR command to transmit. The device stores the data in an
mjr 78:1e00b3fa11af 626 // internal register for later use in message 65 16. Send the
mjr 78:1e00b3fa11af 627 // remainder of the command data with 65 16.
mjr 78:1e00b3fa11af 628 //
mjr 78:1e00b3fa11af 629 // byte 3 = IR protocol ID
mjr 78:1e00b3fa11af 630 // byte 4 = flags (IRFlagXxx bit flags)
mjr 78:1e00b3fa11af 631 // byte 5-8 = low-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 632 //
mjr 78:1e00b3fa11af 633 // 16 -> Finish and send an ad hoc IR command. Use message 65 15 first
mjr 78:1e00b3fa11af 634 // to set up the start of the command data, then send this message
mjr 78:1e00b3fa11af 635 // to fill in the rest of the data and transmit the command. Upon
mjr 78:1e00b3fa11af 636 // receiving this message, the device performs the transmission.
mjr 78:1e00b3fa11af 637 //
mjr 78:1e00b3fa11af 638 // byte 3-6 = high-order 32 bits of command code, little-endian
mjr 88:98bce687e6c0 639 //
mjr 88:98bce687e6c0 640 // 17 -> Send a pre-programmed IR command. This immediately transmits an
mjr 88:98bce687e6c0 641 // IR code stored in a command slot.
mjr 88:98bce687e6c0 642 //
mjr 88:98bce687e6c0 643 // byte 3 = command number (1..MAX_IR_CODES)
mjr 78:1e00b3fa11af 644 //
mjr 73:4e8ce0b18915 645 //
mjr 35:e959ffba78fd 646 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 647 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 648 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 649 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 650 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 651 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 652 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 653 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 654 //
mjr 74:822a92bc11d2 655 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 656 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 657 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 658 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 659 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 660 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 661 //
mjr 74:822a92bc11d2 662 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 663 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 664 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 665 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 666 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 667 //
mjr 74:822a92bc11d2 668 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 669 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 670 //
mjr 74:822a92bc11d2 671 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 672 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 673 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 674 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 675 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 676 //
mjr 74:822a92bc11d2 677 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 678 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 679 //
mjr 74:822a92bc11d2 680 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 681 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 682 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 683 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 684 //
mjr 74:822a92bc11d2 685 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 686 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 687 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 688 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 689 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 690 //
mjr 74:822a92bc11d2 691 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 692 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 693 //
mjr 74:822a92bc11d2 694 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 695 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 696 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 697 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 698 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 699 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 700 //
mjr 74:822a92bc11d2 701 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 702 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 703 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 704 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 705 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 706 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 707 //
mjr 74:822a92bc11d2 708 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 709 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 710 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 711 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 712 // 68, pp,
mjr 74:822a92bc11d2 713 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 714 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 715 // };
mjr 74:822a92bc11d2 716 //
mjr 35:e959ffba78fd 717 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 718 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 719 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 720 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 721 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 722 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 723 //
mjr 35:e959ffba78fd 724 // 200 = outputs 1-7
mjr 35:e959ffba78fd 725 // 201 = outputs 8-14
mjr 35:e959ffba78fd 726 // 202 = outputs 15-21
mjr 35:e959ffba78fd 727 // ...
mjr 35:e959ffba78fd 728 // 228 = outputs 197-203
mjr 35:e959ffba78fd 729 //
mjr 53:9b2611964afc 730 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 731 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 732 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 733 //
mjr 53:9b2611964afc 734 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 735 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 736 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 737 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 738 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 739 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 740 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 741 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 742 //
mjr 35:e959ffba78fd 743 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 744 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 745 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 746 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 747 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 748 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 749 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 750 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 751 //
mjr 53:9b2611964afc 752 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 753 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 754 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 755 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 756 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 757 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 758
mjr 35:e959ffba78fd 759
mjr 35:e959ffba78fd 760 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 761 //
mjr 35:e959ffba78fd 762 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 763 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 764 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 765 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 766 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 767 //
mjr 77:0b96f6867312 768 // Variable IDs:
mjr 77:0b96f6867312 769 //
mjr 53:9b2611964afc 770 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 771 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 772 //
mjr 53:9b2611964afc 773 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 774 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 775 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 776 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 777 //
mjr 53:9b2611964afc 778 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 779 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 780 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 781 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 782 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 783 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 784 // of the firmware and the host software.
mjr 53:9b2611964afc 785 //
mjr 53:9b2611964afc 786 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 787 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 788 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 789 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 790 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 791 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 792 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 793 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 794 //
mjr 53:9b2611964afc 795 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 796 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 797 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 798 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 799 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 800 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 801 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 802 //
mjr 53:9b2611964afc 803 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 804 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 805 //
mjr 53:9b2611964afc 806 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 807 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 808 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 809 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 810 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 811 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 812 // you have any real LedWiz units).
mjr 53:9b2611964afc 813 //
mjr 53:9b2611964afc 814 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 815 //
mjr 90:aa4e571da8e8 816 // 3 -> Joystick report settings.
mjr 55:4db125cd11a0 817 //
mjr 92:f264fbaa1be5 818 // byte 3 -> Enable joystick interface: 1 to enable, 0 to disable
mjr 92:f264fbaa1be5 819 // byte 4 -> Joystick axis format, as a USBJoystick::AXIS_FORMAT_XXX value
mjr 92:f264fbaa1be5 820 // bytes 5:8 -> Reporting interval in microseconds
mjr 35:e959ffba78fd 821 //
mjr 55:4db125cd11a0 822 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 823 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 824 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 825 //
mjr 55:4db125cd11a0 826 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 827 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 828 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 829 // to generate keyboard key input.
mjr 55:4db125cd11a0 830 //
mjr 77:0b96f6867312 831 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 832 //
mjr 55:4db125cd11a0 833 // byte 3 -> orientation:
mjr 55:4db125cd11a0 834 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 835 // 1 = ports at left
mjr 55:4db125cd11a0 836 // 2 = ports at right
mjr 55:4db125cd11a0 837 // 3 = ports at rear
mjr 77:0b96f6867312 838 // byte 4 -> dynamic range
mjr 78:1e00b3fa11af 839 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G
mjr 78:1e00b3fa11af 840 // range; compatible with older versions)
mjr 77:0b96f6867312 841 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 842 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 843 // 3 = +/- 8G (8G hardware mode)
mjr 78:1e00b3fa11af 844 // byte 5 -> Auto-centering mode
mjr 78:1e00b3fa11af 845 // 0 = auto-centering on, 5 second timer (default, compatible
mjr 78:1e00b3fa11af 846 // with older versions)
mjr 78:1e00b3fa11af 847 // 1-60 = auto-centering on with the given time in seconds
mjr 78:1e00b3fa11af 848 // 61-245 = reserved
mjr 78:1e00b3fa11af 849 // 255 = auto-centering off; manual centering only
mjr 92:f264fbaa1be5 850 // byte 6 -> joystick report stutter count: 1 (or 0) means that we
mjr 92:f264fbaa1be5 851 // take a fresh accelerometer on every joystick report; 2 means
mjr 92:f264fbaa1be5 852 // that we take a new reading on every other report, and repeat
mjr 92:f264fbaa1be5 853 // the prior readings on alternate reports; etc
mjr 55:4db125cd11a0 854 //
mjr 55:4db125cd11a0 855 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 856 //
mjr 55:4db125cd11a0 857 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 858 // 0 = none (disabled)
mjr 82:4f6209cb5c33 859 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode, edge detection
mjr 82:4f6209cb5c33 860 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode, edge detection
mjr 55:4db125cd11a0 861 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 862 // represents the position reading with a single analog voltage
mjr 82:4f6209cb5c33 863 // 6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 864 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 82:4f6209cb5c33 865 // 8 = TSL1401CL linear image sensor, 128x1 pixel, bar code detection
mjr 82:4f6209cb5c33 866 // 9 = VL6180X time-of-flight distance sensor
mjr 100:1ff35c07217c 867 // **10 = AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 868 // **11 = TCD1103GFG Toshiba linear CCD, 1500x1 pixels, edge detection
mjr 55:4db125cd11a0 869 //
mjr 55:4db125cd11a0 870 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 871 // that aren't currently implemented but could be added in the future.
mjr 100:1ff35c07217c 872 // Selecting these types will effectively disable the plunger.
mjr 100:1ff35c07217c 873 //
mjr 100:1ff35c07217c 874 // ** Experimental
mjr 100:1ff35c07217c 875 //
mjr 100:1ff35c07217c 876 // Sensor types 2 and 4 were formerly reserved for TSL14xx sensors in
mjr 100:1ff35c07217c 877 // parallel wiring mode, but support for these is no longer planned, as
mjr 100:1ff35c07217c 878 // the KL25Z's single ADC sampler negates any speed advantage from using
mjr 100:1ff35c07217c 879 // the sensors' parallel mode. Those slots could be reassigned for
mjr 100:1ff35c07217c 880 // other sensors, since they were never enabled in any release version.
mjr 55:4db125cd11a0 881 //
mjr 55:4db125cd11a0 882 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 883 //
mjr 55:4db125cd11a0 884 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 885 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 886 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 887 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 888 //
mjr 55:4db125cd11a0 889 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 890 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 891 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 82:4f6209cb5c33 892 // corresponding plunger type. "GPIO" means that any GPIO pin will work.
mjr 100:1ff35c07217c 893 // AnalogIn, InterruptIn, and PWM mean that only pins with the respective
mjr 82:4f6209cb5c33 894 // capabilities can be chosen.
mjr 35:e959ffba78fd 895 //
mjr 55:4db125cd11a0 896 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 897 //
mjr 82:4f6209cb5c33 898 // TSL1410R/1412R/1401CL SI (GPIO) CLK (GPIO) AO (AnalogIn) NC
mjr 55:4db125cd11a0 899 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 900 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 901 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 82:4f6209cb5c33 902 // VL6180X SDA (GPIO) SCL (GPIO) GPIO0/CE (GPIO) NC
mjr 100:1ff35c07217c 903 // AEAT-6012-A06 CS (GPIO) CLK (GPIO) DO (GPIO) NC
mjr 100:1ff35c07217c 904 // TCD1103GFG fM (PWM) OS (AnalogIn) ICG (GPIO) SH (GPIO)
mjr 55:4db125cd11a0 905 //
mjr 55:4db125cd11a0 906 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 907 //
mjr 55:4db125cd11a0 908 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 909 // 0x01 button input is enabled
mjr 55:4db125cd11a0 910 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 911 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 912 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 913 //
mjr 55:4db125cd11a0 914 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 915 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 916 //
mjr 55:4db125cd11a0 917 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 918 //
mjr 55:4db125cd11a0 919 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 920 // byte 4 -> key type
mjr 55:4db125cd11a0 921 // byte 5 -> key code
mjr 55:4db125cd11a0 922 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 923 //
mjr 55:4db125cd11a0 924 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 925 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 926 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 927 //
mjr 35:e959ffba78fd 928 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 929 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 930 //
mjr 55:4db125cd11a0 931 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 932 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 933 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 934 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 935 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 936 //
mjr 55:4db125cd11a0 937 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 938 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 939 //
mjr 77:0b96f6867312 940 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 941 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 942 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 943 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 944 //
mjr 87:8d35c74403af 945 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 16 outputs
mjr 35:e959ffba78fd 946 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 947 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 948 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 949 //
mjr 35:e959ffba78fd 950 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 951 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 952 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 953 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 954 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 955 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 956 //
mjr 55:4db125cd11a0 957 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 958 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 959 //
mjr 35:e959ffba78fd 960 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 961 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 962 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 963 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 964 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 965 //
mjr 35:e959ffba78fd 966 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 967 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 968 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 969 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 970 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 971 //
mjr 55:4db125cd11a0 972 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 973 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 974 //
mjr 53:9b2611964afc 975 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 976 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 977 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 978 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 979 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 980 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 981 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 982 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 983 //
mjr 55:4db125cd11a0 984 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 985 //
mjr 53:9b2611964afc 986 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 987 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 988 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 989 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 990 // when installing a software update.
mjr 52:8298b2a73eb2 991 //
mjr 52:8298b2a73eb2 992 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 993 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 994 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 995 //
mjr 53:9b2611964afc 996 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 997 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 998 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 999 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 1000 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 1001 // all of the fields to zero.
mjr 52:8298b2a73eb2 1002 //
mjr 53:9b2611964afc 1003 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 1004 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 1005 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 1006 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 1007 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 1008 //
mjr 53:9b2611964afc 1009 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 1010 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 1011 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 1012 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 1013 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 1014 //
mjr 55:4db125cd11a0 1015 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 1016 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 1017 //
mjr 55:4db125cd11a0 1018 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 1019 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 1020 //
mjr 55:4db125cd11a0 1021 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 1022 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 1023 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 1024 // byte 7 = number of chime boards
mjr 53:9b2611964afc 1025 //
mjr 53:9b2611964afc 1026 // 15 -> Night mode setup.
mjr 53:9b2611964afc 1027 //
mjr 53:9b2611964afc 1028 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 1029 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 1030 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 1031 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 1032 // even if no button is assigned.
mjr 55:4db125cd11a0 1033 //
mjr 53:9b2611964afc 1034 // byte 4 = flags:
mjr 66:2e3583fbd2f4 1035 //
mjr 66:2e3583fbd2f4 1036 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 1037 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 1038 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 1039 // toggles night mode.
mjr 55:4db125cd11a0 1040 //
mjr 66:2e3583fbd2f4 1041 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 1042 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 1043 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 1044 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 1045 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 1046 // the Shift button.
mjr 66:2e3583fbd2f4 1047 //
mjr 53:9b2611964afc 1048 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 1049 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 1050 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 1051 // the host.
mjr 53:9b2611964afc 1052 //
mjr 66:2e3583fbd2f4 1053 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 1054 // Button" that can be pressed to select a secondary meaning for other
mjr 78:1e00b3fa11af 1055 // buttons. This isn't the same as the PC keyboard Shift keys; those can
mjr 66:2e3583fbd2f4 1056 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 1057 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 1058 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 1059 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 1060 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 1061 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 1062 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 1063 //
mjr 78:1e00b3fa11af 1064 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none
mjr 78:1e00b3fa11af 1065 // byte 4 = mode (default is 0):
mjr 66:2e3583fbd2f4 1066 //
mjr 78:1e00b3fa11af 1067 // 0 -> Shift OR Key mode. In this mode, the Shift button doesn't
mjr 78:1e00b3fa11af 1068 // send its assigned key or IR command when initially pressed.
mjr 78:1e00b3fa11af 1069 // Instead, we wait to see if another button is pressed while
mjr 78:1e00b3fa11af 1070 // the Shift button is held down. If so, this Shift button
mjr 78:1e00b3fa11af 1071 // press ONLY counts as the Shift function, and its own assigned
mjr 78:1e00b3fa11af 1072 // key is NOT sent to the PC. On the other hand, if you press
mjr 78:1e00b3fa11af 1073 // the Shift button and then release it without having pressed
mjr 78:1e00b3fa11af 1074 // any other key in the meantime, this press counts as a regular
mjr 78:1e00b3fa11af 1075 // key press, so we send the assigned key to the PC.
mjr 78:1e00b3fa11af 1076 //
mjr 78:1e00b3fa11af 1077 // 1 -> Shift AND Key mode. In this mode, the Shift button sends its
mjr 78:1e00b3fa11af 1078 // assigned key when pressed, just like a normal button. If you
mjr 78:1e00b3fa11af 1079 // press another button while the Shift key is pressed, the
mjr 78:1e00b3fa11af 1080 // shifted meaning of the other key is used.
mjr 66:2e3583fbd2f4 1081 //
mjr 77:0b96f6867312 1082 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 1083 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 1084 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 1085 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 1086 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 1087 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 1088 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 1089 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 1090 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 1091 //
mjr 77:0b96f6867312 1092 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 1093 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 1094 //
mjr 82:4f6209cb5c33 1095 // 18 -> Plunger auto-zeroing. This only applies to sensor types with
mjr 82:4f6209cb5c33 1096 // relative positioning, such as quadrature sensors. Other sensor
mjr 82:4f6209cb5c33 1097 // types simply ignore this.
mjr 82:4f6209cb5c33 1098 //
mjr 82:4f6209cb5c33 1099 // byte 3 = bit flags:
mjr 82:4f6209cb5c33 1100 // 0x01 -> auto-zeroing enabled
mjr 82:4f6209cb5c33 1101 // byte 4 = auto-zeroing time in seconds
mjr 82:4f6209cb5c33 1102 //
mjr 91:ae9be42652bf 1103 // 19 -> Plunger filters. There are two filters that can be applied:
mjr 85:3c28aee81cde 1104 //
mjr 91:ae9be42652bf 1105 // - Jitter filter. This sets a hysteresis window size, to reduce jitter
mjr 91:ae9be42652bf 1106 // jitter in the plunger reading. Most sensors aren't perfectly accurate;
mjr 91:ae9be42652bf 1107 // consecutive readings at the same physical plunger position vary
mjr 91:ae9be42652bf 1108 // slightly, wandering in a range near the true reading. Over time, the
mjr 91:ae9be42652bf 1109 // readings will usually average the true value, but that's not much of a
mjr 91:ae9be42652bf 1110 // consolation to us because we want to display the position in real time.
mjr 91:ae9be42652bf 1111 // To reduce the visible jitter, we can apply a hysteresis filter that
mjr 91:ae9be42652bf 1112 // hides random variations within the specified window. The window is in
mjr 91:ae9be42652bf 1113 // the sensor's native units, so the effect of a given window size
mjr 91:ae9be42652bf 1114 // depends on the sensor type. A value of zero disables the filter.
mjr 91:ae9be42652bf 1115 //
mjr 91:ae9be42652bf 1116 // - Reversed orientation. If set, this inverts the sensor readings, as
mjr 91:ae9be42652bf 1117 // though the sensor were physically flipped to the opposite direction.
mjr 91:ae9be42652bf 1118 // This allows for correcting a reversed physical sensor installation in
mjr 91:ae9be42652bf 1119 // software without having to mess with the hardware.
mjr 91:ae9be42652bf 1120 //
mjr 91:ae9be42652bf 1121 // byte 3:4 = jitter window size in native sensor units, little-endian
mjr 91:ae9be42652bf 1122 // byte 5 = orientation filter bit mask:
mjr 91:ae9be42652bf 1123 // 0x01 -> set if reversed orientation, clear if normal
mjr 91:ae9be42652bf 1124 // 0x80 -> Read-only: this bit is set if the feature is supported
mjr 85:3c28aee81cde 1125 //
mjr 87:8d35c74403af 1126 // 20 -> Plunger bar code setup. Sets parameters applicable only to bar code
mjr 87:8d35c74403af 1127 // sensor types.
mjr 87:8d35c74403af 1128 //
mjr 87:8d35c74403af 1129 // bytes 3:4 = Starting pixel offset of bar code (margin width)
mjr 87:8d35c74403af 1130 //
mjr 87:8d35c74403af 1131 // 21 -> TLC59116 setup. This chip is an external PWM controller with 16
mjr 87:8d35c74403af 1132 // outputs per chip and an I2C bus interface. Up to 14 of the chips
mjr 87:8d35c74403af 1133 // can be connected to a single bus. This chip is a successor to the
mjr 87:8d35c74403af 1134 // TLC5940 with a more modern design and some nice improvements, such
mjr 87:8d35c74403af 1135 // as glitch-free startup and a standard (I2C) physical interface.
mjr 87:8d35c74403af 1136 //
mjr 87:8d35c74403af 1137 // Each chip has a 7-bit I2C address. The top three bits of the
mjr 87:8d35c74403af 1138 // address are fixed in the chip itself and can't be configured, but
mjr 87:8d35c74403af 1139 // the low four bits are configurable via the address line pins on
mjr 87:8d35c74403af 1140 // the chip, A3 A2 A1 A0. Our convention here is to ignore the fixed
mjr 87:8d35c74403af 1141 // three bits and refer to the chip address as just the A3 A2 A1 A0
mjr 87:8d35c74403af 1142 // bits. This gives each chip an address from 0 to 15.
mjr 87:8d35c74403af 1143 //
mjr 87:8d35c74403af 1144 // I2C allows us to discover the attached chips automatically, so in
mjr 87:8d35c74403af 1145 // principle we don't need to know which chips will be present.
mjr 87:8d35c74403af 1146 // However, it's useful for the config tool to know which chips are
mjr 87:8d35c74403af 1147 // expected so that it can offer them in the output port setup UI.
mjr 87:8d35c74403af 1148 // We therefore provide a bit mask specifying the enabled chips. Each
mjr 87:8d35c74403af 1149 // bit specifies whether the chip at the corresponding address is
mjr 87:8d35c74403af 1150 // present: 0x0001 is the chip at address 0, 0x0002 is the chip at
mjr 87:8d35c74403af 1151 // address 1, etc. This is mostly for the config tool's use; we only
mjr 87:8d35c74403af 1152 // use it to determine if TLC59116 support should be enabled at all,
mjr 87:8d35c74403af 1153 // by checking if it's non-zero.
mjr 87:8d35c74403af 1154 //
mjr 87:8d35c74403af 1155 // To disable support, set the populated chip mask to 0. The pin
mjr 87:8d35c74403af 1156 // assignments are all ignored in this case.
mjr 87:8d35c74403af 1157 //
mjr 87:8d35c74403af 1158 // bytes 3:4 = populated chips, as a bit mask (OR in 1<<address
mjr 87:8d35c74403af 1159 // each populated address)
mjr 87:8d35c74403af 1160 // byte 5 = SDA (any GPIO pin)
mjr 87:8d35c74403af 1161 // byte 6 = SCL (any GPIO pin)
mjr 87:8d35c74403af 1162 // byte 7 = RESET (any GPIO pin)
mjr 87:8d35c74403af 1163 //
mjr 100:1ff35c07217c 1164 // 22 -> Plunger raw calibration data. Some sensor types need to store
mjr 100:1ff35c07217c 1165 // additional raw calibration. We provide three uint16 slots for
mjr 100:1ff35c07217c 1166 // use by the sensor, with the meaning defined by the sensor subclass.
mjr 100:1ff35c07217c 1167 //
mjr 100:1ff35c07217c 1168 // bytes 3:4 = raw data 0
mjr 100:1ff35c07217c 1169 // bytes 5:6 = raw data 1
mjr 100:1ff35c07217c 1170 // bytes 7:8 = raw data 2
mjr 100:1ff35c07217c 1171 //
mjr 53:9b2611964afc 1172 //
mjr 74:822a92bc11d2 1173 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 1174 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 1175 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 1176 //
mjr 74:822a92bc11d2 1177 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 1178 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 1179 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 1180 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 1181 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 1182 //
mjr 74:822a92bc11d2 1183 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 1184 //
mjr 74:822a92bc11d2 1185 // Diagnostic index values:
mjr 74:822a92bc11d2 1186 //
mjr 74:822a92bc11d2 1187 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 1188 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 1189 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 1190 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 1191 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 1192 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 1193 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 1194 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 1195 //
mjr 74:822a92bc11d2 1196 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 1197 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 1198 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 1199 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1200 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1201 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1202 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1203 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1204 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1205 //
mjr 74:822a92bc11d2 1206 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1207 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1208 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1209 //
mjr 74:822a92bc11d2 1210 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1211 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1212 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1213 //
mjr 74:822a92bc11d2 1214 //
mjr 53:9b2611964afc 1215 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1216 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1217 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1218 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1219 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1220 // the maximum array index.
mjr 53:9b2611964afc 1221 //
mjr 77:0b96f6867312 1222 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1223 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1224 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1225 //
mjr 77:0b96f6867312 1226 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1227 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1228 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1229 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1230 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1231 //
mjr 77:0b96f6867312 1232 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1233 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1234 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1235 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1236 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1237 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1238 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1239 //
mjr 77:0b96f6867312 1240 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1241 // byte 4 = protocol ID
mjr 77:0b96f6867312 1242 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1243 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1244 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1245 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1246 //
mjr 77:0b96f6867312 1247 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1248 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1249 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1250 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1251 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1252 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1253 //
mjr 77:0b96f6867312 1254 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1255 // byte 4 = bit flags:
mjr 77:0b96f6867312 1256 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1257 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1258 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1259 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1260 //
mjr 77:0b96f6867312 1261 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1262 //
mjr 77:0b96f6867312 1263 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1264 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1265 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1266 //
mjr 77:0b96f6867312 1267 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1268 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1269 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1270 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1271 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1272 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1273 //
mjr 77:0b96f6867312 1274 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1275 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1276 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1277 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1278 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1279 // setup.
mjr 77:0b96f6867312 1280 //
mjr 66:2e3583fbd2f4 1281 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1282 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1283 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1284 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1285 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1286 //
mjr 77:0b96f6867312 1287 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1288 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1289 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1290 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1291 //
mjr 53:9b2611964afc 1292 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1293 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1294 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1295 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1296 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1297 //
mjr 53:9b2611964afc 1298 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1299 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1300 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1301 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1302 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1303 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1304 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1305 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1306 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1307 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1308 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1309 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1310 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1311 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1312 // door changes state.
mjr 77:0b96f6867312 1313 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1314 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1315 // is associated with the button.
mjr 53:9b2611964afc 1316 //
mjr 53:9b2611964afc 1317 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1318 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1319 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1320 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1321 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1322 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1323 //
mjr 53:9b2611964afc 1324 // The bytes of the message are:
mjr 87:8d35c74403af 1325 //
mjr 53:9b2611964afc 1326 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 87:8d35c74403af 1327 //
mjr 53:9b2611964afc 1328 // byte 4 = physical output type:
mjr 87:8d35c74403af 1329 //
mjr 53:9b2611964afc 1330 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1331 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1332 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1333 // after the first disabled port are also implicitly disabled.
mjr 87:8d35c74403af 1334 //
mjr 53:9b2611964afc 1335 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1336 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1337 // ports are PWM-capable.
mjr 87:8d35c74403af 1338 //
mjr 53:9b2611964afc 1339 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1340 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1341 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1342 // used in this mode.
mjr 87:8d35c74403af 1343 //
mjr 53:9b2611964afc 1344 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1345 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1346 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 87:8d35c74403af 1347 //
mjr 53:9b2611964afc 1348 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1349 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1350 // for the first output on the first chip in the daisy chain.
mjr 87:8d35c74403af 1351 //
mjr 53:9b2611964afc 1352 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1353 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1354 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1355 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1356 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1357 // (byte 5) is ignored for this port type.
mjr 87:8d35c74403af 1358 //
mjr 87:8d35c74403af 1359 // 6 = TLC59116 output: connected to the TLC59116 output port specified
mjr 87:8d35c74403af 1360 // in byte 5. The high four bits of this value give the chip's
mjr 87:8d35c74403af 1361 // I2C address, specifically the A3 A2 A1 A0 bits configured in
mjr 87:8d35c74403af 1362 // the hardware. (A chip's I2C address is actually 7 bits, but
mjr 87:8d35c74403af 1363 // the three high-order bits are fixed, so we don't bother including
mjr 87:8d35c74403af 1364 // those in the byte 5 value). The low four bits of this value
mjr 87:8d35c74403af 1365 // give the output port number on the chip. For example, 0x37
mjr 87:8d35c74403af 1366 // specifies chip 3 (the one with A3 A2 A1 A0 wired as 0 0 1 1),
mjr 87:8d35c74403af 1367 // output #7 on that chip. Note that outputs are numbered from 0
mjr 87:8d35c74403af 1368 // to 15 (0xF) on each chip.
mjr 87:8d35c74403af 1369 //
mjr 53:9b2611964afc 1370 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 87:8d35c74403af 1371 //
mjr 53:9b2611964afc 1372 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1373 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1374 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 89:c43cd923401c 1375 // 0x04 = apply gamma correction to this output (PWM outputs only)
mjr 98:4df3c0f7e707 1376 // 0x08 = "Flipper Logic" enabled for this output
mjr 99:8139b0c274f4 1377 // 0x10 = "Chime Logic" enabled for this port
mjr 89:c43cd923401c 1378 //
mjr 99:8139b0c274f4 1379 // byte 7 = Flipper Logic OR Chime Logic parameters. If flags bit 0x08 is set,
mjr 99:8139b0c274f4 1380 // this is the Flipper Logic settings. If flags bit 0x10 is is set,
mjr 99:8139b0c274f4 1381 // it's the Chime Logic settings. The two are mutually exclusive.
mjr 99:8139b0c274f4 1382 //
mjr 99:8139b0c274f4 1383 // For flipper logic: (full power time << 4) | (hold power level)
mjr 99:8139b0c274f4 1384 // For chime logic: (max on time << 4) | (min on time)
mjr 99:8139b0c274f4 1385 //
mjr 98:4df3c0f7e707 1386 // Flipper logic uses PWM to reduce the power level on the port after an
mjr 98:4df3c0f7e707 1387 // initial timed interval at full power. This is designed for pinball
mjr 98:4df3c0f7e707 1388 // coils, which are designed to be energized only in short bursts. In
mjr 98:4df3c0f7e707 1389 // a pinball machine, most coils are used this way naturally: bumpers,
mjr 89:c43cd923401c 1390 // slingshots, kickers, knockers, chimes, etc. are only fired in brief
mjr 89:c43cd923401c 1391 // bursts. Some coils are left on for long periods, though, particularly
mjr 89:c43cd923401c 1392 // the flippers. The Flipper Logic feature is designed to handle this
mjr 89:c43cd923401c 1393 // in a way similar to how real pinball machines solve the same problem.
mjr 89:c43cd923401c 1394 // When Flipper Logic is enabled, the software gives the output full
mjr 89:c43cd923401c 1395 // power when initially turned on, but reduces the power to a lower
mjr 89:c43cd923401c 1396 // level (via PWM) after a short time elapses. The point is to reduce
mjr 89:c43cd923401c 1397 // the power to a level low enough that the coil can safely dissipate
mjr 89:c43cd923401c 1398 // the generated heat indefinitely, but still high enough to keep the
mjr 89:c43cd923401c 1399 // solenoid mechanically actuated. This is possible because solenoids
mjr 89:c43cd923401c 1400 // generally need much less power to "hold" than to actuate initially.
mjr 89:c43cd923401c 1401 //
mjr 98:4df3c0f7e707 1402 // The high-order 4 bits of this byte give the initial full power time,
mjr 98:4df3c0f7e707 1403 // using the following mapping for 0..15: 1ms, 2ms, 5ms, 10ms, 20ms, 40ms
mjr 98:4df3c0f7e707 1404 // 80ms, 100ms, 150ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms.
mjr 98:4df3c0f7e707 1405 //
mjr 98:4df3c0f7e707 1406 // Note that earlier versions prior to 3/2019 used a scale of (X+1)*50ms.
mjr 98:4df3c0f7e707 1407 // We changed to this pseudo-logarithmic scale for finer gradations at the
mjr 98:4df3c0f7e707 1408 // low end of the time scale, for coils that need fast on/off cycling.
mjr 53:9b2611964afc 1409 //
mjr 89:c43cd923401c 1410 // The low-order 4 bits of the byte give the percentage power, in 6.66%
mjr 89:c43cd923401c 1411 // increments: 0 = 0% (off), 1 = 6.66%, ..., 15 = 100%.
mjr 89:c43cd923401c 1412 //
mjr 89:c43cd923401c 1413 // A hold power of 0 provides a software equivalent of the timer-protected
mjr 89:c43cd923401c 1414 // output logic of the Pinscape expansion boards used in the main board's
mjr 89:c43cd923401c 1415 // replay knocker output and all of the chime board outputs. This is
mjr 89:c43cd923401c 1416 // suitable for devices that shouldn't ever fire for long periods to
mjr 89:c43cd923401c 1417 // start with.
mjr 89:c43cd923401c 1418 //
mjr 89:c43cd923401c 1419 // Non-zero hold powers are suitable for devices that do need to stay on
mjr 89:c43cd923401c 1420 // for long periods, such as flippers. The "right" level will vary by
mjr 89:c43cd923401c 1421 // device; you should experiment to find the lowest setting where the
mjr 89:c43cd923401c 1422 // device stays mechanically actuated. Once you find the level, you
mjr 89:c43cd923401c 1423 // should confirm that the device won't overheat at that level by turning
mjr 89:c43cd923401c 1424 // it on at the selected level and carefully monitoring it for heating.
mjr 89:c43cd923401c 1425 // If the coil stays cool for a minute or two, it should be safe to assume
mjr 89:c43cd923401c 1426 // that it's in thermal equilibrium, meaning it should be able to sustain
mjr 89:c43cd923401c 1427 // the power level indefinitely.
mjr 89:c43cd923401c 1428 //
mjr 98:4df3c0f7e707 1429 // Note that this feature can be used with any port, but it's only fully
mjr 98:4df3c0f7e707 1430 // functional with a PWM port. A digital output port can only be set to
mjr 98:4df3c0f7e707 1431 // 0% or 100%, so the only meaningful reduced hold power is 0%. This
mjr 98:4df3c0f7e707 1432 // makes the feature a simple time limiter - basically a software version
mjr 98:4df3c0f7e707 1433 // of the Chime Board from the expansion board set.
mjr 98:4df3c0f7e707 1434 //
mjr 99:8139b0c274f4 1435 // Chime Logic encodes a minimum and maximum ON time for the port. It
mjr 99:8139b0c274f4 1436 // doesn't use PWM; it simply forces the port on or off in specified
mjr 99:8139b0c274f4 1437 // durations. The low 4 bits encode the minimum ON time, as an index
mjr 99:8139b0c274f4 1438 // into the table below. The high 4 bits encode the maximum ON time,
mjr 99:8139b0c274f4 1439 // with the special case that 0 means "infinite".
mjr 99:8139b0c274f4 1440 //
mjr 99:8139b0c274f4 1441 // Chime logic time table: 0ms, 1ms, 2ms, 5ms, 10ms, 20ms, 40ms, 80ms,
mjr 99:8139b0c274f4 1442 // 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms.
mjr 99:8139b0c274f4 1443 //
mjr 89:c43cd923401c 1444 //
mjr 89:c43cd923401c 1445 // Note that the KL25Z's on-board LEDs can be used as LedWiz output ports, simply
mjr 89:c43cd923401c 1446 // by assigning the LED GPIO pins as output ports. This is useful for testing a new
mjr 89:c43cd923401c 1447 // installation without having to connect any external devices. Assigning the
mjr 89:c43cd923401c 1448 // on-board LEDs as output ports automatically overrides their normal status and
mjr 89:c43cd923401c 1449 // diagnostic display use, so be aware that the normal status flash pattern won't
mjr 89:c43cd923401c 1450 // appear when they're used this way.
mjr 52:8298b2a73eb2 1451 //
mjr 35:e959ffba78fd 1452
mjr 35:e959ffba78fd 1453
mjr 55:4db125cd11a0 1454 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1455 //
mjr 53:9b2611964afc 1456 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1457 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1458 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1459 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1460 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1461
mjr 35:e959ffba78fd 1462
mjr 35:e959ffba78fd 1463 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1464 //
mjr 53:9b2611964afc 1465 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1466 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1467 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1468 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1469 //
mjr 53:9b2611964afc 1470 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1471 // A-Z -> 04-1D
mjr 53:9b2611964afc 1472 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1473 // Return -> 28
mjr 53:9b2611964afc 1474 // Escape -> 29
mjr 53:9b2611964afc 1475 // Backspace -> 2A
mjr 53:9b2611964afc 1476 // Tab -> 2B
mjr 53:9b2611964afc 1477 // Spacebar -> 2C
mjr 53:9b2611964afc 1478 // -_ -> 2D
mjr 53:9b2611964afc 1479 // =+ -> 2E
mjr 53:9b2611964afc 1480 // [{ -> 2F
mjr 53:9b2611964afc 1481 // ]} -> 30
mjr 53:9b2611964afc 1482 // \| -> 31
mjr 53:9b2611964afc 1483 // ;: -> 33
mjr 53:9b2611964afc 1484 // '" -> 34
mjr 53:9b2611964afc 1485 // `~ -> 35
mjr 53:9b2611964afc 1486 // ,< -> 36
mjr 53:9b2611964afc 1487 // .> -> 37
mjr 53:9b2611964afc 1488 // /? -> 38
mjr 53:9b2611964afc 1489 // Caps Lock -> 39
mjr 53:9b2611964afc 1490 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1491 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1492 // Print Screen -> 46
mjr 53:9b2611964afc 1493 // Scroll Lock -> 47
mjr 53:9b2611964afc 1494 // Pause -> 48
mjr 53:9b2611964afc 1495 // Insert -> 49
mjr 53:9b2611964afc 1496 // Home -> 4A
mjr 53:9b2611964afc 1497 // Page Up -> 4B
mjr 53:9b2611964afc 1498 // Del -> 4C
mjr 53:9b2611964afc 1499 // End -> 4D
mjr 53:9b2611964afc 1500 // Page Down -> 4E
mjr 53:9b2611964afc 1501 // Right Arrow -> 4F
mjr 53:9b2611964afc 1502 // Left Arrow -> 50
mjr 53:9b2611964afc 1503 // Down Arrow -> 51
mjr 53:9b2611964afc 1504 // Up Arrow -> 52
mjr 53:9b2611964afc 1505 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1506 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1507 // Keypad Enter -> 58
mjr 53:9b2611964afc 1508 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1509 // Keypad 0 -> 62
mjr 53:9b2611964afc 1510 // Keypad . -> 63
mjr 53:9b2611964afc 1511 // Mute -> 7F
mjr 53:9b2611964afc 1512 // Volume Up -> 80
mjr 53:9b2611964afc 1513 // Volume Down -> 81
mjr 53:9b2611964afc 1514 // Left Control -> E0
mjr 53:9b2611964afc 1515 // Left Shift -> E1
mjr 53:9b2611964afc 1516 // Left Alt -> E2
mjr 53:9b2611964afc 1517 // Left GUI -> E3
mjr 53:9b2611964afc 1518 // Right Control -> E4
mjr 53:9b2611964afc 1519 // Right Shift -> E5
mjr 53:9b2611964afc 1520 // Right Alt -> E6
mjr 53:9b2611964afc 1521 // Right GUI -> E7
mjr 53:9b2611964afc 1522 //
mjr 66:2e3583fbd2f4 1523 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1524 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1525 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1526 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1527 // regular keys.
mjr 67:c39e66c4e000 1528
mjr 67:c39e66c4e000 1529 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1530 //
mjr 67:c39e66c4e000 1531 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1532 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1533 // following type codes only:
mjr 67:c39e66c4e000 1534 //
mjr 67:c39e66c4e000 1535 // Mute -> E2
mjr 67:c39e66c4e000 1536 // Volume up -> E9
mjr 67:c39e66c4e000 1537 // Volume Down -> EA
mjr 67:c39e66c4e000 1538 // Next Track -> B5
mjr 67:c39e66c4e000 1539 // Previous Track -> B6
mjr 67:c39e66c4e000 1540 // Stop -> B7
mjr 67:c39e66c4e000 1541 // Play/Pause -> CD