An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Mar 17 22:02:08 2017 +0000
Revision:
77:0b96f6867312
Parent:
75:677892300e7a
Child:
78:1e00b3fa11af
New memory pool management; keeping old ones as #ifdefs for now for reference.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 40:cc0d9814522b 64 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 65 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 66 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 67 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 68 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 70 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 71 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 72 // xx high byte of X position
mjr 39:b3815a1c3802 73 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 74 // yy high byte of Y position
mjr 39:b3815a1c3802 75 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 76 // zz high byte of Z position
mjr 39:b3815a1c3802 77 //
mjr 39:b3815a1c3802 78 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 79 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 80 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 81 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 82 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 83 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 84 // is pushed forward of the park position.
mjr 39:b3815a1c3802 85 //
mjr 39:b3815a1c3802 86 // 2. Special reports
mjr 35:e959ffba78fd 87 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 88 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 89 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 90 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 91 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 92 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 93 //
mjr 39:b3815a1c3802 94 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 95 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 96 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 97 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 98 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 99 //
mjr 52:8298b2a73eb2 100 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 101 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 102 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 103 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 104 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 105 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 106 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 107 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 108 //
mjr 52:8298b2a73eb2 109 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 110 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 111 //
mjr 52:8298b2a73eb2 112 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 113 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 114 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 115 // more fields need to be added)
mjr 52:8298b2a73eb2 116 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 117 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 118 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 119 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 120 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 121 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 122 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 123 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 124 // be determined,
mjr 52:8298b2a73eb2 125 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 126 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 127 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 128 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 129 // are sent for this reading)
mjr 52:8298b2a73eb2 130 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 131 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 132 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 133 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 134 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 135 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 136 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 137 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 138 // sample.
mjr 52:8298b2a73eb2 139 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 140 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 141 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 142 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 143 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 144 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 145 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 146 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 147 // the ADC sample.
mjr 52:8298b2a73eb2 148 //
mjr 52:8298b2a73eb2 149 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 150 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 151 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 152 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 153 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 154 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 155 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 156 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 157 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 158 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 159 // pixel packet is:
mjr 35:e959ffba78fd 160 //
mjr 35:e959ffba78fd 161 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 162 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 163 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 164 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 165 // indicate pixel #0.
mjr 47:df7a88cd249c 166 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 167 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 168 // etc for the rest of the packet
mjr 35:e959ffba78fd 169 //
mjr 52:8298b2a73eb2 170 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 171 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 172 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 173 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 174 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 175 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 176 // format here accordingly.
mjr 51:57eb311faafa 177 //
mjr 51:57eb311faafa 178 //
mjr 53:9b2611964afc 179 // 2B. Configuration report.
mjr 39:b3815a1c3802 180 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 181 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 182 //
mjr 35:e959ffba78fd 183 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 184 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 185 // reports and from other special report types.
mjr 74:822a92bc11d2 186 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 187 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 188 // active configuration.
mjr 75:677892300e7a 189 // byte 4 = Pinscape unit number (0-15), little endian
mjr 75:677892300e7a 190 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 191 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 192 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 193 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 194 // byte 11 = bit flags:
mjr 40:cc0d9814522b 195 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 196 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 197 // has been sent from the host
mjr 74:822a92bc11d2 198 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 199 // that these features are present in this version.
mjr 73:4e8ce0b18915 200 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 201 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 202 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 203 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 204 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 205 // the set of features enabled.
mjr 35:e959ffba78fd 206 //
mjr 53:9b2611964afc 207 // 2C. Device ID report.
mjr 40:cc0d9814522b 208 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 209 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 210 //
mjr 52:8298b2a73eb2 211 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 212 // to distinguish this from other report types.
mjr 53:9b2611964afc 213 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 214 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 215 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 216 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 217 //
mjr 53:9b2611964afc 218 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 219 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 220 //
mjr 53:9b2611964afc 221 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 222 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 223 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 224 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 225 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 226 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 227 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 228 //
mjr 53:9b2611964afc 229 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 230 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 231 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 232 //
mjr 52:8298b2a73eb2 233 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 234 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 235 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 236 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 237 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 238 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 239 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 240 //
mjr 53:9b2611964afc 241 // 2E. Software build information report.
mjr 53:9b2611964afc 242 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 243 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 244 //
mjr 73:4e8ce0b18915 245 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 246 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 247 // other report types.
mjr 53:9b2611964afc 248 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 249 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 250 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 251 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 252 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 253 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 254 // build time on a 24-hour clock.
mjr 53:9b2611964afc 255 //
mjr 73:4e8ce0b18915 256 // 2F. Button status report.
mjr 73:4e8ce0b18915 257 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 258 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 259 //
mjr 77:0b96f6867312 260 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 261 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 262 // report types.
mjr 73:4e8ce0b18915 263 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 264 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 265 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 266 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 267 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 268 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 269 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 270 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 271 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 272 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 273 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 274 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 275 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 276 //
mjr 77:0b96f6867312 277 // 2G. IR sensor data report.
mjr 77:0b96f6867312 278 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 279 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 280 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 281 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 282 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 283 // the command.
mjr 52:8298b2a73eb2 284 //
mjr 77:0b96f6867312 285 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 286 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 287 // report types.
mjr 77:0b96f6867312 288 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 289 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 290 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 291 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 292 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 293 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 294 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 295 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 296 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 297 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 298 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 299 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 300 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 301 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 302 // nothing is being transmitted.
mjr 77:0b96f6867312 303 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 304 // (etc for remaining reports)
mjr 77:0b96f6867312 305 //
mjr 77:0b96f6867312 306 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 307 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 308 // session.
mjr 77:0b96f6867312 309 //
mjr 77:0b96f6867312 310 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 311 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 312 // of the raw data:
mjr 77:0b96f6867312 313 //
mjr 77:0b96f6867312 314 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 315 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 316 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 317 // byte 4 = bit flags:
mjr 77:0b96f6867312 318 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 319 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 320 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 321 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 322 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 323 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 324 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 325 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 326 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 327 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 328 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 329 // bits or sequencing codes).
mjr 77:0b96f6867312 330 //
mjr 77:0b96f6867312 331 //
mjr 77:0b96f6867312 332 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 333 //
mjr 35:e959ffba78fd 334 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 335 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 336 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 337 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 338 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 339 //
mjr 77:0b96f6867312 340 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 341 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 342 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 343 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 344 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 345 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 346 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 347 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 348 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 349 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 350 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 351 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 352 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 353 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 354 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 355 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 356 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 357 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 358 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 359 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 360
mjr 35:e959ffba78fd 361
mjr 35:e959ffba78fd 362
mjr 35:e959ffba78fd 363 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 364 //
mjr 35:e959ffba78fd 365 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 366 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 367 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 368 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 369 //
mjr 35:e959ffba78fd 370 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 371 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 372 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 373 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 374 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 375 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 376 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 379 //
mjr 74:822a92bc11d2 380 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 381 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 382 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 383 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 384 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 385 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 386 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 387 // meaning in the original protocol.
mjr 35:e959ffba78fd 388 //
mjr 74:822a92bc11d2 389 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 390 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 391 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 392 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 393 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 394 //
mjr 35:e959ffba78fd 395 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 396 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 397 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 398 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 399 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 400 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 401 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 402 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 403 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 404 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 405 //
mjr 35:e959ffba78fd 406 //
mjr 74:822a92bc11d2 407 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 408 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 409 //
mjr 74:822a92bc11d2 410 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 411 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 412 // ranges.
mjr 74:822a92bc11d2 413 //
mjr 74:822a92bc11d2 414 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 415 // The valid values are:
mjr 35:e959ffba78fd 416 //
mjr 35:e959ffba78fd 417 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 418 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 419 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 420 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 421 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 422 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 423 //
mjr 74:822a92bc11d2 424 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 425 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 426 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 427 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 428 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 429 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 430 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 431 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 432 //
mjr 74:822a92bc11d2 433 //
mjr 35:e959ffba78fd 434
mjr 35:e959ffba78fd 435 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 436 //
mjr 35:e959ffba78fd 437 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 438 //
mjr 35:e959ffba78fd 439 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 440 // operation:
mjr 35:e959ffba78fd 441 //
mjr 39:b3815a1c3802 442 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 443 // USB endpoint.)
mjr 39:b3815a1c3802 444 //
mjr 35:e959ffba78fd 445 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 446 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 447 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 448 //
mjr 35:e959ffba78fd 449 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 450 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 451 //
mjr 35:e959ffba78fd 452 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 453 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 454 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 455 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 456 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 457 //
mjr 51:57eb311faafa 458 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 459 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 460 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 461 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 462 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 463 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 464 // sent. Parameters:
mjr 48:058ace2aed1d 465 //
mjr 48:058ace2aed1d 466 // third byte = bit flags:
mjr 51:57eb311faafa 467 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 468 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 469 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 470 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 471 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 472 // viewing in the config tool.
mjr 35:e959ffba78fd 473 //
mjr 53:9b2611964afc 474 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 475 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 476 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 477 // level for calibration purposes.
mjr 53:9b2611964afc 478 //
mjr 35:e959ffba78fd 479 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 480 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 481 // joystick reports.
mjr 35:e959ffba78fd 482 //
mjr 74:822a92bc11d2 483 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 484 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 485 // global flash speed to 2.
mjr 35:e959ffba78fd 486 //
mjr 35:e959ffba78fd 487 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 488 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 489 // device to put the changes into effect.
mjr 35:e959ffba78fd 490 //
mjr 53:9b2611964afc 491 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 492 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 493 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 494 // driver settings)
mjr 53:9b2611964afc 495 //
mjr 40:cc0d9814522b 496 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 497 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 498 // joystick reports.
mjr 40:cc0d9814522b 499 //
mjr 53:9b2611964afc 500 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 501 //
mjr 53:9b2611964afc 502 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 503 //
mjr 53:9b2611964afc 504 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 505 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 506 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 507 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 508 //
mjr 40:cc0d9814522b 509 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 510 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 511 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 512 //
mjr 52:8298b2a73eb2 513 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 514 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 515 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 516 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 517 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 518 //
mjr 53:9b2611964afc 519 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 520 // the software build information report (see above).
mjr 53:9b2611964afc 521 //
mjr 73:4e8ce0b18915 522 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 523 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 524 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 525 //
mjr 73:4e8ce0b18915 526 // 0 = turn relay off
mjr 73:4e8ce0b18915 527 // 1 = turn relay on
mjr 73:4e8ce0b18915 528 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 529 //
mjr 77:0b96f6867312 530 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 531 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 532 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 533 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 534 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 535 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 536 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 537 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 538 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 539 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 540 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 541 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 542 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 543 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 544 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 545 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 546 // press.
mjr 77:0b96f6867312 547 //
mjr 73:4e8ce0b18915 548 // 13 -> Get button status report. The device sends one button status report
mjr 73:4e8ce0b18915 549 // in response (see section "2F" above).
mjr 73:4e8ce0b18915 550 //
mjr 35:e959ffba78fd 551 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 552 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 553 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 554 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 555 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 556 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 557 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 558 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 559 //
mjr 74:822a92bc11d2 560 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 561 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 562 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 563 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 564 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 565 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 566 //
mjr 74:822a92bc11d2 567 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 568 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 569 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 570 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 571 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 572 //
mjr 74:822a92bc11d2 573 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 574 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 575 //
mjr 74:822a92bc11d2 576 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 577 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 578 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 579 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 580 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 581 //
mjr 74:822a92bc11d2 582 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 583 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 584 //
mjr 74:822a92bc11d2 585 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 586 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 587 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 588 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 589 //
mjr 74:822a92bc11d2 590 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 591 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 592 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 593 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 594 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 595 //
mjr 74:822a92bc11d2 596 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 597 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 598 //
mjr 74:822a92bc11d2 599 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 600 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 601 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 602 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 603 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 604 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 605 //
mjr 74:822a92bc11d2 606 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 607 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 608 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 609 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 610 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 611 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 612 //
mjr 74:822a92bc11d2 613 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 614 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 615 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 616 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 617 // 68, pp,
mjr 74:822a92bc11d2 618 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 619 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 620 // };
mjr 74:822a92bc11d2 621 //
mjr 35:e959ffba78fd 622 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 623 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 624 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 625 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 626 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 627 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 628 //
mjr 35:e959ffba78fd 629 // 200 = outputs 1-7
mjr 35:e959ffba78fd 630 // 201 = outputs 8-14
mjr 35:e959ffba78fd 631 // 202 = outputs 15-21
mjr 35:e959ffba78fd 632 // ...
mjr 35:e959ffba78fd 633 // 228 = outputs 197-203
mjr 35:e959ffba78fd 634 //
mjr 53:9b2611964afc 635 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 636 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 637 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 638 //
mjr 53:9b2611964afc 639 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 640 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 641 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 642 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 643 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 644 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 645 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 646 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 647 //
mjr 35:e959ffba78fd 648 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 649 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 650 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 651 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 652 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 653 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 654 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 655 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 656 //
mjr 53:9b2611964afc 657 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 658 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 659 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 660 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 661 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 662 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 663
mjr 35:e959ffba78fd 664
mjr 35:e959ffba78fd 665 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 666 //
mjr 35:e959ffba78fd 667 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 668 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 669 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 670 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 671 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 672 //
mjr 77:0b96f6867312 673 // Variable IDs:
mjr 77:0b96f6867312 674 //
mjr 53:9b2611964afc 675 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 676 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 677 //
mjr 53:9b2611964afc 678 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 679 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 680 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 681 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 682 //
mjr 53:9b2611964afc 683 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 684 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 685 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 686 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 687 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 688 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 689 // of the firmware and the host software.
mjr 53:9b2611964afc 690 //
mjr 53:9b2611964afc 691 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 692 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 693 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 694 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 695 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 696 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 697 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 698 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 699 //
mjr 53:9b2611964afc 700 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 701 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 702 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 703 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 704 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 705 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 706 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 707 //
mjr 53:9b2611964afc 708 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 709 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 710 //
mjr 53:9b2611964afc 711 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 712 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 713 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 714 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 715 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 716 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 717 // you have any real LedWiz units).
mjr 53:9b2611964afc 718 //
mjr 53:9b2611964afc 719 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 720 //
mjr 55:4db125cd11a0 721 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 722 //
mjr 55:4db125cd11a0 723 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 724 //
mjr 55:4db125cd11a0 725 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 726 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 727 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 728 //
mjr 55:4db125cd11a0 729 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 730 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 731 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 732 // to generate keyboard key input.
mjr 55:4db125cd11a0 733 //
mjr 77:0b96f6867312 734 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 735 //
mjr 55:4db125cd11a0 736 // byte 3 -> orientation:
mjr 55:4db125cd11a0 737 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 738 // 1 = ports at left
mjr 55:4db125cd11a0 739 // 2 = ports at right
mjr 55:4db125cd11a0 740 // 3 = ports at rear
mjr 77:0b96f6867312 741 // byte 4 -> dynamic range
mjr 77:0b96f6867312 742 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G range)
mjr 77:0b96f6867312 743 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 744 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 745 // 3 = +/- 8G (8G hardware mode)
mjr 55:4db125cd11a0 746 //
mjr 55:4db125cd11a0 747 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 748 //
mjr 55:4db125cd11a0 749 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 750 // 0 = none (disabled)
mjr 55:4db125cd11a0 751 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 752 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 753 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 754 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 755 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 756 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 757 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 758 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 759 //
mjr 55:4db125cd11a0 760 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 761 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 762 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 763 //
mjr 55:4db125cd11a0 764 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 765 //
mjr 55:4db125cd11a0 766 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 767 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 768 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 769 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 770 //
mjr 55:4db125cd11a0 771 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 772 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 773 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 774 // corresponding plunger type.
mjr 35:e959ffba78fd 775 //
mjr 55:4db125cd11a0 776 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 777 //
mjr 55:4db125cd11a0 778 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 779 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 780 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 781 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 782 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 783 //
mjr 55:4db125cd11a0 784 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 785 //
mjr 55:4db125cd11a0 786 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 787 // 0x01 button input is enabled
mjr 55:4db125cd11a0 788 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 789 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 790 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 791 //
mjr 55:4db125cd11a0 792 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 793 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 794 //
mjr 55:4db125cd11a0 795 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 796 //
mjr 55:4db125cd11a0 797 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 798 // byte 4 -> key type
mjr 55:4db125cd11a0 799 // byte 5 -> key code
mjr 55:4db125cd11a0 800 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 801 //
mjr 55:4db125cd11a0 802 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 803 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 804 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 805 //
mjr 35:e959ffba78fd 806 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 807 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 808 //
mjr 55:4db125cd11a0 809 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 810 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 811 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 812 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 813 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 814 //
mjr 55:4db125cd11a0 815 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 816 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 817 //
mjr 77:0b96f6867312 818 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 819 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 820 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 821 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 822 //
mjr 35:e959ffba78fd 823 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 824 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 825 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 826 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 827 //
mjr 35:e959ffba78fd 828 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 829 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 830 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 831 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 832 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 833 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 834 //
mjr 55:4db125cd11a0 835 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 836 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 837 //
mjr 35:e959ffba78fd 838 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 839 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 840 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 841 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 842 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 843 //
mjr 35:e959ffba78fd 844 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 845 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 846 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 847 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 848 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 849 //
mjr 55:4db125cd11a0 850 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 851 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 852 //
mjr 53:9b2611964afc 853 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 854 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 855 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 856 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 857 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 858 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 859 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 860 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 861 //
mjr 55:4db125cd11a0 862 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 863 //
mjr 53:9b2611964afc 864 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 865 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 866 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 867 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 868 // when installing a software update.
mjr 52:8298b2a73eb2 869 //
mjr 52:8298b2a73eb2 870 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 871 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 872 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 873 //
mjr 53:9b2611964afc 874 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 875 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 876 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 877 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 878 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 879 // all of the fields to zero.
mjr 52:8298b2a73eb2 880 //
mjr 53:9b2611964afc 881 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 882 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 883 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 884 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 885 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 886 //
mjr 53:9b2611964afc 887 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 888 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 889 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 890 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 891 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 892 //
mjr 55:4db125cd11a0 893 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 894 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 895 //
mjr 55:4db125cd11a0 896 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 897 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 898 //
mjr 55:4db125cd11a0 899 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 900 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 901 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 902 // byte 7 = number of chime boards
mjr 53:9b2611964afc 903 //
mjr 53:9b2611964afc 904 // 15 -> Night mode setup.
mjr 53:9b2611964afc 905 //
mjr 53:9b2611964afc 906 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 907 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 908 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 909 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 910 // even if no button is assigned.
mjr 55:4db125cd11a0 911 //
mjr 53:9b2611964afc 912 // byte 4 = flags:
mjr 66:2e3583fbd2f4 913 //
mjr 66:2e3583fbd2f4 914 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 915 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 916 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 917 // toggles night mode.
mjr 55:4db125cd11a0 918 //
mjr 66:2e3583fbd2f4 919 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 920 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 921 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 922 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 923 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 924 // the Shift button.
mjr 66:2e3583fbd2f4 925 //
mjr 53:9b2611964afc 926 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 927 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 928 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 929 // the host.
mjr 53:9b2611964afc 930 //
mjr 66:2e3583fbd2f4 931 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 932 // Button" that can be pressed to select a secondary meaning for other
mjr 66:2e3583fbd2f4 933 // buttons. This isn't to be confused with the PC Shift keys; those can
mjr 66:2e3583fbd2f4 934 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 935 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 936 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 937 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 938 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 939 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 940 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 941 //
mjr 66:2e3583fbd2f4 942 // The shift button itself can also have a regular key assignment. If
mjr 66:2e3583fbd2f4 943 // it does, the key is only sent to the PC when you RELEASE the shift
mjr 66:2e3583fbd2f4 944 // button, and then only if no other key with a shifted key code assigned
mjr 66:2e3583fbd2f4 945 // was pressed while the shift button was being held down. If another
mjr 66:2e3583fbd2f4 946 // key was pressed, and it has a shifted meaning assigned, we assume that
mjr 66:2e3583fbd2f4 947 // the shift button was only pressed in the first place for its shifting
mjr 66:2e3583fbd2f4 948 // function rather than for its normal keystroke. This dual usage lets
mjr 66:2e3583fbd2f4 949 // you make the shifting function even more unobtrusive by assigning it
mjr 66:2e3583fbd2f4 950 // to an ordinary button that has its own purpose when not used as a
mjr 66:2e3583fbd2f4 951 // shift button. For example, you could assign the shift function to the
mjr 66:2e3583fbd2f4 952 // rarely used Extra Ball button. In those cases where you actually want
mjr 66:2e3583fbd2f4 953 // to use the Extra Ball feature, it's there, but you also get more
mjr 66:2e3583fbd2f4 954 // mileage out of the button by using it to select secondary mappings for
mjr 66:2e3583fbd2f4 955 // other buttons.
mjr 66:2e3583fbd2f4 956 //
mjr 66:2e3583fbd2f4 957 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none.
mjr 66:2e3583fbd2f4 958 //
mjr 77:0b96f6867312 959 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 960 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 961 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 962 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 963 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 964 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 965 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 966 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 967 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 968 //
mjr 77:0b96f6867312 969 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 970 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 971 //
mjr 53:9b2611964afc 972 //
mjr 74:822a92bc11d2 973 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 974 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 975 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 976 //
mjr 74:822a92bc11d2 977 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 978 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 979 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 980 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 981 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 982 //
mjr 74:822a92bc11d2 983 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 984 //
mjr 74:822a92bc11d2 985 // Diagnostic index values:
mjr 74:822a92bc11d2 986 //
mjr 74:822a92bc11d2 987 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 988 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 989 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 990 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 991 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 992 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 993 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 994 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 995 //
mjr 74:822a92bc11d2 996 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 997 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 998 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 999 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1000 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1001 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1002 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1003 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1004 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1005 //
mjr 74:822a92bc11d2 1006 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1007 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1008 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1009 //
mjr 74:822a92bc11d2 1010 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1011 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1012 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1013 //
mjr 74:822a92bc11d2 1014 //
mjr 53:9b2611964afc 1015 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1016 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1017 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1018 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1019 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1020 // the maximum array index.
mjr 53:9b2611964afc 1021 //
mjr 77:0b96f6867312 1022 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1023 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1024 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1025 //
mjr 77:0b96f6867312 1026 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1027 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1028 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1029 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1030 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1031 //
mjr 77:0b96f6867312 1032 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1033 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1034 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1035 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1036 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1037 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1038 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1039 //
mjr 77:0b96f6867312 1040 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1041 // byte 4 = protocol ID
mjr 77:0b96f6867312 1042 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1043 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1044 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1045 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1046 //
mjr 77:0b96f6867312 1047 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1048 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1049 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1050 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1051 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1052 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1053 //
mjr 77:0b96f6867312 1054 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1055 // byte 4 = bit flags:
mjr 77:0b96f6867312 1056 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1057 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1058 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1059 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1060 //
mjr 77:0b96f6867312 1061 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1062 //
mjr 77:0b96f6867312 1063 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1064 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1065 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1066 //
mjr 77:0b96f6867312 1067 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1068 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1069 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1070 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1071 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1072 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1073 //
mjr 77:0b96f6867312 1074 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1075 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1076 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1077 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1078 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1079 // setup.
mjr 77:0b96f6867312 1080 //
mjr 66:2e3583fbd2f4 1081 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1082 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1083 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1084 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1085 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1086 //
mjr 77:0b96f6867312 1087 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1088 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1089 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1090 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1091 //
mjr 53:9b2611964afc 1092 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1093 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1094 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1095 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1096 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1097 //
mjr 53:9b2611964afc 1098 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1099 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1100 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1101 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1102 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1103 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1104 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1105 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1106 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1107 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1108 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1109 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1110 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1111 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1112 // door changes state.
mjr 77:0b96f6867312 1113 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1114 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1115 // is associated with the button.
mjr 53:9b2611964afc 1116 //
mjr 53:9b2611964afc 1117 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1118 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1119 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1120 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1121 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1122 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1123 //
mjr 53:9b2611964afc 1124 // The bytes of the message are:
mjr 53:9b2611964afc 1125 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 1126 // byte 4 = physical output type:
mjr 53:9b2611964afc 1127 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1128 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1129 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1130 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 1131 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1132 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1133 // ports are PWM-capable.
mjr 53:9b2611964afc 1134 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1135 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1136 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1137 // used in this mode.
mjr 53:9b2611964afc 1138 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1139 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1140 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 1141 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1142 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1143 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 1144 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1145 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1146 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1147 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1148 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1149 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 1150 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 1151 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1152 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1153 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 1154 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 1155 //
mjr 53:9b2611964afc 1156 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 1157 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 1158 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 1159 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 1160 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 1161 //
mjr 35:e959ffba78fd 1162
mjr 35:e959ffba78fd 1163
mjr 55:4db125cd11a0 1164 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1165 //
mjr 53:9b2611964afc 1166 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1167 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1168 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1169 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1170 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1171
mjr 35:e959ffba78fd 1172
mjr 35:e959ffba78fd 1173 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1174 //
mjr 53:9b2611964afc 1175 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1176 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1177 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1178 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1179 //
mjr 53:9b2611964afc 1180 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1181 // A-Z -> 04-1D
mjr 53:9b2611964afc 1182 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1183 // Return -> 28
mjr 53:9b2611964afc 1184 // Escape -> 29
mjr 53:9b2611964afc 1185 // Backspace -> 2A
mjr 53:9b2611964afc 1186 // Tab -> 2B
mjr 53:9b2611964afc 1187 // Spacebar -> 2C
mjr 53:9b2611964afc 1188 // -_ -> 2D
mjr 53:9b2611964afc 1189 // =+ -> 2E
mjr 53:9b2611964afc 1190 // [{ -> 2F
mjr 53:9b2611964afc 1191 // ]} -> 30
mjr 53:9b2611964afc 1192 // \| -> 31
mjr 53:9b2611964afc 1193 // ;: -> 33
mjr 53:9b2611964afc 1194 // '" -> 34
mjr 53:9b2611964afc 1195 // `~ -> 35
mjr 53:9b2611964afc 1196 // ,< -> 36
mjr 53:9b2611964afc 1197 // .> -> 37
mjr 53:9b2611964afc 1198 // /? -> 38
mjr 53:9b2611964afc 1199 // Caps Lock -> 39
mjr 53:9b2611964afc 1200 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1201 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1202 // Print Screen -> 46
mjr 53:9b2611964afc 1203 // Scroll Lock -> 47
mjr 53:9b2611964afc 1204 // Pause -> 48
mjr 53:9b2611964afc 1205 // Insert -> 49
mjr 53:9b2611964afc 1206 // Home -> 4A
mjr 53:9b2611964afc 1207 // Page Up -> 4B
mjr 53:9b2611964afc 1208 // Del -> 4C
mjr 53:9b2611964afc 1209 // End -> 4D
mjr 53:9b2611964afc 1210 // Page Down -> 4E
mjr 53:9b2611964afc 1211 // Right Arrow -> 4F
mjr 53:9b2611964afc 1212 // Left Arrow -> 50
mjr 53:9b2611964afc 1213 // Down Arrow -> 51
mjr 53:9b2611964afc 1214 // Up Arrow -> 52
mjr 53:9b2611964afc 1215 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1216 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1217 // Keypad Enter -> 58
mjr 53:9b2611964afc 1218 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1219 // Keypad 0 -> 62
mjr 53:9b2611964afc 1220 // Keypad . -> 63
mjr 53:9b2611964afc 1221 // Mute -> 7F
mjr 53:9b2611964afc 1222 // Volume Up -> 80
mjr 53:9b2611964afc 1223 // Volume Down -> 81
mjr 53:9b2611964afc 1224 // Left Control -> E0
mjr 53:9b2611964afc 1225 // Left Shift -> E1
mjr 53:9b2611964afc 1226 // Left Alt -> E2
mjr 53:9b2611964afc 1227 // Left GUI -> E3
mjr 53:9b2611964afc 1228 // Right Control -> E4
mjr 53:9b2611964afc 1229 // Right Shift -> E5
mjr 53:9b2611964afc 1230 // Right Alt -> E6
mjr 53:9b2611964afc 1231 // Right GUI -> E7
mjr 53:9b2611964afc 1232 //
mjr 66:2e3583fbd2f4 1233 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1234 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1235 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1236 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1237 // regular keys.
mjr 67:c39e66c4e000 1238
mjr 67:c39e66c4e000 1239 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1240 //
mjr 67:c39e66c4e000 1241 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1242 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1243 // following type codes only:
mjr 67:c39e66c4e000 1244 //
mjr 67:c39e66c4e000 1245 // Mute -> E2
mjr 67:c39e66c4e000 1246 // Volume up -> E9
mjr 67:c39e66c4e000 1247 // Volume Down -> EA
mjr 67:c39e66c4e000 1248 // Next Track -> B5
mjr 67:c39e66c4e000 1249 // Previous Track -> B6
mjr 67:c39e66c4e000 1250 // Stop -> B7
mjr 67:c39e66c4e000 1251 // Play/Pause -> CD