An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Jun 02 22:52:25 2016 +0000
Revision:
62:f071ccde32a0
Parent:
61:3c7e6e9ec355
Child:
63:5cd1a5f3a41b
EXPERIMENTAL/ABANDONED: Combine all message types (JS+KB+LW) into a single HID interface, as a failed attempt to work around ledwiz.dll crash with multiple interfaces. This approach creates a new incompatibility due to the non-zero report ID.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 21:5048e16cc9ef 27 // Length of our joystick reports. Important: This must be kept in sync
mjr 21:5048e16cc9ef 28 // with the actual joystick report format sent in update().
mjr 21:5048e16cc9ef 29 const int reportLen = 14;
mjr 21:5048e16cc9ef 30
mjr 48:058ace2aed1d 31 // Maximum report sizes
mjr 48:058ace2aed1d 32 const int MAX_REPORT_JS_TX = reportLen;
mjr 48:058ace2aed1d 33 const int MAX_REPORT_JS_RX = 8;
mjr 48:058ace2aed1d 34
mjr 11:bd9da7088e6e 35 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 36 {
mjr 3:3514575d4f86 37 _x = x;
mjr 3:3514575d4f86 38 _y = y;
mjr 3:3514575d4f86 39 _z = z;
mjr 11:bd9da7088e6e 40 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 41 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 42 _status = status;
mjr 3:3514575d4f86 43
mjr 3:3514575d4f86 44 // send the report
mjr 3:3514575d4f86 45 return update();
mjr 3:3514575d4f86 46 }
mjr 35:e959ffba78fd 47
mjr 11:bd9da7088e6e 48 bool USBJoystick::update()
mjr 11:bd9da7088e6e 49 {
mjr 62:f071ccde32a0 50 // start the report with the report ID
mjr 3:3514575d4f86 51 HID_REPORT report;
mjr 62:f071ccde32a0 52 report.data[0] = REPORT_ID_JS;
mjr 62:f071ccde32a0 53
mjr 3:3514575d4f86 54 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 55 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 56 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 57 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 58 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 62:f071ccde32a0 59 put(1, _status);
mjr 62:f071ccde32a0 60 put(3, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 62:f071ccde32a0 61 put(5, _buttonsLo);
mjr 62:f071ccde32a0 62 put(7, _buttonsHi);
mjr 62:f071ccde32a0 63 put(9, _x);
mjr 62:f071ccde32a0 64 put(11, _y);
mjr 62:f071ccde32a0 65 put(13, _z);
mjr 21:5048e16cc9ef 66
mjr 21:5048e16cc9ef 67 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 68 // the reports we build here
mjr 62:f071ccde32a0 69 report.length = reportLen + 1;
mjr 3:3514575d4f86 70
mjr 5:a70c0bce770d 71 // send the report
mjr 10:976666ffa4ef 72 return sendTO(&report, 100);
mjr 10:976666ffa4ef 73 }
mjr 10:976666ffa4ef 74
mjr 35:e959ffba78fd 75 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 76 {
mjr 35:e959ffba78fd 77 // set up the report
mjr 35:e959ffba78fd 78 HID_REPORT report;
mjr 35:e959ffba78fd 79 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 80 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 81 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 82
mjr 35:e959ffba78fd 83 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 84 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 85 }
mjr 35:e959ffba78fd 86
mjr 35:e959ffba78fd 87 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 88 {
mjr 35:e959ffba78fd 89 // set up the report
mjr 35:e959ffba78fd 90 HID_REPORT report;
mjr 35:e959ffba78fd 91 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 92 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 93 report.length = 2;
mjr 35:e959ffba78fd 94
mjr 35:e959ffba78fd 95 // send it
mjr 35:e959ffba78fd 96 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 97 }
mjr 35:e959ffba78fd 98
mjr 52:8298b2a73eb2 99 bool USBJoystick::sendPlungerStatus(
mjr 52:8298b2a73eb2 100 int npix, int edgePos, int dir, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 101 {
mjr 62:f071ccde32a0 102 // set up the report ID
mjr 52:8298b2a73eb2 103 HID_REPORT report;
mjr 62:f071ccde32a0 104 report.data[0] = REPORT_ID_STAT;
mjr 52:8298b2a73eb2 105
mjr 52:8298b2a73eb2 106 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 107 // exposure report.
mjr 62:f071ccde32a0 108 put(1, 0x87FF);
mjr 52:8298b2a73eb2 109
mjr 52:8298b2a73eb2 110 // start at the second byte
mjr 62:f071ccde32a0 111 int ofs = 3;
mjr 52:8298b2a73eb2 112
mjr 52:8298b2a73eb2 113 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 114 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 115
mjr 52:8298b2a73eb2 116 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 117 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 118 ofs += 2;
mjr 52:8298b2a73eb2 119
mjr 52:8298b2a73eb2 120 // write the shadow edge position to bytes 5-6
mjr 52:8298b2a73eb2 121 put(ofs, uint16_t(edgePos));
mjr 52:8298b2a73eb2 122 ofs += 2;
mjr 52:8298b2a73eb2 123
mjr 52:8298b2a73eb2 124 // write the flags to byte 7
mjr 52:8298b2a73eb2 125 extern bool plungerCalMode;
mjr 52:8298b2a73eb2 126 uint8_t flags = 0;
mjr 52:8298b2a73eb2 127 if (dir == 1)
mjr 52:8298b2a73eb2 128 flags |= 0x01;
mjr 52:8298b2a73eb2 129 else if (dir == -1)
mjr 52:8298b2a73eb2 130 flags |= 0x02;
mjr 52:8298b2a73eb2 131 if (plungerCalMode)
mjr 52:8298b2a73eb2 132 flags |= 0x04;
mjr 52:8298b2a73eb2 133 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 134
mjr 52:8298b2a73eb2 135 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 136 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 137 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 138 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 139 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 140
mjr 52:8298b2a73eb2 141 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 142 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 143 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 144 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 145 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 146
mjr 52:8298b2a73eb2 147 // send the report
mjr 62:f071ccde32a0 148 report.length = reportLen + 1;
mjr 52:8298b2a73eb2 149 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 150 }
mjr 52:8298b2a73eb2 151
mjr 52:8298b2a73eb2 152 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 153 {
mjr 10:976666ffa4ef 154 HID_REPORT report;
mjr 62:f071ccde32a0 155 report.data[0] = REPORT_ID_STAT;
mjr 10:976666ffa4ef 156
mjr 10:976666ffa4ef 157 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 158 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 159 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 160 uint16_t s = idx | 0x8000;
mjr 62:f071ccde32a0 161 put(1, s);
mjr 25:e22b88bd783a 162
mjr 25:e22b88bd783a 163 // start at the second byte
mjr 62:f071ccde32a0 164 int ofs = 3;
mjr 25:e22b88bd783a 165
mjr 47:df7a88cd249c 166 // now fill out the remaining bytes with exposure values
mjr 62:f071ccde32a0 167 report.length = reportLen + 1;
mjr 47:df7a88cd249c 168 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 169 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 170
mjr 10:976666ffa4ef 171 // send the report
mjr 35:e959ffba78fd 172 return sendTO(&report, 100);
mjr 3:3514575d4f86 173 }
mjr 9:fd65b0a94720 174
mjr 53:9b2611964afc 175 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 176 {
mjr 40:cc0d9814522b 177 HID_REPORT report;
mjr 40:cc0d9814522b 178
mjr 40:cc0d9814522b 179 // initially fill the report with zeros
mjr 40:cc0d9814522b 180 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 181
mjr 62:f071ccde32a0 182 // set the report ID
mjr 62:f071ccde32a0 183 report.data[0] = REPORT_ID_STAT;
mjr 62:f071ccde32a0 184
mjr 40:cc0d9814522b 185 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 186 uint16_t s = 0x9000;
mjr 62:f071ccde32a0 187 put(1, s);
mjr 40:cc0d9814522b 188
mjr 53:9b2611964afc 189 // add the requested ID index
mjr 62:f071ccde32a0 190 report.data[3] = (uint8_t)index;
mjr 53:9b2611964afc 191
mjr 53:9b2611964afc 192 // figure out which ID we're reporting
mjr 53:9b2611964afc 193 switch (index)
mjr 53:9b2611964afc 194 {
mjr 53:9b2611964afc 195 case 1:
mjr 53:9b2611964afc 196 // KL25Z CPU ID
mjr 62:f071ccde32a0 197 putbe(4, SIM->UIDMH);
mjr 62:f071ccde32a0 198 putlbe(6, SIM->UIDML);
mjr 62:f071ccde32a0 199 putlbe(10, SIM->UIDL);
mjr 53:9b2611964afc 200 break;
mjr 53:9b2611964afc 201
mjr 53:9b2611964afc 202 case 2:
mjr 53:9b2611964afc 203 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 204 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 205 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 206 // the starting point.)
mjr 53:9b2611964afc 207 extern const char *getOpenSDAID();
mjr 62:f071ccde32a0 208 memcpy(&report.data[4], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 209 break;
mjr 53:9b2611964afc 210 }
mjr 53:9b2611964afc 211
mjr 53:9b2611964afc 212 // send the report
mjr 62:f071ccde32a0 213 report.length = reportLen + 1;
mjr 53:9b2611964afc 214 return sendTO(&report, 100);
mjr 53:9b2611964afc 215 }
mjr 53:9b2611964afc 216
mjr 53:9b2611964afc 217 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 218 {
mjr 53:9b2611964afc 219 HID_REPORT report;
mjr 53:9b2611964afc 220
mjr 53:9b2611964afc 221 // initially fill the report with zeros
mjr 53:9b2611964afc 222 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 223
mjr 62:f071ccde32a0 224 // set the report ID
mjr 62:f071ccde32a0 225 report.data[0] = REPORT_ID_STAT;
mjr 62:f071ccde32a0 226
mjr 53:9b2611964afc 227 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 228 // info report
mjr 53:9b2611964afc 229 uint16_t s = 0xA000;
mjr 62:f071ccde32a0 230 put(1, s);
mjr 53:9b2611964afc 231
mjr 53:9b2611964afc 232 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 233 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 234 static const char mon[][4] = {
mjr 53:9b2611964afc 235 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 236 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 237 };
mjr 53:9b2611964afc 238 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 239 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 240 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 241 {
mjr 53:9b2611964afc 242 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 243 {
mjr 53:9b2611964afc 244 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 245 break;
mjr 53:9b2611964afc 246 }
mjr 53:9b2611964afc 247 }
mjr 53:9b2611964afc 248
mjr 53:9b2611964afc 249 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 250 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 251 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 252 + (atol(date+15)*100)
mjr 53:9b2611964afc 253 + (atol(date+18));
mjr 53:9b2611964afc 254
mjr 53:9b2611964afc 255 // store the build date and time
mjr 62:f071ccde32a0 256 putl(3, dd);
mjr 62:f071ccde32a0 257 putl(7, tt);
mjr 40:cc0d9814522b 258
mjr 40:cc0d9814522b 259 // send the report
mjr 62:f071ccde32a0 260 report.length = reportLen + 1;
mjr 40:cc0d9814522b 261 return sendTO(&report, 100);
mjr 40:cc0d9814522b 262 }
mjr 40:cc0d9814522b 263
mjr 52:8298b2a73eb2 264 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 265 {
mjr 52:8298b2a73eb2 266 HID_REPORT report;
mjr 52:8298b2a73eb2 267
mjr 52:8298b2a73eb2 268 // initially fill the report with zeros
mjr 52:8298b2a73eb2 269 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 270
mjr 62:f071ccde32a0 271 // set the report ID
mjr 62:f071ccde32a0 272 report.data[0] = REPORT_ID_STAT;
mjr 62:f071ccde32a0 273
mjr 52:8298b2a73eb2 274 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 275 // variable report
mjr 52:8298b2a73eb2 276 uint16_t s = 0x9800;
mjr 62:f071ccde32a0 277 put(1, s);
mjr 52:8298b2a73eb2 278
mjr 52:8298b2a73eb2 279 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 62:f071ccde32a0 280 memcpy(report.data + 3, data, 7);
mjr 52:8298b2a73eb2 281
mjr 52:8298b2a73eb2 282 // send the report
mjr 62:f071ccde32a0 283 report.length = reportLen + 1;
mjr 52:8298b2a73eb2 284 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 285 }
mjr 52:8298b2a73eb2 286
mjr 52:8298b2a73eb2 287 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 288 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 289 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 52:8298b2a73eb2 290 bool configured)
mjr 33:d832bcab089e 291 {
mjr 33:d832bcab089e 292 HID_REPORT report;
mjr 33:d832bcab089e 293
mjr 33:d832bcab089e 294 // initially fill the report with zeros
mjr 33:d832bcab089e 295 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 296
mjr 62:f071ccde32a0 297 // set the report ID
mjr 62:f071ccde32a0 298 report.data[0] = REPORT_ID_STAT;
mjr 62:f071ccde32a0 299
mjr 33:d832bcab089e 300 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 301 uint16_t s = 0x8800;
mjr 62:f071ccde32a0 302 put(1, s);
mjr 33:d832bcab089e 303
mjr 33:d832bcab089e 304 // write the number of configured outputs
mjr 62:f071ccde32a0 305 put(3, numOutputs);
mjr 33:d832bcab089e 306
mjr 33:d832bcab089e 307 // write the unit number
mjr 62:f071ccde32a0 308 put(5, unitNo);
mjr 33:d832bcab089e 309
mjr 35:e959ffba78fd 310 // write the plunger zero and max values
mjr 62:f071ccde32a0 311 put(7, plungerZero);
mjr 62:f071ccde32a0 312 put(9, plungerMax);
mjr 62:f071ccde32a0 313 report.data[11] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 314
mjr 40:cc0d9814522b 315 // write the status bits:
mjr 40:cc0d9814522b 316 // 0x01 -> configuration loaded
mjr 62:f071ccde32a0 317 report.data[12] = (configured ? 0x01 : 0x00);
mjr 40:cc0d9814522b 318
mjr 33:d832bcab089e 319 // send the report
mjr 62:f071ccde32a0 320 report.length = reportLen + 1;
mjr 35:e959ffba78fd 321 return sendTO(&report, 100);
mjr 33:d832bcab089e 322 }
mjr 33:d832bcab089e 323
mjr 33:d832bcab089e 324 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 325 {
mjr 3:3514575d4f86 326 _x = x;
mjr 3:3514575d4f86 327 _y = y;
mjr 3:3514575d4f86 328 return update();
mjr 3:3514575d4f86 329 }
mjr 3:3514575d4f86 330
mjr 33:d832bcab089e 331 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 332 {
mjr 3:3514575d4f86 333 _z = z;
mjr 3:3514575d4f86 334 return update();
mjr 3:3514575d4f86 335 }
mjr 3:3514575d4f86 336
mjr 33:d832bcab089e 337 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 338 {
mjr 11:bd9da7088e6e 339 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 340 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 341 return update();
mjr 3:3514575d4f86 342 }
mjr 21:5048e16cc9ef 343
mjr 21:5048e16cc9ef 344 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 345 {
mjr 21:5048e16cc9ef 346 HID_REPORT report;
mjr 21:5048e16cc9ef 347
mjr 62:f071ccde32a0 348 // clear the report
mjr 62:f071ccde32a0 349 memset(report.data, 0, sizeof(report.data));
mjr 62:f071ccde32a0 350
mjr 62:f071ccde32a0 351 // set the report ID
mjr 62:f071ccde32a0 352 report.data[0] = REPORT_ID_STAT;
mjr 62:f071ccde32a0 353
mjr 62:f071ccde32a0 354 // Indicate that it's a status report
mjr 62:f071ccde32a0 355 put(1, status);
mjr 62:f071ccde32a0 356 report.length = reportLen + 1;
mjr 21:5048e16cc9ef 357
mjr 21:5048e16cc9ef 358 // send the report
mjr 21:5048e16cc9ef 359 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 360 }
mjr 21:5048e16cc9ef 361
mjr 3:3514575d4f86 362 void USBJoystick::_init() {
mjr 3:3514575d4f86 363
mjr 3:3514575d4f86 364 _x = 0;
mjr 3:3514575d4f86 365 _y = 0;
mjr 3:3514575d4f86 366 _z = 0;
mjr 11:bd9da7088e6e 367 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 368 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 369 _status = 0;
mjr 3:3514575d4f86 370 }
mjr 3:3514575d4f86 371
mjr 3:3514575d4f86 372
mjr 35:e959ffba78fd 373 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 374 //
mjr 62:f071ccde32a0 375 // USB HID Report Descriptors
mjr 35:e959ffba78fd 376 //
mjr 35:e959ffba78fd 377
mjr 62:f071ccde32a0 378 #define HID_REPORT_JS \
mjr 62:f071ccde32a0 379 USAGE_PAGE(1), 0x01, /* Generic desktop */ \
mjr 62:f071ccde32a0 380 USAGE(1), 0x04, /* Joystick */ \
mjr 62:f071ccde32a0 381 COLLECTION(1), 0x01, /* Application */ \
mjr 62:f071ccde32a0 382 /* input report (device to host) */ \
mjr 62:f071ccde32a0 383 REPORT_ID(1), REPORT_ID_JS, \
mjr 62:f071ccde32a0 384 USAGE_PAGE(1), 0x06, /* generic device controls - for config status */ \
mjr 62:f071ccde32a0 385 USAGE(1), 0x00, /* undefined device control */ \
mjr 62:f071ccde32a0 386 LOGICAL_MINIMUM(1), 0x00, /* 8-bit values */ \
mjr 62:f071ccde32a0 387 LOGICAL_MAXIMUM(1), 0xFF, \
mjr 62:f071ccde32a0 388 REPORT_SIZE(1), 0x08, /* 8 bits per report */ \
mjr 62:f071ccde32a0 389 REPORT_COUNT(1), 0x04, /* 4 reports (4 bytes) */ \
mjr 62:f071ccde32a0 390 INPUT(1), 0x02, /* Data, Variable, Absolute */ \
mjr 62:f071ccde32a0 391 \
mjr 62:f071ccde32a0 392 USAGE_PAGE(1), 0x09, /* Buttons */ \
mjr 62:f071ccde32a0 393 USAGE_MINIMUM(1), 0x01, /* { buttons } */ \
mjr 62:f071ccde32a0 394 USAGE_MAXIMUM(1), 0x20, /* { 1-32 } */ \
mjr 62:f071ccde32a0 395 LOGICAL_MINIMUM(1), 0x00, /* 1-bit buttons - 0... */ \
mjr 62:f071ccde32a0 396 LOGICAL_MAXIMUM(1), 0x01, /* ...to 1 */ \
mjr 62:f071ccde32a0 397 REPORT_SIZE(1), 0x01, /* 1 bit per report */ \
mjr 62:f071ccde32a0 398 REPORT_COUNT(1), 0x20, /* 32 reports */ \
mjr 62:f071ccde32a0 399 UNIT_EXPONENT(1), 0x00, /* Unit_Exponent (0) */ \
mjr 62:f071ccde32a0 400 UNIT(1), 0x00, /* Unit (None) */ \
mjr 62:f071ccde32a0 401 INPUT(1), 0x02, /* Data, Variable, Absolute */ \
mjr 62:f071ccde32a0 402 \
mjr 62:f071ccde32a0 403 USAGE_PAGE(1), 0x01, /* Generic desktop */ \
mjr 62:f071ccde32a0 404 USAGE(1), 0x30, /* X axis */ \
mjr 62:f071ccde32a0 405 USAGE(1), 0x31, /* Y axis */ \
mjr 62:f071ccde32a0 406 USAGE(1), 0x32, /* Z axis */ \
mjr 62:f071ccde32a0 407 LOGICAL_MINIMUM(2), 0x00,0xF0, /* each value ranges -4096 */ \
mjr 62:f071ccde32a0 408 LOGICAL_MAXIMUM(2), 0x00,0x10, /* ...to +4096 */ \
mjr 62:f071ccde32a0 409 REPORT_SIZE(1), 0x10, /* 16 bits per report */ \
mjr 62:f071ccde32a0 410 REPORT_COUNT(1), 0x03, /* 3 reports (X, Y, Z) */ \
mjr 62:f071ccde32a0 411 INPUT(1), 0x02, /* Data, Variable, Absolute */ \
mjr 62:f071ccde32a0 412 \
mjr 62:f071ccde32a0 413 /* output report (host to device) */ \
mjr 62:f071ccde32a0 414 REPORT_ID(1), REPORT_ID_JS, \
mjr 62:f071ccde32a0 415 REPORT_SIZE(1), 0x08, /* 8 bits per report */ \
mjr 62:f071ccde32a0 416 REPORT_COUNT(1), 0x08, /* output report count - 8-byte LedWiz format */ \
mjr 62:f071ccde32a0 417 0x09, 0x01, /* usage */ \
mjr 62:f071ccde32a0 418 0x91, 0x01, /* Output (array) */ \
mjr 62:f071ccde32a0 419 \
mjr 62:f071ccde32a0 420 END_COLLECTION(0)
mjr 62:f071ccde32a0 421
mjr 62:f071ccde32a0 422
mjr 62:f071ccde32a0 423 #define HID_REPORT_STAT \
mjr 62:f071ccde32a0 424 USAGE_PAGE(1), 0x01, /* Generic desktop */ \
mjr 62:f071ccde32a0 425 USAGE(1), 0x00, /* Undefined */ \
mjr 62:f071ccde32a0 426 COLLECTION(1), 0x01, /* Application */ \
mjr 62:f071ccde32a0 427 REPORT_ID(1), REPORT_ID_STAT, \
mjr 62:f071ccde32a0 428 USAGE_PAGE(1), 0x06, /* generic device controls */ \
mjr 62:f071ccde32a0 429 USAGE(1), 0x00, /* undefined device control */ \
mjr 62:f071ccde32a0 430 LOGICAL_MINIMUM(1), 0x00, /* 8-bit value range */ \
mjr 62:f071ccde32a0 431 LOGICAL_MAXIMUM(1), 0xFF, \
mjr 62:f071ccde32a0 432 REPORT_SIZE(1), 0x08, /* 8 bits per report */ \
mjr 62:f071ccde32a0 433 REPORT_COUNT(1), reportLen, /* 'reportLen' reports==bytes */ \
mjr 62:f071ccde32a0 434 INPUT(1), 0x02, /* Data, Variable, Absolute */ \
mjr 62:f071ccde32a0 435 END_COLLECTION(0)
mjr 35:e959ffba78fd 436
mjr 62:f071ccde32a0 437 #define HID_REPORT_KB \
mjr 62:f071ccde32a0 438 USAGE_PAGE(1), 0x01, /* Generic Desktop */ \
mjr 62:f071ccde32a0 439 USAGE(1), 0x06, /* Keyboard */ \
mjr 62:f071ccde32a0 440 \
mjr 62:f071ccde32a0 441 /* Keyboard keys */ \
mjr 62:f071ccde32a0 442 COLLECTION(1), 0x01, /* Application */ \
mjr 62:f071ccde32a0 443 REPORT_ID(1), REPORT_ID_KB, \
mjr 62:f071ccde32a0 444 \
mjr 62:f071ccde32a0 445 /* input report (device to host) - regular keys */ \
mjr 62:f071ccde32a0 446 REPORT_COUNT(1), 0x06, \
mjr 62:f071ccde32a0 447 REPORT_SIZE(1), 0x08, \
mjr 62:f071ccde32a0 448 LOGICAL_MINIMUM(1), 0x00, \
mjr 62:f071ccde32a0 449 LOGICAL_MAXIMUM(1), 0x65, \
mjr 62:f071ccde32a0 450 USAGE_PAGE(1), 0x07, /* Key Codes */ \
mjr 62:f071ccde32a0 451 USAGE_MINIMUM(1), 0x00, \
mjr 62:f071ccde32a0 452 USAGE_MAXIMUM(1), 0x65, \
mjr 62:f071ccde32a0 453 INPUT(1), 0x00, /* Data, Array */ \
mjr 62:f071ccde32a0 454 \
mjr 62:f071ccde32a0 455 /* input report (device to host) - modifier keys */ \
mjr 62:f071ccde32a0 456 USAGE_PAGE(1), 0x07, /* Key Codes */ \
mjr 62:f071ccde32a0 457 USAGE_MINIMUM(1), 0xE0, \
mjr 62:f071ccde32a0 458 USAGE_MAXIMUM(1), 0xE7, \
mjr 62:f071ccde32a0 459 LOGICAL_MINIMUM(1), 0x00, \
mjr 62:f071ccde32a0 460 LOGICAL_MAXIMUM(1), 0x01, \
mjr 62:f071ccde32a0 461 REPORT_SIZE(1), 0x01, \
mjr 62:f071ccde32a0 462 REPORT_COUNT(1), 0x08, \
mjr 62:f071ccde32a0 463 INPUT(1), 0x02, /* Data, Variable, Absolute */ \
mjr 62:f071ccde32a0 464 REPORT_COUNT(1), 0x01, \
mjr 62:f071ccde32a0 465 REPORT_SIZE(1), 0x08, \
mjr 62:f071ccde32a0 466 INPUT(1), 0x01, /* Constant */ \
mjr 62:f071ccde32a0 467 \
mjr 62:f071ccde32a0 468 /* output report (host to device) - LED status */ \
mjr 62:f071ccde32a0 469 REPORT_COUNT(1), 0x05, \
mjr 62:f071ccde32a0 470 REPORT_SIZE(1), 0x01, \
mjr 62:f071ccde32a0 471 USAGE_PAGE(1), 0x08, /* LEDs */ \
mjr 62:f071ccde32a0 472 USAGE_MINIMUM(1), 0x01, \
mjr 62:f071ccde32a0 473 USAGE_MAXIMUM(1), 0x05, \
mjr 62:f071ccde32a0 474 OUTPUT(1), 0x02, /* Data, Variable, Absolute */ \
mjr 62:f071ccde32a0 475 REPORT_COUNT(1), 0x01, \
mjr 62:f071ccde32a0 476 REPORT_SIZE(1), 0x03, \
mjr 62:f071ccde32a0 477 OUTPUT(1), 0x01, /* Constant */ \
mjr 62:f071ccde32a0 478 END_COLLECTION(0), \
mjr 62:f071ccde32a0 479 \
mjr 62:f071ccde32a0 480 /* Media Control Keys */ \
mjr 62:f071ccde32a0 481 USAGE_PAGE(1), 0x0C, \
mjr 62:f071ccde32a0 482 USAGE(1), 0x01, \
mjr 62:f071ccde32a0 483 COLLECTION(1), 0x01, \
mjr 62:f071ccde32a0 484 /* input report (device to host) */ \
mjr 62:f071ccde32a0 485 REPORT_ID(1), REPORT_ID_MEDIA, \
mjr 62:f071ccde32a0 486 USAGE_PAGE(1), 0x0C, \
mjr 62:f071ccde32a0 487 LOGICAL_MINIMUM(1), 0x00, \
mjr 62:f071ccde32a0 488 LOGICAL_MAXIMUM(1), 0x01, \
mjr 62:f071ccde32a0 489 REPORT_SIZE(1), 0x01, \
mjr 62:f071ccde32a0 490 REPORT_COUNT(1), 0x07, \
mjr 62:f071ccde32a0 491 USAGE(1), 0xE2, /* Mute -> 0x01 */ \
mjr 62:f071ccde32a0 492 USAGE(1), 0xE9, /* Volume Up -> 0x02 */ \
mjr 62:f071ccde32a0 493 USAGE(1), 0xEA, /* Volume Down -> 0x04 */ \
mjr 62:f071ccde32a0 494 USAGE(1), 0xB5, /* Next Track -> 0x08 */ \
mjr 62:f071ccde32a0 495 USAGE(1), 0xB6, /* Previous Track -> 0x10 */ \
mjr 62:f071ccde32a0 496 USAGE(1), 0xB7, /* Stop -> 0x20 */ \
mjr 62:f071ccde32a0 497 USAGE(1), 0xCD, /* Play / Pause -> 0x40 */ \
mjr 62:f071ccde32a0 498 INPUT(1), 0x02, /* Input (Data, Variable, Absolute) -> 0x80 */ \
mjr 62:f071ccde32a0 499 REPORT_COUNT(1), 0x01, \
mjr 62:f071ccde32a0 500 INPUT(1), 0x01, \
mjr 62:f071ccde32a0 501 END_COLLECTION(0)
mjr 35:e959ffba78fd 502
mjr 62:f071ccde32a0 503 #define HID_REPORT_LW \
mjr 62:f071ccde32a0 504 USAGE_PAGE(1), 0x01, /* Generic desktop */ \
mjr 62:f071ccde32a0 505 USAGE(1), 0x00, /* Undefined */ \
mjr 62:f071ccde32a0 506 COLLECTION(1), 0x01, /* Application */ \
mjr 62:f071ccde32a0 507 /* output report (host to device) */ \
mjr 62:f071ccde32a0 508 REPORT_ID(1), REPORT_ID_JS, \
mjr 62:f071ccde32a0 509 REPORT_SIZE(1), 0x08, /* 8 bits per report */ \
mjr 62:f071ccde32a0 510 REPORT_COUNT(1), 0x08, /* output report count (LEDWiz messages) */ \
mjr 62:f071ccde32a0 511 0x09, 0x01, /* usage */ \
mjr 62:f071ccde32a0 512 0x91, 0x01, /* Output (array) */ \
mjr 62:f071ccde32a0 513 END_COLLECTION(0)
mjr 62:f071ccde32a0 514
mjr 62:f071ccde32a0 515
mjr 62:f071ccde32a0 516 // Joystick + Keyboard + LedWiz
mjr 62:f071ccde32a0 517 static const uint8_t reportDescriptorJS[] =
mjr 62:f071ccde32a0 518 {
mjr 62:f071ccde32a0 519 USAGE_PAGE(1), 0x01, /* Generic desktop */ \
mjr 62:f071ccde32a0 520 USAGE(1), 0x04, /* Joystick */ \
mjr 62:f071ccde32a0 521 COLLECTION(1), 0x01, /* Application */ \
mjr 62:f071ccde32a0 522
mjr 62:f071ccde32a0 523 HID_REPORT_JS,
mjr 62:f071ccde32a0 524 HID_REPORT_STAT,
mjr 62:f071ccde32a0 525 HID_REPORT_KB,
mjr 62:f071ccde32a0 526
mjr 35:e959ffba78fd 527 END_COLLECTION(0)
mjr 35:e959ffba78fd 528 };
mjr 35:e959ffba78fd 529
mjr 62:f071ccde32a0 530 // Keyboard + LedWiz
mjr 48:058ace2aed1d 531 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 532 {
mjr 62:f071ccde32a0 533 HID_REPORT_LW,
mjr 62:f071ccde32a0 534 HID_REPORT_STAT,
mjr 62:f071ccde32a0 535 HID_REPORT_KB
mjr 35:e959ffba78fd 536 };
mjr 29:582472d0bc57 537
mjr 62:f071ccde32a0 538 // LedWiz only
mjr 62:f071ccde32a0 539 static const uint8_t reportDescriptorLW[] =
mjr 62:f071ccde32a0 540 {
mjr 62:f071ccde32a0 541 HID_REPORT_LW,
mjr 62:f071ccde32a0 542 HID_REPORT_STAT
mjr 35:e959ffba78fd 543 };
mjr 35:e959ffba78fd 544
mjr 54:fd77a6b2f76c 545 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 546 {
mjr 62:f071ccde32a0 547 // we only have one interface (#0)
mjr 62:f071ccde32a0 548 if (idx != 0)
mjr 35:e959ffba78fd 549 {
mjr 54:fd77a6b2f76c 550 len = 0;
mjr 48:058ace2aed1d 551 return 0;
mjr 35:e959ffba78fd 552 }
mjr 62:f071ccde32a0 553
mjr 62:f071ccde32a0 554 // figure which type of reports we generate according to which
mjr 62:f071ccde32a0 555 // features are enabled
mjr 62:f071ccde32a0 556 if (enableJoystick)
mjr 62:f071ccde32a0 557 {
mjr 62:f071ccde32a0 558 // joystick enabled - use the JS + KB + LW descriptor
mjr 62:f071ccde32a0 559 len = sizeof(reportDescriptorJS);
mjr 62:f071ccde32a0 560 return reportDescriptorJS;
mjr 62:f071ccde32a0 561 }
mjr 62:f071ccde32a0 562 else if (useKB)
mjr 62:f071ccde32a0 563 {
mjr 62:f071ccde32a0 564 // joystick disabled, keyboard enabled - use KB + LW
mjr 62:f071ccde32a0 565 len = sizeof(reportDescriptorKB);
mjr 62:f071ccde32a0 566 return reportDescriptorKB;
mjr 62:f071ccde32a0 567 }
mjr 62:f071ccde32a0 568 else
mjr 62:f071ccde32a0 569 {
mjr 62:f071ccde32a0 570 // joystick and keyboard disabled - LW only
mjr 62:f071ccde32a0 571 len = sizeof(reportDescriptorLW);
mjr 62:f071ccde32a0 572 return reportDescriptorLW;
mjr 62:f071ccde32a0 573 }
mjr 35:e959ffba78fd 574 }
mjr 3:3514575d4f86 575
mjr 48:058ace2aed1d 576 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 577 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 61:3c7e6e9ec355 578 0x0E, /* bLength */
mjr 61:3c7e6e9ec355 579 STRING_DESCRIPTOR, /* bDescriptorType 0x03 (String Descriptor) */
mjr 61:3c7e6e9ec355 580 'm',0,'j',0,'r',0,'n',0,'e',0,'t',0 /* bString iManufacturer - mjrnet */
mjr 3:3514575d4f86 581 };
mjr 3:3514575d4f86 582 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 583 }
mjr 3:3514575d4f86 584
mjr 54:fd77a6b2f76c 585 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 586 {
mjr 54:fd77a6b2f76c 587 // set up a buffer with the length prefix and descriptor type
mjr 61:3c7e6e9ec355 588 const int numChars = 3 + 16 + 1 + 3;
mjr 61:3c7e6e9ec355 589 static uint8_t buf[2 + numChars*2];
mjr 54:fd77a6b2f76c 590 uint8_t *dst = buf;
mjr 54:fd77a6b2f76c 591 *dst++ = sizeof(buf);
mjr 54:fd77a6b2f76c 592 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 593
mjr 54:fd77a6b2f76c 594 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 595 //
mjr 61:3c7e6e9ec355 596 // PSCxxxxxxxxxxxxxxxxivvv
mjr 54:fd77a6b2f76c 597 //
mjr 54:fd77a6b2f76c 598 // where:
mjr 54:fd77a6b2f76c 599 //
mjr 54:fd77a6b2f76c 600 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 601 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 602 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 603 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 604 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 605 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 61:3c7e6e9ec355 606 // vvv = version suffix
mjr 54:fd77a6b2f76c 607 //
mjr 54:fd77a6b2f76c 608 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 609 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 610 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 611 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 612 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 613 // resolved by changing the serial number when the interface setup changes.
mjr 62:f071ccde32a0 614 //
mjr 62:f071ccde32a0 615 // The version suffix serves a similar purpose, to force a new Windows cache
mjr 62:f071ccde32a0 616 // key whenever we make changes in the USB descriptors that require a refresh
mjr 62:f071ccde32a0 617 // on the Windows side. The version here is completely unrelated to any other
mjr 62:f071ccde32a0 618 // version numbers throughout the system; it's purely internal to this class
mjr 62:f071ccde32a0 619 // and doesn't have to be synced to anything else. There aren't any particular
mjr 62:f071ccde32a0 620 // rules about when it needs to be changed; we'll change it as needed when we
mjr 62:f071ccde32a0 621 // observe the need for it due to caching problems on Windows.
mjr 61:3c7e6e9ec355 622 char xbuf[numChars + 1];
mjr 54:fd77a6b2f76c 623 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 624 static char ifcCode[] = "LJKC";
mjr 62:f071ccde32a0 625 sprintf(xbuf, "PSC%08lX%08lX%c009",
mjr 54:fd77a6b2f76c 626 SIM->UIDML,
mjr 54:fd77a6b2f76c 627 SIM->UIDL,
mjr 54:fd77a6b2f76c 628 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)]);
mjr 54:fd77a6b2f76c 629
mjr 54:fd77a6b2f76c 630 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 631 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 632 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 633 {
mjr 54:fd77a6b2f76c 634 *dst++ = *src++;
mjr 54:fd77a6b2f76c 635 *dst++ = '\0';
mjr 54:fd77a6b2f76c 636 }
mjr 54:fd77a6b2f76c 637
mjr 54:fd77a6b2f76c 638 // return the buffer
mjr 54:fd77a6b2f76c 639 return buf;
mjr 3:3514575d4f86 640 }
mjr 3:3514575d4f86 641
mjr 48:058ace2aed1d 642 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 643 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 644 0x28, /*bLength*/
mjr 3:3514575d4f86 645 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 646 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 647 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 648 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 649 };
mjr 3:3514575d4f86 650 return stringIproductDescriptor;
mjr 3:3514575d4f86 651 }
mjr 35:e959ffba78fd 652
mjr 35:e959ffba78fd 653 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 654
mjr 48:058ace2aed1d 655 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 656 {
mjr 62:f071ccde32a0 657 int rptlen = reportDescLength(0);
mjr 62:f071ccde32a0 658 const int cfglen =
mjr 62:f071ccde32a0 659 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 62:f071ccde32a0 660 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 62:f071ccde32a0 661 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 62:f071ccde32a0 662 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 62:f071ccde32a0 663 static uint8_t configurationDescriptor[] =
mjr 35:e959ffba78fd 664 {
mjr 62:f071ccde32a0 665 // Configuration descriptor
mjr 62:f071ccde32a0 666 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 62:f071ccde32a0 667 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 62:f071ccde32a0 668 LSB(cfglen), // wTotalLength (LSB)
mjr 62:f071ccde32a0 669 MSB(cfglen), // wTotalLength (MSB)
mjr 62:f071ccde32a0 670 0x01, // bNumInterfaces
mjr 62:f071ccde32a0 671 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 62:f071ccde32a0 672 0x00, // iConfiguration
mjr 62:f071ccde32a0 673 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 62:f071ccde32a0 674 C_POWER(0), // bMaxPower
mjr 62:f071ccde32a0 675
mjr 62:f071ccde32a0 676 // Interface descriptor
mjr 62:f071ccde32a0 677 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 62:f071ccde32a0 678 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 62:f071ccde32a0 679 0x00, // bInterfaceNumber
mjr 62:f071ccde32a0 680 0x00, // bAlternateSetting
mjr 62:f071ccde32a0 681 0x02, // bNumEndpoints
mjr 62:f071ccde32a0 682 HID_CLASS, // bInterfaceClass
mjr 62:f071ccde32a0 683 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 62:f071ccde32a0 684 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 62:f071ccde32a0 685 0x00, // iInterface
mjr 62:f071ccde32a0 686
mjr 62:f071ccde32a0 687 // HID descriptor, with link to report descriptor
mjr 62:f071ccde32a0 688 HID_DESCRIPTOR_LENGTH, // bLength
mjr 62:f071ccde32a0 689 HID_DESCRIPTOR, // bDescriptorType
mjr 62:f071ccde32a0 690 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 62:f071ccde32a0 691 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 62:f071ccde32a0 692 0x00, // bCountryCode
mjr 62:f071ccde32a0 693 0x01, // bNumDescriptors
mjr 62:f071ccde32a0 694 REPORT_DESCRIPTOR, // bDescriptorType
mjr 62:f071ccde32a0 695 LSB(rptlen), // wDescriptorLength (LSB)
mjr 62:f071ccde32a0 696 MSB(rptlen), // wDescriptorLength (MSB)
mjr 62:f071ccde32a0 697
mjr 62:f071ccde32a0 698 // IN endpoint descriptor
mjr 62:f071ccde32a0 699 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 62:f071ccde32a0 700 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 62:f071ccde32a0 701 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 62:f071ccde32a0 702 E_INTERRUPT, // bmAttributes
mjr 62:f071ccde32a0 703 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 62:f071ccde32a0 704 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 62:f071ccde32a0 705 1, // bInterval (milliseconds)
mjr 62:f071ccde32a0 706
mjr 62:f071ccde32a0 707 // OUT endpoint descriptor
mjr 62:f071ccde32a0 708 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 62:f071ccde32a0 709 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 62:f071ccde32a0 710 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 62:f071ccde32a0 711 E_INTERRUPT, // bmAttributes
mjr 62:f071ccde32a0 712 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 62:f071ccde32a0 713 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 62:f071ccde32a0 714 1 // bInterval (milliseconds)
mjr 62:f071ccde32a0 715 };
mjr 61:3c7e6e9ec355 716
mjr 62:f071ccde32a0 717 return configurationDescriptor;
mjr 35:e959ffba78fd 718 }
mjr 35:e959ffba78fd 719
mjr 35:e959ffba78fd 720 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 721 // our active interfaces.
mjr 35:e959ffba78fd 722 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 723 {
mjr 35:e959ffba78fd 724 // we only have one valid configuration
mjr 35:e959ffba78fd 725 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 726 return false;
mjr 35:e959ffba78fd 727
mjr 62:f071ccde32a0 728 // Configure endpoint 1
mjr 48:058ace2aed1d 729 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 730 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 731 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 35:e959ffba78fd 732
mjr 35:e959ffba78fd 733 // success
mjr 35:e959ffba78fd 734 return true;
mjr 35:e959ffba78fd 735 }
mjr 35:e959ffba78fd 736
mjr 38:091e511ce8a0 737 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 738 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 739 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 740 //
mjr 38:091e511ce8a0 741 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 742 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 743 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 744 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 745 // change the read pointer.
mjr 38:091e511ce8a0 746 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 747 {
mjr 38:091e511ce8a0 748 // Read this message
mjr 62:f071ccde32a0 749 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 38:091e511ce8a0 750 uint32_t bytesRead = 0;
mjr 62:f071ccde32a0 751 USBDevice::readEP(EP1OUT, buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 752
mjr 62:f071ccde32a0 753 // check the report type
mjr 62:f071ccde32a0 754 switch (buf[0])
mjr 62:f071ccde32a0 755 {
mjr 62:f071ccde32a0 756 case REPORT_ID_JS:
mjr 62:f071ccde32a0 757 // Joystick/ledwiz. These are LedWiz or private protocol command
mjr 62:f071ccde32a0 758 // messages. Queue to the incoming LW command list.
mjr 62:f071ccde32a0 759 if (bytesRead == 9)
mjr 62:f071ccde32a0 760 lwbuf.write((LedWizMsg *)&buf[1]);
mjr 62:f071ccde32a0 761 break;
mjr 62:f071ccde32a0 762
mjr 62:f071ccde32a0 763 case REPORT_ID_KB:
mjr 62:f071ccde32a0 764 // Keyboard. These are standard USB keyboard protocol messages,
mjr 62:f071ccde32a0 765 // telling us the shift key LED status. We don't do anything with
mjr 62:f071ccde32a0 766 // these; just accept and ignore them.
mjr 62:f071ccde32a0 767 break;
mjr 62:f071ccde32a0 768
mjr 62:f071ccde32a0 769 default:
mjr 62:f071ccde32a0 770 // Other report types are unexpected; just ignore them.
mjr 62:f071ccde32a0 771 break;
mjr 62:f071ccde32a0 772 }
mjr 38:091e511ce8a0 773
mjr 38:091e511ce8a0 774 // start the next read
mjr 39:b3815a1c3802 775 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 776 }