An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sat Apr 18 19:08:55 2020 +0000
Revision:
109:310ac82cbbee
Parent:
108:bd5d4bd4383b
Child:
113:7330439f2ffc
TCD1103 DMA setup time padding to fix sporadic missed first pixel in transfer; fix TV ON so that the TV ON IR commands don't have to be grouped in the IR command first slots

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 48:058ace2aed1d 27 // Maximum report sizes
mjr 77:0b96f6867312 28 const int MAX_REPORT_JS_TX = USBJoystick::reportLen;
mjr 48:058ace2aed1d 29 const int MAX_REPORT_JS_RX = 8;
mjr 63:5cd1a5f3a41b 30 const int MAX_REPORT_KB_TX = 8;
mjr 63:5cd1a5f3a41b 31 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 32
mjr 11:bd9da7088e6e 33 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 34 {
mjr 3:3514575d4f86 35 _x = x;
mjr 3:3514575d4f86 36 _y = y;
mjr 3:3514575d4f86 37 _z = z;
mjr 11:bd9da7088e6e 38 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 39 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 40 _status = status;
mjr 3:3514575d4f86 41
mjr 3:3514575d4f86 42 // send the report
mjr 3:3514575d4f86 43 return update();
mjr 3:3514575d4f86 44 }
mjr 35:e959ffba78fd 45
mjr 11:bd9da7088e6e 46 bool USBJoystick::update()
mjr 11:bd9da7088e6e 47 {
mjr 3:3514575d4f86 48 HID_REPORT report;
mjr 63:5cd1a5f3a41b 49
mjr 3:3514575d4f86 50 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 51 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 52 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 53 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 54 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 77:0b96f6867312 55 #define put64(idx, val) (putl(idx, val), putl((idx)+4, (val) >> 32))
mjr 63:5cd1a5f3a41b 56 put(0, _status);
mjr 63:5cd1a5f3a41b 57 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 63:5cd1a5f3a41b 58 put(4, _buttonsLo);
mjr 63:5cd1a5f3a41b 59 put(6, _buttonsHi);
mjr 63:5cd1a5f3a41b 60 put(8, _x);
mjr 63:5cd1a5f3a41b 61 put(10, _y);
mjr 63:5cd1a5f3a41b 62 put(12, _z);
mjr 21:5048e16cc9ef 63
mjr 21:5048e16cc9ef 64 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 65 // the reports we build here
mjr 63:5cd1a5f3a41b 66 report.length = reportLen;
mjr 3:3514575d4f86 67
mjr 5:a70c0bce770d 68 // send the report
mjr 10:976666ffa4ef 69 return sendTO(&report, 100);
mjr 10:976666ffa4ef 70 }
mjr 10:976666ffa4ef 71
mjr 35:e959ffba78fd 72 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 73 {
mjr 35:e959ffba78fd 74 // set up the report
mjr 35:e959ffba78fd 75 HID_REPORT report;
mjr 35:e959ffba78fd 76 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 77 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 78 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 79
mjr 35:e959ffba78fd 80 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 81 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 82 }
mjr 35:e959ffba78fd 83
mjr 35:e959ffba78fd 84 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 85 {
mjr 35:e959ffba78fd 86 // set up the report
mjr 35:e959ffba78fd 87 HID_REPORT report;
mjr 35:e959ffba78fd 88 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 89 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 90 report.length = 2;
mjr 35:e959ffba78fd 91
mjr 35:e959ffba78fd 92 // send it
mjr 35:e959ffba78fd 93 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 94 }
mjr 35:e959ffba78fd 95
mjr 52:8298b2a73eb2 96 bool USBJoystick::sendPlungerStatus(
mjr 87:8d35c74403af 97 int npix, int plungerPos, int flags, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 98 {
mjr 52:8298b2a73eb2 99 HID_REPORT report;
mjr 52:8298b2a73eb2 100
mjr 52:8298b2a73eb2 101 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 102 // exposure report.
mjr 63:5cd1a5f3a41b 103 put(0, 0x87FF);
mjr 52:8298b2a73eb2 104
mjr 52:8298b2a73eb2 105 // start at the second byte
mjr 63:5cd1a5f3a41b 106 int ofs = 2;
mjr 52:8298b2a73eb2 107
mjr 52:8298b2a73eb2 108 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 109 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 110
mjr 52:8298b2a73eb2 111 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 112 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 113 ofs += 2;
mjr 52:8298b2a73eb2 114
mjr 87:8d35c74403af 115 // write the detected plunger position to bytes 5-6
mjr 87:8d35c74403af 116 put(ofs, uint16_t(plungerPos));
mjr 52:8298b2a73eb2 117 ofs += 2;
mjr 52:8298b2a73eb2 118
mjr 86:e30a1f60f783 119 // Add the calibration mode flag if applicable
mjr 52:8298b2a73eb2 120 extern bool plungerCalMode;
mjr 86:e30a1f60f783 121 if (plungerCalMode) flags |= 0x04;
mjr 86:e30a1f60f783 122
mjr 86:e30a1f60f783 123 // write the flags to byte 7
mjr 52:8298b2a73eb2 124 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 125
mjr 52:8298b2a73eb2 126 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 127 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 128 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 129 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 130 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 131
mjr 52:8298b2a73eb2 132 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 133 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 134 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 135 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 136 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 137
mjr 52:8298b2a73eb2 138 // send the report
mjr 63:5cd1a5f3a41b 139 report.length = reportLen;
mjr 52:8298b2a73eb2 140 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 141 }
mjr 52:8298b2a73eb2 142
mjr 86:e30a1f60f783 143 bool USBJoystick::sendPlungerStatus2(
mjr 86:e30a1f60f783 144 int nativeScale,
mjr 86:e30a1f60f783 145 int jitterLo, int jitterHi, int rawPos,
mjr 86:e30a1f60f783 146 int axcTime)
mjr 86:e30a1f60f783 147 {
mjr 86:e30a1f60f783 148 HID_REPORT report;
mjr 86:e30a1f60f783 149 memset(report.data, 0, sizeof(report.data));
mjr 86:e30a1f60f783 150
mjr 86:e30a1f60f783 151 // Set the special status bits to indicate it's an extended
mjr 86:e30a1f60f783 152 // exposure report.
mjr 86:e30a1f60f783 153 put(0, 0x87FF);
mjr 86:e30a1f60f783 154
mjr 86:e30a1f60f783 155 // start at the second byte
mjr 86:e30a1f60f783 156 int ofs = 2;
mjr 86:e30a1f60f783 157
mjr 86:e30a1f60f783 158 // write the report subtype (1) to byte 2
mjr 86:e30a1f60f783 159 report.data[ofs++] = 1;
mjr 86:e30a1f60f783 160
mjr 86:e30a1f60f783 161 // write the native scale to bytes 3:4
mjr 86:e30a1f60f783 162 put(ofs, uint16_t(nativeScale));
mjr 86:e30a1f60f783 163 ofs += 2;
mjr 86:e30a1f60f783 164
mjr 86:e30a1f60f783 165 // limit the jitter filter bounds to the native scale
mjr 86:e30a1f60f783 166 if (jitterLo < 0)
mjr 86:e30a1f60f783 167 jitterLo = 0;
mjr 86:e30a1f60f783 168 else if (jitterLo > nativeScale)
mjr 86:e30a1f60f783 169 jitterLo = nativeScale;
mjr 86:e30a1f60f783 170 if (jitterHi < 0)
mjr 86:e30a1f60f783 171 jitterHi = 0;
mjr 86:e30a1f60f783 172 else if (jitterHi > nativeScale)
mjr 86:e30a1f60f783 173 jitterHi = nativeScale;
mjr 86:e30a1f60f783 174
mjr 86:e30a1f60f783 175 // write the jitter filter window bounds to 5:6 and 7:8
mjr 86:e30a1f60f783 176 put(ofs, uint16_t(jitterLo));
mjr 86:e30a1f60f783 177 ofs += 2;
mjr 86:e30a1f60f783 178 put(ofs, uint16_t(jitterHi));
mjr 86:e30a1f60f783 179 ofs += 2;
mjr 86:e30a1f60f783 180
mjr 86:e30a1f60f783 181 // add the raw position
mjr 86:e30a1f60f783 182 put(ofs, uint16_t(rawPos));
mjr 86:e30a1f60f783 183 ofs += 2;
mjr 86:e30a1f60f783 184
mjr 86:e30a1f60f783 185 // add the auto-exposure time
mjr 86:e30a1f60f783 186 put(ofs, uint16_t(axcTime));
mjr 86:e30a1f60f783 187 ofs += 2;
mjr 86:e30a1f60f783 188
mjr 86:e30a1f60f783 189 // send the report
mjr 86:e30a1f60f783 190 report.length = reportLen;
mjr 86:e30a1f60f783 191 return sendTO(&report, 100);
mjr 86:e30a1f60f783 192 }
mjr 86:e30a1f60f783 193
mjr 87:8d35c74403af 194 bool USBJoystick::sendPlungerStatusBarcode(
mjr 87:8d35c74403af 195 int nbits, int codetype, int startOfs, int pixPerBit, int raw, int mask)
mjr 87:8d35c74403af 196 {
mjr 87:8d35c74403af 197 HID_REPORT report;
mjr 87:8d35c74403af 198 memset(report.data, 0, sizeof(report.data));
mjr 87:8d35c74403af 199
mjr 87:8d35c74403af 200 // Set the special status bits to indicate it's an extended
mjr 108:bd5d4bd4383b 201 // status report for barcode sensors
mjr 87:8d35c74403af 202 put(0, 0x87FF);
mjr 87:8d35c74403af 203
mjr 87:8d35c74403af 204 // start at the second byte
mjr 87:8d35c74403af 205 int ofs = 2;
mjr 87:8d35c74403af 206
mjr 87:8d35c74403af 207 // write the report subtype (2) to byte 2
mjr 87:8d35c74403af 208 report.data[ofs++] = 2;
mjr 87:8d35c74403af 209
mjr 87:8d35c74403af 210 // write the bit count and code type
mjr 87:8d35c74403af 211 report.data[ofs++] = nbits;
mjr 87:8d35c74403af 212 report.data[ofs++] = codetype;
mjr 87:8d35c74403af 213
mjr 87:8d35c74403af 214 // write the bar code starting pixel offset
mjr 87:8d35c74403af 215 put(ofs, uint16_t(startOfs));
mjr 87:8d35c74403af 216 ofs += 2;
mjr 87:8d35c74403af 217
mjr 87:8d35c74403af 218 // write the pixel width per bit
mjr 87:8d35c74403af 219 report.data[ofs++] = pixPerBit;
mjr 87:8d35c74403af 220
mjr 87:8d35c74403af 221 // write the raw bar code and success bit mask
mjr 87:8d35c74403af 222 put(ofs, uint16_t(raw));
mjr 87:8d35c74403af 223 ofs += 2;
mjr 87:8d35c74403af 224 put(ofs, uint16_t(mask));
mjr 87:8d35c74403af 225 ofs += 2;
mjr 87:8d35c74403af 226
mjr 87:8d35c74403af 227 // send the report
mjr 87:8d35c74403af 228 report.length = reportLen;
mjr 87:8d35c74403af 229 return sendTO(&report, 100);
mjr 87:8d35c74403af 230 }
mjr 87:8d35c74403af 231
mjr 108:bd5d4bd4383b 232 bool USBJoystick::sendPlungerStatusQuadrature(int chA, int chB)
mjr 108:bd5d4bd4383b 233 {
mjr 108:bd5d4bd4383b 234 HID_REPORT report;
mjr 108:bd5d4bd4383b 235 memset(report.data, 0, sizeof(report.data));
mjr 108:bd5d4bd4383b 236
mjr 108:bd5d4bd4383b 237 // set the status bits to indicate that it's an extended
mjr 108:bd5d4bd4383b 238 // status report for quadrature sensors
mjr 108:bd5d4bd4383b 239 put(0, 0x87FF);
mjr 108:bd5d4bd4383b 240 int ofs = 2;
mjr 108:bd5d4bd4383b 241
mjr 108:bd5d4bd4383b 242 // write the report subtype (3)
mjr 108:bd5d4bd4383b 243 report.data[ofs++] = 3;
mjr 108:bd5d4bd4383b 244
mjr 108:bd5d4bd4383b 245 // write the channel "A" and channel "B" values
mjr 108:bd5d4bd4383b 246 report.data[ofs++] = static_cast<uint8_t>(chA);
mjr 108:bd5d4bd4383b 247 report.data[ofs++] = static_cast<uint8_t>(chB);
mjr 108:bd5d4bd4383b 248
mjr 108:bd5d4bd4383b 249 // send the report
mjr 108:bd5d4bd4383b 250 report.length = reportLen;
mjr 108:bd5d4bd4383b 251 return sendTO(&report, 100);
mjr 108:bd5d4bd4383b 252 }
mjr 108:bd5d4bd4383b 253
mjr 87:8d35c74403af 254
mjr 52:8298b2a73eb2 255 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 256 {
mjr 10:976666ffa4ef 257 HID_REPORT report;
mjr 10:976666ffa4ef 258
mjr 10:976666ffa4ef 259 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 260 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 261 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 262 uint16_t s = idx | 0x8000;
mjr 63:5cd1a5f3a41b 263 put(0, s);
mjr 25:e22b88bd783a 264
mjr 25:e22b88bd783a 265 // start at the second byte
mjr 63:5cd1a5f3a41b 266 int ofs = 2;
mjr 25:e22b88bd783a 267
mjr 47:df7a88cd249c 268 // now fill out the remaining bytes with exposure values
mjr 63:5cd1a5f3a41b 269 report.length = reportLen;
mjr 47:df7a88cd249c 270 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 271 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 272
mjr 10:976666ffa4ef 273 // send the report
mjr 35:e959ffba78fd 274 return sendTO(&report, 100);
mjr 3:3514575d4f86 275 }
mjr 9:fd65b0a94720 276
mjr 53:9b2611964afc 277 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 278 {
mjr 40:cc0d9814522b 279 HID_REPORT report;
mjr 40:cc0d9814522b 280
mjr 40:cc0d9814522b 281 // initially fill the report with zeros
mjr 40:cc0d9814522b 282 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 283
mjr 40:cc0d9814522b 284 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 285 uint16_t s = 0x9000;
mjr 63:5cd1a5f3a41b 286 put(0, s);
mjr 40:cc0d9814522b 287
mjr 53:9b2611964afc 288 // add the requested ID index
mjr 63:5cd1a5f3a41b 289 report.data[2] = (uint8_t)index;
mjr 53:9b2611964afc 290
mjr 53:9b2611964afc 291 // figure out which ID we're reporting
mjr 53:9b2611964afc 292 switch (index)
mjr 53:9b2611964afc 293 {
mjr 53:9b2611964afc 294 case 1:
mjr 53:9b2611964afc 295 // KL25Z CPU ID
mjr 63:5cd1a5f3a41b 296 putbe(3, SIM->UIDMH);
mjr 63:5cd1a5f3a41b 297 putlbe(5, SIM->UIDML);
mjr 63:5cd1a5f3a41b 298 putlbe(9, SIM->UIDL);
mjr 53:9b2611964afc 299 break;
mjr 53:9b2611964afc 300
mjr 53:9b2611964afc 301 case 2:
mjr 53:9b2611964afc 302 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 303 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 304 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 305 // the starting point.)
mjr 53:9b2611964afc 306 extern const char *getOpenSDAID();
mjr 63:5cd1a5f3a41b 307 memcpy(&report.data[3], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 308 break;
mjr 53:9b2611964afc 309 }
mjr 53:9b2611964afc 310
mjr 53:9b2611964afc 311 // send the report
mjr 63:5cd1a5f3a41b 312 report.length = reportLen;
mjr 53:9b2611964afc 313 return sendTO(&report, 100);
mjr 53:9b2611964afc 314 }
mjr 53:9b2611964afc 315
mjr 53:9b2611964afc 316 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 317 {
mjr 53:9b2611964afc 318 HID_REPORT report;
mjr 53:9b2611964afc 319
mjr 53:9b2611964afc 320 // initially fill the report with zeros
mjr 53:9b2611964afc 321 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 322
mjr 53:9b2611964afc 323 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 324 // info report
mjr 53:9b2611964afc 325 uint16_t s = 0xA000;
mjr 63:5cd1a5f3a41b 326 put(0, s);
mjr 53:9b2611964afc 327
mjr 53:9b2611964afc 328 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 329 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 330 static const char mon[][4] = {
mjr 53:9b2611964afc 331 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 332 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 333 };
mjr 53:9b2611964afc 334 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 335 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 336 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 337 {
mjr 53:9b2611964afc 338 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 339 {
mjr 53:9b2611964afc 340 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 341 break;
mjr 53:9b2611964afc 342 }
mjr 53:9b2611964afc 343 }
mjr 53:9b2611964afc 344
mjr 53:9b2611964afc 345 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 346 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 347 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 348 + (atol(date+15)*100)
mjr 53:9b2611964afc 349 + (atol(date+18));
mjr 53:9b2611964afc 350
mjr 53:9b2611964afc 351 // store the build date and time
mjr 63:5cd1a5f3a41b 352 putl(2, dd);
mjr 63:5cd1a5f3a41b 353 putl(6, tt);
mjr 40:cc0d9814522b 354
mjr 40:cc0d9814522b 355 // send the report
mjr 63:5cd1a5f3a41b 356 report.length = reportLen;
mjr 40:cc0d9814522b 357 return sendTO(&report, 100);
mjr 40:cc0d9814522b 358 }
mjr 40:cc0d9814522b 359
mjr 52:8298b2a73eb2 360 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 361 {
mjr 52:8298b2a73eb2 362 HID_REPORT report;
mjr 52:8298b2a73eb2 363
mjr 52:8298b2a73eb2 364 // initially fill the report with zeros
mjr 52:8298b2a73eb2 365 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 366
mjr 52:8298b2a73eb2 367 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 368 // variable report
mjr 52:8298b2a73eb2 369 uint16_t s = 0x9800;
mjr 63:5cd1a5f3a41b 370 put(0, s);
mjr 52:8298b2a73eb2 371
mjr 52:8298b2a73eb2 372 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 63:5cd1a5f3a41b 373 memcpy(report.data + 2, data, 7);
mjr 52:8298b2a73eb2 374
mjr 52:8298b2a73eb2 375 // send the report
mjr 63:5cd1a5f3a41b 376 report.length = reportLen;
mjr 52:8298b2a73eb2 377 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 378 }
mjr 52:8298b2a73eb2 379
mjr 52:8298b2a73eb2 380 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 381 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 382 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 92:f264fbaa1be5 383 bool configured, bool sbxpbx, bool newAccelFeatures,
mjr 92:f264fbaa1be5 384 bool flashStatusFeature, bool reportTimingFeatures,
mjr 99:8139b0c274f4 385 bool chimeLogicFeature, size_t freeHeapBytes)
mjr 33:d832bcab089e 386 {
mjr 33:d832bcab089e 387 HID_REPORT report;
mjr 33:d832bcab089e 388
mjr 33:d832bcab089e 389 // initially fill the report with zeros
mjr 33:d832bcab089e 390 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 391
mjr 33:d832bcab089e 392 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 393 uint16_t s = 0x8800;
mjr 63:5cd1a5f3a41b 394 put(0, s);
mjr 33:d832bcab089e 395
mjr 33:d832bcab089e 396 // write the number of configured outputs
mjr 63:5cd1a5f3a41b 397 put(2, numOutputs);
mjr 33:d832bcab089e 398
mjr 33:d832bcab089e 399 // write the unit number
mjr 63:5cd1a5f3a41b 400 put(4, unitNo);
mjr 33:d832bcab089e 401
mjr 35:e959ffba78fd 402 // write the plunger zero and max values
mjr 63:5cd1a5f3a41b 403 put(6, plungerZero);
mjr 63:5cd1a5f3a41b 404 put(8, plungerMax);
mjr 63:5cd1a5f3a41b 405 report.data[10] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 406
mjr 40:cc0d9814522b 407 // write the status bits:
mjr 40:cc0d9814522b 408 // 0x01 -> configuration loaded
mjr 75:677892300e7a 409 // 0x02 -> SBX/PBX protocol extensions supported
mjr 92:f264fbaa1be5 410 // 0x04 -> new accelerometer features supported
mjr 92:f264fbaa1be5 411 // 0x08 -> flash status feature supported
mjr 92:f264fbaa1be5 412 // 0x10 -> joystick report timing features supported
mjr 99:8139b0c274f4 413 // 0x20 -> chime logic feature supported
mjr 75:677892300e7a 414 report.data[11] =
mjr 75:677892300e7a 415 (configured ? 0x01 : 0x00)
mjr 78:1e00b3fa11af 416 | (sbxpbx ? 0x02 : 0x00)
mjr 82:4f6209cb5c33 417 | (newAccelFeatures ? 0x04 : 0x00)
mjr 92:f264fbaa1be5 418 | (flashStatusFeature ? 0x08 : 0x00)
mjr 98:4df3c0f7e707 419 | (reportTimingFeatures ? 0x10 : 0x00)
mjr 99:8139b0c274f4 420 | (chimeLogicFeature ? 0x20 : 0x00);
mjr 40:cc0d9814522b 421
mjr 73:4e8ce0b18915 422 // write the free heap space
mjr 73:4e8ce0b18915 423 put(12, freeHeapBytes);
mjr 77:0b96f6867312 424
mjr 33:d832bcab089e 425 // send the report
mjr 63:5cd1a5f3a41b 426 report.length = reportLen;
mjr 35:e959ffba78fd 427 return sendTO(&report, 100);
mjr 33:d832bcab089e 428 }
mjr 33:d832bcab089e 429
mjr 77:0b96f6867312 430 // report physical button status
mjr 73:4e8ce0b18915 431 bool USBJoystick::reportButtonStatus(int numButtons, const uint8_t *state)
mjr 73:4e8ce0b18915 432 {
mjr 77:0b96f6867312 433 // initially fill the report with zeros
mjr 73:4e8ce0b18915 434 HID_REPORT report;
mjr 73:4e8ce0b18915 435 memset(report.data, 0, sizeof(report.data));
mjr 73:4e8ce0b18915 436
mjr 77:0b96f6867312 437 // set the special status bits to indicate that it's a buton report
mjr 73:4e8ce0b18915 438 uint16_t s = 0xA100;
mjr 73:4e8ce0b18915 439 put(0, s);
mjr 73:4e8ce0b18915 440
mjr 73:4e8ce0b18915 441 // write the number of buttons
mjr 77:0b96f6867312 442 report.data[2] = uint8_t(numButtons);
mjr 73:4e8ce0b18915 443
mjr 73:4e8ce0b18915 444 // Write the buttons - these are packed into ceil(numButtons/8) bytes.
mjr 73:4e8ce0b18915 445 size_t btnBytes = (numButtons+7)/8;
mjr 73:4e8ce0b18915 446 if (btnBytes + 3 > reportLen) btnBytes = reportLen - 3;
mjr 73:4e8ce0b18915 447 memcpy(&report.data[3], state, btnBytes);
mjr 73:4e8ce0b18915 448
mjr 73:4e8ce0b18915 449 // send the report
mjr 73:4e8ce0b18915 450 report.length = reportLen;
mjr 73:4e8ce0b18915 451 return sendTO(&report, 100);
mjr 73:4e8ce0b18915 452 }
mjr 73:4e8ce0b18915 453
mjr 77:0b96f6867312 454 // report raw IR timing codes (for learning mode)
mjr 77:0b96f6867312 455 bool USBJoystick::reportRawIR(int n, const uint16_t *data)
mjr 77:0b96f6867312 456 {
mjr 77:0b96f6867312 457 // initially fill the report with zeros
mjr 77:0b96f6867312 458 HID_REPORT report;
mjr 77:0b96f6867312 459 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 460
mjr 77:0b96f6867312 461 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 462 uint16_t s = 0xA200;
mjr 77:0b96f6867312 463 put(0, s);
mjr 77:0b96f6867312 464
mjr 77:0b96f6867312 465 // limit the number of items reported to the available space
mjr 77:0b96f6867312 466 if (n > maxRawIR)
mjr 77:0b96f6867312 467 n = maxRawIR;
mjr 77:0b96f6867312 468
mjr 77:0b96f6867312 469 // write the number of codes
mjr 77:0b96f6867312 470 report.data[2] = uint8_t(n);
mjr 77:0b96f6867312 471
mjr 77:0b96f6867312 472 // write the codes
mjr 77:0b96f6867312 473 for (int i = 0, ofs = 3 ; i < n ; ++i, ofs += 2)
mjr 77:0b96f6867312 474 put(ofs, data[i]);
mjr 77:0b96f6867312 475
mjr 77:0b96f6867312 476 // send the report
mjr 77:0b96f6867312 477 report.length = reportLen;
mjr 77:0b96f6867312 478 return sendTO(&report, 100);
mjr 77:0b96f6867312 479 }
mjr 77:0b96f6867312 480
mjr 77:0b96f6867312 481 // report a decoded IR command
mjr 77:0b96f6867312 482 bool USBJoystick::reportIRCode(uint8_t pro, uint8_t flags, uint64_t code)
mjr 77:0b96f6867312 483 {
mjr 77:0b96f6867312 484 // initially fill the report with zeros
mjr 77:0b96f6867312 485 HID_REPORT report;
mjr 77:0b96f6867312 486 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 487
mjr 77:0b96f6867312 488 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 489 uint16_t s = 0xA200;
mjr 77:0b96f6867312 490 put(0, s);
mjr 77:0b96f6867312 491
mjr 77:0b96f6867312 492 // set the raw count to 0xFF to flag that it's a decoded command
mjr 77:0b96f6867312 493 report.data[2] = 0xFF;
mjr 77:0b96f6867312 494
mjr 77:0b96f6867312 495 // write the data
mjr 77:0b96f6867312 496 report.data[3] = pro;
mjr 77:0b96f6867312 497 report.data[4] = flags;
mjr 77:0b96f6867312 498 put64(5, code);
mjr 77:0b96f6867312 499
mjr 77:0b96f6867312 500 // send the report
mjr 77:0b96f6867312 501 report.length = reportLen;
mjr 77:0b96f6867312 502 return sendTO(&report, 100);
mjr 77:0b96f6867312 503 }
mjr 73:4e8ce0b18915 504
mjr 33:d832bcab089e 505 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 506 {
mjr 3:3514575d4f86 507 _x = x;
mjr 3:3514575d4f86 508 _y = y;
mjr 3:3514575d4f86 509 return update();
mjr 3:3514575d4f86 510 }
mjr 3:3514575d4f86 511
mjr 33:d832bcab089e 512 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 513 {
mjr 3:3514575d4f86 514 _z = z;
mjr 3:3514575d4f86 515 return update();
mjr 3:3514575d4f86 516 }
mjr 3:3514575d4f86 517
mjr 33:d832bcab089e 518 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 519 {
mjr 11:bd9da7088e6e 520 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 521 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 522 return update();
mjr 3:3514575d4f86 523 }
mjr 21:5048e16cc9ef 524
mjr 21:5048e16cc9ef 525 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 526 {
mjr 21:5048e16cc9ef 527 HID_REPORT report;
mjr 21:5048e16cc9ef 528
mjr 63:5cd1a5f3a41b 529 // Fill the report according to the Joystick Descriptor
mjr 63:5cd1a5f3a41b 530 memset(report.data, 0, reportLen);
mjr 63:5cd1a5f3a41b 531 put(0, status);
mjr 63:5cd1a5f3a41b 532 report.length = reportLen;
mjr 21:5048e16cc9ef 533
mjr 21:5048e16cc9ef 534 // send the report
mjr 21:5048e16cc9ef 535 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 536 }
mjr 21:5048e16cc9ef 537
mjr 3:3514575d4f86 538 void USBJoystick::_init() {
mjr 3:3514575d4f86 539
mjr 3:3514575d4f86 540 _x = 0;
mjr 3:3514575d4f86 541 _y = 0;
mjr 3:3514575d4f86 542 _z = 0;
mjr 11:bd9da7088e6e 543 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 544 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 545 _status = 0;
mjr 3:3514575d4f86 546 }
mjr 3:3514575d4f86 547
mjr 3:3514575d4f86 548
mjr 35:e959ffba78fd 549 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 550 //
mjr 63:5cd1a5f3a41b 551 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 552 //
mjr 63:5cd1a5f3a41b 553 static const uint8_t reportDescriptorJS[] =
mjr 63:5cd1a5f3a41b 554 {
mjr 63:5cd1a5f3a41b 555 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 556 USAGE(1), 0x04, // Joystick
mjr 63:5cd1a5f3a41b 557 COLLECTION(1), 0x01, // Application
mjr 90:aa4e571da8e8 558
mjr 63:5cd1a5f3a41b 559 // input report (device to host)
mjr 63:5cd1a5f3a41b 560 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 561 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 562 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 563 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 564 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 565 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 63:5cd1a5f3a41b 566 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 567
mjr 63:5cd1a5f3a41b 568 USAGE_PAGE(1), 0x09, // Buttons
mjr 63:5cd1a5f3a41b 569 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 63:5cd1a5f3a41b 570 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 63:5cd1a5f3a41b 571 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 63:5cd1a5f3a41b 572 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 63:5cd1a5f3a41b 573 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 63:5cd1a5f3a41b 574 REPORT_COUNT(1), 0x20, // 32 reports
mjr 63:5cd1a5f3a41b 575 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 63:5cd1a5f3a41b 576 UNIT(1), 0x00, // Unit (None)
mjr 63:5cd1a5f3a41b 577 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 578
mjr 63:5cd1a5f3a41b 579 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 580 USAGE(1), 0x30, // X axis
mjr 63:5cd1a5f3a41b 581 USAGE(1), 0x31, // Y axis
mjr 63:5cd1a5f3a41b 582 USAGE(1), 0x32, // Z axis
mjr 63:5cd1a5f3a41b 583 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 63:5cd1a5f3a41b 584 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 63:5cd1a5f3a41b 585 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 63:5cd1a5f3a41b 586 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 63:5cd1a5f3a41b 587 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 588
mjr 63:5cd1a5f3a41b 589 // output report (host to device)
mjr 63:5cd1a5f3a41b 590 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 591 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 63:5cd1a5f3a41b 592 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 593 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 594
mjr 35:e959ffba78fd 595 END_COLLECTION(0)
mjr 35:e959ffba78fd 596 };
mjr 35:e959ffba78fd 597
mjr 90:aa4e571da8e8 598 // Joystick report descriptor with "R" axis reports. This version
mjr 90:aa4e571da8e8 599 // uses Rx and Ry for the accelerometer readings and Rz for the
mjr 90:aa4e571da8e8 600 // plunger, instead of the standard X/Y/Z axes. This can be used
mjr 90:aa4e571da8e8 601 // to avoid conflicts with other devices reporting on the normal
mjr 90:aa4e571da8e8 602 // X/Y/Z axes.
mjr 90:aa4e571da8e8 603 static const uint8_t reportDescriptorJS_RXRYRZ[] =
mjr 90:aa4e571da8e8 604 {
mjr 90:aa4e571da8e8 605 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 90:aa4e571da8e8 606 USAGE(1), 0x04, // Joystick
mjr 90:aa4e571da8e8 607 COLLECTION(1), 0x01, // Application
mjr 90:aa4e571da8e8 608
mjr 90:aa4e571da8e8 609 // input report (device to host)
mjr 90:aa4e571da8e8 610 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 90:aa4e571da8e8 611 USAGE(1), 0x00, // undefined device control
mjr 90:aa4e571da8e8 612 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 90:aa4e571da8e8 613 LOGICAL_MAXIMUM(1), 0xFF,
mjr 90:aa4e571da8e8 614 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 90:aa4e571da8e8 615 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 90:aa4e571da8e8 616 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 617
mjr 90:aa4e571da8e8 618 USAGE_PAGE(1), 0x09, // Buttons
mjr 90:aa4e571da8e8 619 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 90:aa4e571da8e8 620 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 90:aa4e571da8e8 621 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 90:aa4e571da8e8 622 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 90:aa4e571da8e8 623 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 90:aa4e571da8e8 624 REPORT_COUNT(1), 0x20, // 32 reports
mjr 90:aa4e571da8e8 625 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 90:aa4e571da8e8 626 UNIT(1), 0x00, // Unit (None)
mjr 90:aa4e571da8e8 627 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 628
mjr 90:aa4e571da8e8 629 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 90:aa4e571da8e8 630 USAGE(1), 0x33, // Rx axis ("X rotation")
mjr 90:aa4e571da8e8 631 USAGE(1), 0x34, // Ry axis
mjr 90:aa4e571da8e8 632 USAGE(1), 0x35, // Rz axis
mjr 90:aa4e571da8e8 633 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 90:aa4e571da8e8 634 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 90:aa4e571da8e8 635 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 90:aa4e571da8e8 636 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 90:aa4e571da8e8 637 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 638
mjr 90:aa4e571da8e8 639 // output report (host to device)
mjr 90:aa4e571da8e8 640 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 90:aa4e571da8e8 641 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 90:aa4e571da8e8 642 0x09, 0x01, // usage
mjr 90:aa4e571da8e8 643 0x91, 0x01, // Output (array)
mjr 90:aa4e571da8e8 644
mjr 90:aa4e571da8e8 645 END_COLLECTION(0)
mjr 90:aa4e571da8e8 646 };
mjr 90:aa4e571da8e8 647
mjr 90:aa4e571da8e8 648
mjr 63:5cd1a5f3a41b 649 //
mjr 63:5cd1a5f3a41b 650 // USB HID Report Descriptor - Keyboard/Media Control
mjr 63:5cd1a5f3a41b 651 //
mjr 48:058ace2aed1d 652 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 653 {
mjr 63:5cd1a5f3a41b 654 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 63:5cd1a5f3a41b 655 USAGE(1), 0x06, // Keyboard
mjr 63:5cd1a5f3a41b 656 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 657 REPORT_ID(1), REPORT_ID_KB,
mjr 63:5cd1a5f3a41b 658
mjr 63:5cd1a5f3a41b 659 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 660 USAGE_MINIMUM(1), 0xE0,
mjr 63:5cd1a5f3a41b 661 USAGE_MAXIMUM(1), 0xE7,
mjr 63:5cd1a5f3a41b 662 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 663 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 664 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 665 REPORT_COUNT(1), 0x08,
mjr 63:5cd1a5f3a41b 666 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 667 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 668 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 669 INPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 670
mjr 63:5cd1a5f3a41b 671 REPORT_COUNT(1), 0x05,
mjr 63:5cd1a5f3a41b 672 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 673 USAGE_PAGE(1), 0x08, // LEDs
mjr 63:5cd1a5f3a41b 674 USAGE_MINIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 675 USAGE_MAXIMUM(1), 0x05,
mjr 63:5cd1a5f3a41b 676 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 677 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 678 REPORT_SIZE(1), 0x03,
mjr 63:5cd1a5f3a41b 679 OUTPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 680
mjr 63:5cd1a5f3a41b 681 REPORT_COUNT(1), 0x06,
mjr 63:5cd1a5f3a41b 682 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 683 LOGICAL_MINIMUM(1), 0x00,
mjr 68:998faf685b00 684 LOGICAL_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 685 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 686 USAGE_MINIMUM(1), 0x00,
mjr 68:998faf685b00 687 USAGE_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 688 INPUT(1), 0x00, // Data, Array
mjr 63:5cd1a5f3a41b 689 END_COLLECTION(0),
mjr 63:5cd1a5f3a41b 690
mjr 63:5cd1a5f3a41b 691 // Media Control
mjr 63:5cd1a5f3a41b 692 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 693 USAGE(1), 0x01,
mjr 63:5cd1a5f3a41b 694 COLLECTION(1), 0x01,
mjr 63:5cd1a5f3a41b 695 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 63:5cd1a5f3a41b 696 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 697 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 698 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 699 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 700 REPORT_COUNT(1), 0x07,
mjr 63:5cd1a5f3a41b 701 USAGE(1), 0xE2, // Mute -> 0x01
mjr 63:5cd1a5f3a41b 702 USAGE(1), 0xE9, // Volume Up -> 0x02
mjr 63:5cd1a5f3a41b 703 USAGE(1), 0xEA, // Volume Down -> 0x04
mjr 63:5cd1a5f3a41b 704 USAGE(1), 0xB5, // Next Track -> 0x08
mjr 63:5cd1a5f3a41b 705 USAGE(1), 0xB6, // Previous Track -> 0x10
mjr 63:5cd1a5f3a41b 706 USAGE(1), 0xB7, // Stop -> 0x20
mjr 63:5cd1a5f3a41b 707 USAGE(1), 0xCD, // Play / Pause -> 0x40
mjr 63:5cd1a5f3a41b 708 INPUT(1), 0x02, // Input (Data, Variable, Absolute) -> 0x80
mjr 63:5cd1a5f3a41b 709 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 710 INPUT(1), 0x01,
mjr 63:5cd1a5f3a41b 711 END_COLLECTION(0),
mjr 35:e959ffba78fd 712 };
mjr 29:582472d0bc57 713
mjr 63:5cd1a5f3a41b 714 //
mjr 63:5cd1a5f3a41b 715 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 63:5cd1a5f3a41b 716 // input reporting
mjr 63:5cd1a5f3a41b 717 //
mjr 63:5cd1a5f3a41b 718 static const uint8_t reportDescriptorLW[] =
mjr 63:5cd1a5f3a41b 719 {
mjr 63:5cd1a5f3a41b 720 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 721 USAGE(1), 0x00, // Undefined
mjr 63:5cd1a5f3a41b 722
mjr 63:5cd1a5f3a41b 723 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 724
mjr 63:5cd1a5f3a41b 725 // input report (device to host)
mjr 63:5cd1a5f3a41b 726 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 727 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 728 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 729 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 730 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 77:0b96f6867312 731 REPORT_COUNT(1), USBJoystick::reportLen, // standard report length (same as if we were in joystick mode)
mjr 63:5cd1a5f3a41b 732 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 733
mjr 63:5cd1a5f3a41b 734 // output report (host to device)
mjr 63:5cd1a5f3a41b 735 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 736 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 63:5cd1a5f3a41b 737 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 738 0x91, 0x01, // Output (array)
mjr 63:5cd1a5f3a41b 739
mjr 63:5cd1a5f3a41b 740 END_COLLECTION(0)
mjr 35:e959ffba78fd 741 };
mjr 35:e959ffba78fd 742
mjr 63:5cd1a5f3a41b 743
mjr 54:fd77a6b2f76c 744 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 745 {
mjr 63:5cd1a5f3a41b 746 switch (idx)
mjr 35:e959ffba78fd 747 {
mjr 63:5cd1a5f3a41b 748 case 0:
mjr 63:5cd1a5f3a41b 749 // If the joystick is enabled, this is the joystick.
mjr 63:5cd1a5f3a41b 750 // Otherwise, it's the plain LedWiz control interface.
mjr 63:5cd1a5f3a41b 751 if (enableJoystick)
mjr 63:5cd1a5f3a41b 752 {
mjr 90:aa4e571da8e8 753 switch (axisFormat)
mjr 90:aa4e571da8e8 754 {
mjr 90:aa4e571da8e8 755 case AXIS_FORMAT_XYZ:
mjr 90:aa4e571da8e8 756 default:
mjr 90:aa4e571da8e8 757 len = sizeof(reportDescriptorJS);
mjr 90:aa4e571da8e8 758 return reportDescriptorJS;
mjr 90:aa4e571da8e8 759
mjr 90:aa4e571da8e8 760 case AXIS_FORMAT_RXRYRZ:
mjr 90:aa4e571da8e8 761 len = sizeof(reportDescriptorJS_RXRYRZ);
mjr 90:aa4e571da8e8 762 return reportDescriptorJS_RXRYRZ;
mjr 90:aa4e571da8e8 763 }
mjr 63:5cd1a5f3a41b 764 }
mjr 63:5cd1a5f3a41b 765 else
mjr 63:5cd1a5f3a41b 766 {
mjr 63:5cd1a5f3a41b 767 len = sizeof(reportDescriptorLW);
mjr 63:5cd1a5f3a41b 768 return reportDescriptorLW;
mjr 63:5cd1a5f3a41b 769 }
mjr 63:5cd1a5f3a41b 770
mjr 63:5cd1a5f3a41b 771 case 1:
mjr 63:5cd1a5f3a41b 772 // This is the keyboard, if enabled.
mjr 63:5cd1a5f3a41b 773 if (useKB)
mjr 63:5cd1a5f3a41b 774 {
mjr 63:5cd1a5f3a41b 775 len = sizeof(reportDescriptorKB);
mjr 63:5cd1a5f3a41b 776 return reportDescriptorKB;
mjr 63:5cd1a5f3a41b 777 }
mjr 63:5cd1a5f3a41b 778 else
mjr 63:5cd1a5f3a41b 779 {
mjr 63:5cd1a5f3a41b 780 len = 0;
mjr 63:5cd1a5f3a41b 781 return 0;
mjr 63:5cd1a5f3a41b 782 }
mjr 63:5cd1a5f3a41b 783
mjr 63:5cd1a5f3a41b 784 default:
mjr 63:5cd1a5f3a41b 785 // Unknown interface ID
mjr 54:fd77a6b2f76c 786 len = 0;
mjr 48:058ace2aed1d 787 return 0;
mjr 35:e959ffba78fd 788 }
mjr 35:e959ffba78fd 789 }
mjr 3:3514575d4f86 790
mjr 48:058ace2aed1d 791 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 792 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 61:3c7e6e9ec355 793 0x0E, /* bLength */
mjr 61:3c7e6e9ec355 794 STRING_DESCRIPTOR, /* bDescriptorType 0x03 (String Descriptor) */
mjr 61:3c7e6e9ec355 795 'm',0,'j',0,'r',0,'n',0,'e',0,'t',0 /* bString iManufacturer - mjrnet */
mjr 3:3514575d4f86 796 };
mjr 3:3514575d4f86 797 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 798 }
mjr 3:3514575d4f86 799
mjr 54:fd77a6b2f76c 800 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 801 {
mjr 90:aa4e571da8e8 802 // set up a buffer with space for the length prefix byte, descriptor type
mjr 90:aa4e571da8e8 803 // byte, and serial number (as a wide-character string)
mjr 90:aa4e571da8e8 804 const int numChars = 3 + 16 + 1 + 1 + 3;
mjr 61:3c7e6e9ec355 805 static uint8_t buf[2 + numChars*2];
mjr 54:fd77a6b2f76c 806 uint8_t *dst = buf;
mjr 90:aa4e571da8e8 807
mjr 90:aa4e571da8e8 808 // store a placeholder for the length, followed by the descriptor type byte
mjr 90:aa4e571da8e8 809 *dst++ = 0;
mjr 54:fd77a6b2f76c 810 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 811
mjr 54:fd77a6b2f76c 812 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 813 //
mjr 90:aa4e571da8e8 814 // PSCxxxxxxxxxxxxxxxxi[a]vvv
mjr 54:fd77a6b2f76c 815 //
mjr 54:fd77a6b2f76c 816 // where:
mjr 54:fd77a6b2f76c 817 //
mjr 54:fd77a6b2f76c 818 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 819 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 820 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 821 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 822 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 823 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 90:aa4e571da8e8 824 // a = joystick axis types:
mjr 90:aa4e571da8e8 825 // <empty> = X,Y,Z, or no joystick interface at all
mjr 90:aa4e571da8e8 826 // A = Rx,Ry,Rz
mjr 61:3c7e6e9ec355 827 // vvv = version suffix
mjr 54:fd77a6b2f76c 828 //
mjr 54:fd77a6b2f76c 829 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 830 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 831 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 832 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 833 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 834 // resolved by changing the serial number when the interface setup changes.
mjr 61:3c7e6e9ec355 835 char xbuf[numChars + 1];
mjr 54:fd77a6b2f76c 836 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 837 static char ifcCode[] = "LJKC";
mjr 90:aa4e571da8e8 838 static const char *axisCode[] = { "", "A" };
mjr 90:aa4e571da8e8 839 sprintf(xbuf, "PSC%08lX%08lX%c%s008",
mjr 54:fd77a6b2f76c 840 SIM->UIDML,
mjr 54:fd77a6b2f76c 841 SIM->UIDL,
mjr 90:aa4e571da8e8 842 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)],
mjr 90:aa4e571da8e8 843 axisCode[(enableJoystick ? axisFormat : 0)]);
mjr 54:fd77a6b2f76c 844
mjr 54:fd77a6b2f76c 845 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 846 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 847 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 848 {
mjr 54:fd77a6b2f76c 849 *dst++ = *src++;
mjr 54:fd77a6b2f76c 850 *dst++ = '\0';
mjr 54:fd77a6b2f76c 851 }
mjr 54:fd77a6b2f76c 852
mjr 90:aa4e571da8e8 853 // store the final length (in bytes) in the length prefix byte
mjr 90:aa4e571da8e8 854 buf[0] = dst - buf;
mjr 90:aa4e571da8e8 855
mjr 54:fd77a6b2f76c 856 // return the buffer
mjr 54:fd77a6b2f76c 857 return buf;
mjr 3:3514575d4f86 858 }
mjr 3:3514575d4f86 859
mjr 48:058ace2aed1d 860 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 861 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 862 0x28, /*bLength*/
mjr 3:3514575d4f86 863 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 864 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 865 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 866 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 867 };
mjr 3:3514575d4f86 868 return stringIproductDescriptor;
mjr 3:3514575d4f86 869 }
mjr 35:e959ffba78fd 870
mjr 35:e959ffba78fd 871 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 872
mjr 48:058ace2aed1d 873 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 874 {
mjr 63:5cd1a5f3a41b 875 int rptlen0 = reportDescLength(0);
mjr 63:5cd1a5f3a41b 876 int rptlen1 = reportDescLength(1);
mjr 63:5cd1a5f3a41b 877 if (useKB)
mjr 35:e959ffba78fd 878 {
mjr 63:5cd1a5f3a41b 879 const int cfglenKB =
mjr 63:5cd1a5f3a41b 880 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 881 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 882 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 883 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 884 static uint8_t configurationDescriptorWithKB[] =
mjr 63:5cd1a5f3a41b 885 {
mjr 63:5cd1a5f3a41b 886 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 887 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 888 LSB(cfglenKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 889 MSB(cfglenKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 890 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 63:5cd1a5f3a41b 891 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 892 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 893 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 894 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 895
mjr 63:5cd1a5f3a41b 896 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 63:5cd1a5f3a41b 897 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 898 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 899 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 900 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 901 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 902 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 903 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 904 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 905 0x00, // iInterface
mjr 63:5cd1a5f3a41b 906
mjr 63:5cd1a5f3a41b 907 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 908 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 909 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 910 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 911 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 912 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 913 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 914 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 915 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 916
mjr 63:5cd1a5f3a41b 917 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 918 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 919 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 920 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 921 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 922 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 923 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 924
mjr 63:5cd1a5f3a41b 925 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 926 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 927 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 928 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 929 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 930 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 931 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 932
mjr 63:5cd1a5f3a41b 933 // ****** INTERFACE 1 - KEYBOARD ******
mjr 63:5cd1a5f3a41b 934 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 935 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 936 0x01, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 937 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 938 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 939 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 940 HID_SUBCLASS_BOOT, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 941 HID_PROTOCOL_KB, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 942 0x00, // iInterface
mjr 63:5cd1a5f3a41b 943
mjr 63:5cd1a5f3a41b 944 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 945 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 946 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 947 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 948 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 949 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 950 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 951 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 952 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 953
mjr 63:5cd1a5f3a41b 954 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 955 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 956 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 957 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 958 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 959 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 960 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 961
mjr 63:5cd1a5f3a41b 962 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 963 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 964 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 965 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 966 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 967 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 968 1, // bInterval (milliseconds)
mjr 61:3c7e6e9ec355 969
mjr 63:5cd1a5f3a41b 970 };
mjr 63:5cd1a5f3a41b 971
mjr 63:5cd1a5f3a41b 972 // Keyboard + joystick interfaces
mjr 63:5cd1a5f3a41b 973 return configurationDescriptorWithKB;
mjr 63:5cd1a5f3a41b 974 }
mjr 63:5cd1a5f3a41b 975 else
mjr 63:5cd1a5f3a41b 976 {
mjr 63:5cd1a5f3a41b 977 // No keyboard - joystick interface only
mjr 63:5cd1a5f3a41b 978 const int cfglenNoKB =
mjr 63:5cd1a5f3a41b 979 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 980 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 981 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 982 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 983 static uint8_t configurationDescriptorNoKB[] =
mjr 63:5cd1a5f3a41b 984 {
mjr 63:5cd1a5f3a41b 985 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 986 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 987 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 988 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 989 0x01, // bNumInterfaces
mjr 63:5cd1a5f3a41b 990 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 991 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 992 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 993 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 994
mjr 63:5cd1a5f3a41b 995 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 996 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 997 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 998 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 999 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 1000 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 1001 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 1002 HID_PROTOCOL_NONE, // bInterfaceProtocol (keyboard)
mjr 63:5cd1a5f3a41b 1003 0x00, // iInterface
mjr 63:5cd1a5f3a41b 1004
mjr 63:5cd1a5f3a41b 1005 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1006 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1007 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 1008 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 1009 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 1010 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 1011 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1012 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 1013 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 1014
mjr 63:5cd1a5f3a41b 1015 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1016 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1017 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 1018 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 1019 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 1020 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 1021 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 1022
mjr 63:5cd1a5f3a41b 1023 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1024 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1025 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 1026 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 1027 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 1028 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 1029 1 // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 1030 };
mjr 63:5cd1a5f3a41b 1031
mjr 63:5cd1a5f3a41b 1032 return configurationDescriptorNoKB;
mjr 63:5cd1a5f3a41b 1033 }
mjr 35:e959ffba78fd 1034 }
mjr 35:e959ffba78fd 1035
mjr 35:e959ffba78fd 1036 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 1037 // our active interfaces.
mjr 35:e959ffba78fd 1038 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 1039 {
mjr 35:e959ffba78fd 1040 // we only have one valid configuration
mjr 35:e959ffba78fd 1041 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 1042 return false;
mjr 35:e959ffba78fd 1043
mjr 63:5cd1a5f3a41b 1044 // Configure endpoint 1 - we use this in all cases, for either
mjr 63:5cd1a5f3a41b 1045 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 1046 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 1047 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 1048 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 63:5cd1a5f3a41b 1049
mjr 63:5cd1a5f3a41b 1050 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 63:5cd1a5f3a41b 1051 if (useKB)
mjr 63:5cd1a5f3a41b 1052 {
mjr 63:5cd1a5f3a41b 1053 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 1054 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 63:5cd1a5f3a41b 1055 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 1056 }
mjr 35:e959ffba78fd 1057
mjr 35:e959ffba78fd 1058 // success
mjr 35:e959ffba78fd 1059 return true;
mjr 35:e959ffba78fd 1060 }
mjr 35:e959ffba78fd 1061
mjr 38:091e511ce8a0 1062 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 1063 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 1064 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 1065 //
mjr 38:091e511ce8a0 1066 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 1067 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 1068 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 1069 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 1070 // change the read pointer.
mjr 38:091e511ce8a0 1071 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 1072 {
mjr 38:091e511ce8a0 1073 // Read this message
mjr 63:5cd1a5f3a41b 1074 union {
mjr 63:5cd1a5f3a41b 1075 LedWizMsg msg;
mjr 63:5cd1a5f3a41b 1076 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 1077 } buf;
mjr 38:091e511ce8a0 1078 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 1079 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 1080
mjr 63:5cd1a5f3a41b 1081 // if it's the right length, queue it to our circular buffer
mjr 63:5cd1a5f3a41b 1082 if (bytesRead == 8)
mjr 63:5cd1a5f3a41b 1083 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 1084
mjr 38:091e511ce8a0 1085 // start the next read
mjr 39:b3815a1c3802 1086 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 1087 }
mjr 63:5cd1a5f3a41b 1088
mjr 63:5cd1a5f3a41b 1089 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 63:5cd1a5f3a41b 1090 // The host uses this to send updates for the keyboard indicator LEDs
mjr 63:5cd1a5f3a41b 1091 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 63:5cd1a5f3a41b 1092 // we have to read them to keep the pipe open.
mjr 63:5cd1a5f3a41b 1093 bool USBJoystick::EP4_OUT_callback()
mjr 63:5cd1a5f3a41b 1094 {
mjr 63:5cd1a5f3a41b 1095 // read this message
mjr 63:5cd1a5f3a41b 1096 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 1097 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 1098 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 1099
mjr 63:5cd1a5f3a41b 1100 // start the next read
mjr 63:5cd1a5f3a41b 1101 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 1102 }
mjr 63:5cd1a5f3a41b 1103