An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Mar 17 22:02:08 2017 +0000
Revision:
77:0b96f6867312
Parent:
75:677892300e7a
Child:
78:1e00b3fa11af
New memory pool management; keeping old ones as #ifdefs for now for reference.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 0:5acbbe3f4cf4 1 /* USBJoystick.h */
mjr 0:5acbbe3f4cf4 2 /* USB device example: Joystick*/
mjr 0:5acbbe3f4cf4 3 /* Copyright (c) 2011 ARM Limited. All rights reserved. */
mjr 0:5acbbe3f4cf4 4 /* Modified Mouse code for Joystick - WH 2012 */
mjr 0:5acbbe3f4cf4 5
mjr 0:5acbbe3f4cf4 6 #ifndef USBJOYSTICK_H
mjr 0:5acbbe3f4cf4 7 #define USBJOYSTICK_H
mjr 0:5acbbe3f4cf4 8
mjr 0:5acbbe3f4cf4 9 #include "USBHID.h"
mjr 77:0b96f6867312 10 #include "circbuf.h"
mjr 35:e959ffba78fd 11
mjr 39:b3815a1c3802 12 // Bufferd incoming LedWiz message structure
mjr 38:091e511ce8a0 13 struct LedWizMsg
mjr 38:091e511ce8a0 14 {
mjr 38:091e511ce8a0 15 uint8_t data[8];
mjr 38:091e511ce8a0 16 };
mjr 38:091e511ce8a0 17
mjr 39:b3815a1c3802 18 // interface IDs
mjr 39:b3815a1c3802 19 const uint8_t IFC_ID_JS = 0; // joystick + LedWiz interface
mjr 39:b3815a1c3802 20 const uint8_t IFC_ID_KB = 1; // keyboard interface
mjr 39:b3815a1c3802 21
mjr 35:e959ffba78fd 22 // keyboard interface report IDs
mjr 63:5cd1a5f3a41b 23 const uint8_t REPORT_ID_KB = 1;
mjr 63:5cd1a5f3a41b 24 const uint8_t REPORT_ID_MEDIA = 2;
mjr 35:e959ffba78fd 25
mjr 0:5acbbe3f4cf4 26 /* Common usage */
mjr 0:5acbbe3f4cf4 27 enum JOY_BUTTON {
mjr 0:5acbbe3f4cf4 28 JOY_B0 = 0x0001,
mjr 0:5acbbe3f4cf4 29 JOY_B1 = 0x0002,
mjr 0:5acbbe3f4cf4 30 JOY_B2 = 0x0004,
mjr 0:5acbbe3f4cf4 31 JOY_B3 = 0x0008,
mjr 0:5acbbe3f4cf4 32 JOY_B4 = 0x0010,
mjr 0:5acbbe3f4cf4 33 JOY_B5 = 0x0020,
mjr 0:5acbbe3f4cf4 34 JOY_B6 = 0x0040,
mjr 0:5acbbe3f4cf4 35 JOY_B7 = 0x0080,
mjr 0:5acbbe3f4cf4 36 JOY_B8 = 0x0100,
mjr 0:5acbbe3f4cf4 37 JOY_B9 = 0x0200,
mjr 0:5acbbe3f4cf4 38 JOY_B10 = 0x0400,
mjr 0:5acbbe3f4cf4 39 JOY_B11 = 0x0800,
mjr 0:5acbbe3f4cf4 40 JOY_B12 = 0x1000,
mjr 0:5acbbe3f4cf4 41 JOY_B13 = 0x2000,
mjr 0:5acbbe3f4cf4 42 JOY_B14 = 0x4000,
mjr 0:5acbbe3f4cf4 43 JOY_B15 = 0x8000
mjr 0:5acbbe3f4cf4 44 };
mjr 0:5acbbe3f4cf4 45
mjr 0:5acbbe3f4cf4 46 /**
mjr 0:5acbbe3f4cf4 47 *
mjr 0:5acbbe3f4cf4 48 * USBJoystick example
mjr 0:5acbbe3f4cf4 49 * @code
mjr 0:5acbbe3f4cf4 50 * #include "mbed.h"
mjr 0:5acbbe3f4cf4 51 * #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 52 *
mjr 0:5acbbe3f4cf4 53 * USBJoystick joystick;
mjr 0:5acbbe3f4cf4 54 *
mjr 0:5acbbe3f4cf4 55 * int main(void)
mjr 0:5acbbe3f4cf4 56 * {
mjr 0:5acbbe3f4cf4 57 * while (1)
mjr 0:5acbbe3f4cf4 58 * {
mjr 0:5acbbe3f4cf4 59 * joystick.move(20, 0);
mjr 0:5acbbe3f4cf4 60 * wait(0.5);
mjr 0:5acbbe3f4cf4 61 * }
mjr 0:5acbbe3f4cf4 62 * }
mjr 0:5acbbe3f4cf4 63 *
mjr 0:5acbbe3f4cf4 64 * @endcode
mjr 0:5acbbe3f4cf4 65 *
mjr 0:5acbbe3f4cf4 66 *
mjr 0:5acbbe3f4cf4 67 * @code
mjr 0:5acbbe3f4cf4 68 * #include "mbed.h"
mjr 0:5acbbe3f4cf4 69 * #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 70 * #include <math.h>
mjr 0:5acbbe3f4cf4 71 *
mjr 0:5acbbe3f4cf4 72 * USBJoystick joystick;
mjr 0:5acbbe3f4cf4 73 *
mjr 0:5acbbe3f4cf4 74 * int main(void)
mjr 0:5acbbe3f4cf4 75 * {
mjr 0:5acbbe3f4cf4 76 * while (1) {
mjr 0:5acbbe3f4cf4 77 * // Basic Joystick
mjr 0:5acbbe3f4cf4 78 * joystick.update(tx, y, z, buttonBits);
mjr 0:5acbbe3f4cf4 79 * wait(0.001);
mjr 0:5acbbe3f4cf4 80 * }
mjr 0:5acbbe3f4cf4 81 * }
mjr 0:5acbbe3f4cf4 82 * @endcode
mjr 0:5acbbe3f4cf4 83 */
mjr 0:5acbbe3f4cf4 84
mjr 0:5acbbe3f4cf4 85
mjr 77:0b96f6867312 86 class USBJoystick: public USBHID
mjr 77:0b96f6867312 87 {
mjr 77:0b96f6867312 88 public:
mjr 77:0b96f6867312 89 // Length of our joystick reports. Important: This must be kept in sync
mjr 77:0b96f6867312 90 // with the actual joystick report format sent in update().
mjr 77:0b96f6867312 91 static const int reportLen = 14;
mjr 77:0b96f6867312 92
mjr 38:091e511ce8a0 93
mjr 77:0b96f6867312 94 /**
mjr 77:0b96f6867312 95 * Constructor
mjr 77:0b96f6867312 96 *
mjr 77:0b96f6867312 97 * @param vendor_id Your vendor_id (default: 0x1234)
mjr 77:0b96f6867312 98 * @param product_id Your product_id (default: 0x0002)
mjr 77:0b96f6867312 99 * @param product_release Your product_release (default: 0x0001)
mjr 77:0b96f6867312 100 */
mjr 77:0b96f6867312 101 USBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 77:0b96f6867312 102 int waitForConnect, bool enableJoystick, bool useKB)
mjr 77:0b96f6867312 103 : USBHID(16, 64, vendor_id, product_id, product_release, false)
mjr 77:0b96f6867312 104 {
mjr 77:0b96f6867312 105 _init();
mjr 77:0b96f6867312 106 this->useKB = useKB;
mjr 77:0b96f6867312 107 this->enableJoystick = enableJoystick;
mjr 77:0b96f6867312 108 connect(waitForConnect);
mjr 77:0b96f6867312 109 };
mjr 77:0b96f6867312 110
mjr 77:0b96f6867312 111 /* read a report from the LedWiz buffer */
mjr 77:0b96f6867312 112 bool readLedWizMsg(LedWizMsg &msg)
mjr 77:0b96f6867312 113 {
mjr 77:0b96f6867312 114 return lwbuf.read(msg);
mjr 77:0b96f6867312 115 }
mjr 77:0b96f6867312 116
mjr 77:0b96f6867312 117 /* get the idle time settings, in milliseconds */
mjr 77:0b96f6867312 118 uint32_t getKbIdle() const { return kbIdleTime * 4UL; }
mjr 77:0b96f6867312 119 uint32_t getMediaIdle() const { return mediaIdleTime * 4UL; }
mjr 77:0b96f6867312 120
mjr 39:b3815a1c3802 121
mjr 77:0b96f6867312 122 /**
mjr 77:0b96f6867312 123 * Send a keyboard report. The argument gives the key state, in the standard
mjr 77:0b96f6867312 124 * 6KRO USB keyboard report format: byte 0 is the modifier key bit mask, byte 1
mjr 77:0b96f6867312 125 * is reserved (must be 0), and bytes 2-6 are the currently pressed keys, as
mjr 77:0b96f6867312 126 * USB key codes.
mjr 77:0b96f6867312 127 */
mjr 77:0b96f6867312 128 bool kbUpdate(uint8_t data[8]);
mjr 77:0b96f6867312 129
mjr 77:0b96f6867312 130 /**
mjr 77:0b96f6867312 131 * Send a media key update. The argument gives the bit mask of media keys
mjr 77:0b96f6867312 132 * currently pressed. See the HID report descriptor for the order of bits.
mjr 77:0b96f6867312 133 */
mjr 77:0b96f6867312 134 bool mediaUpdate(uint8_t data);
mjr 77:0b96f6867312 135
mjr 77:0b96f6867312 136 /**
mjr 77:0b96f6867312 137 * Update the joystick status
mjr 77:0b96f6867312 138 *
mjr 77:0b96f6867312 139 * @param x x-axis position
mjr 77:0b96f6867312 140 * @param y y-axis position
mjr 77:0b96f6867312 141 * @param z z-axis position
mjr 77:0b96f6867312 142 * @param buttons buttons state, as a bit mask (combination with '|' of JOY_Bn values)
mjr 77:0b96f6867312 143 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 144 */
mjr 77:0b96f6867312 145 bool update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status);
mjr 77:0b96f6867312 146
mjr 77:0b96f6867312 147 /**
mjr 77:0b96f6867312 148 * Update just the status
mjr 77:0b96f6867312 149 */
mjr 77:0b96f6867312 150 bool updateStatus(uint32_t stat);
mjr 77:0b96f6867312 151
mjr 77:0b96f6867312 152 /**
mjr 77:0b96f6867312 153 * Write the plunger status report.
mjr 77:0b96f6867312 154 *
mjr 77:0b96f6867312 155 * @param npix number of pixels in the sensor (0 for non-imaging sensors)
mjr 77:0b96f6867312 156 * @param edgePos the pixel position of the detected edge in this image, or -1 if none detected
mjr 77:0b96f6867312 157 * @param dir sensor orientation (1 = standard, -1 = reversed, 0 = unknown)
mjr 77:0b96f6867312 158 * @param avgScanTime average sensor scan time in microseconds
mjr 77:0b96f6867312 159 * @param processingTime time in microseconds to process the current frame
mjr 77:0b96f6867312 160 */
mjr 77:0b96f6867312 161 bool sendPlungerStatus(int npix, int edgePos, int dir, uint32_t avgScanTime, uint32_t processingTime);
mjr 77:0b96f6867312 162
mjr 77:0b96f6867312 163 /**
mjr 77:0b96f6867312 164 * Write an exposure report. We'll fill out a report with as many pixels as
mjr 77:0b96f6867312 165 * will fit in the packet, send the report, and update the index to the next
mjr 77:0b96f6867312 166 * pixel to send. The caller should call this repeatedly to send reports for
mjr 77:0b96f6867312 167 * all pixels.
mjr 77:0b96f6867312 168 *
mjr 77:0b96f6867312 169 * @param idx current index in pixel array, updated to point to next pixel to send
mjr 77:0b96f6867312 170 * @param npix number of pixels in the overall array
mjr 77:0b96f6867312 171 * @param pix pixel array
mjr 77:0b96f6867312 172 */
mjr 77:0b96f6867312 173 bool sendPlungerPix(int &idx, int npix, const uint8_t *pix);
mjr 77:0b96f6867312 174
mjr 77:0b96f6867312 175 /**
mjr 77:0b96f6867312 176 * Write a configuration report.
mjr 77:0b96f6867312 177 *
mjr 77:0b96f6867312 178 * @param numOutputs the number of configured output channels
mjr 77:0b96f6867312 179 * @param unitNo the device unit number
mjr 77:0b96f6867312 180 * @param plungerZero plunger zero calibration point
mjr 77:0b96f6867312 181 * @param plungerMax plunger max calibration point
mjr 77:0b96f6867312 182 * @param plungerRlsTime measured plunger release time, in milliseconds
mjr 77:0b96f6867312 183 * @param configured true if a configuration has been saved to flash from the host
mjr 77:0b96f6867312 184 * @param sbxpbx true if this firmware version supports SBX/PBX protocol extensions
mjr 77:0b96f6867312 185 * @param freeHeapBytes number of free bytes in the malloc heap
mjr 77:0b96f6867312 186 */
mjr 77:0b96f6867312 187 bool reportConfig(int numOutputs, int unitNo,
mjr 77:0b96f6867312 188 int plungerZero, int plungerMax, int plunterRlsTime,
mjr 77:0b96f6867312 189 bool configured, bool sbxpbx, size_t freeHeapBytes);
mjr 77:0b96f6867312 190
mjr 77:0b96f6867312 191 /**
mjr 77:0b96f6867312 192 * Write a configuration variable query report.
mjr 77:0b96f6867312 193 *
mjr 77:0b96f6867312 194 * @param data the 7-byte data variable buffer, starting with the variable ID byte
mjr 77:0b96f6867312 195 */
mjr 77:0b96f6867312 196 bool reportConfigVar(const uint8_t *data);
mjr 77:0b96f6867312 197
mjr 77:0b96f6867312 198 /**
mjr 77:0b96f6867312 199 * Write a device ID report.
mjr 77:0b96f6867312 200 */
mjr 77:0b96f6867312 201 bool reportID(int index);
mjr 77:0b96f6867312 202
mjr 77:0b96f6867312 203 /**
mjr 77:0b96f6867312 204 * Write a build data report
mjr 77:0b96f6867312 205 *
mjr 77:0b96f6867312 206 * @param date build date plus time, in __DATE__ " " __TIME__ macro format ("Mon dd, yyyy hh:mm:ss")
mjr 77:0b96f6867312 207 */
mjr 77:0b96f6867312 208 bool reportBuildInfo(const char *date);
mjr 77:0b96f6867312 209
mjr 77:0b96f6867312 210 /**
mjr 77:0b96f6867312 211 * Write a physical button status report.
mjr 77:0b96f6867312 212 *
mjr 77:0b96f6867312 213 * @param numButtons the number of buttons
mjr 77:0b96f6867312 214 * @param state the button states, 1 bit per button, 8 buttons per byte,
mjr 77:0b96f6867312 215 * starting with button 0 in the low-order bit (0x01) of the
mjr 77:0b96f6867312 216 * first byte
mjr 77:0b96f6867312 217 */
mjr 77:0b96f6867312 218 bool reportButtonStatus(int numButtons, const uint8_t *state);
mjr 77:0b96f6867312 219
mjr 77:0b96f6867312 220 /**
mjr 77:0b96f6867312 221 * Write an IR raw sensor input report. This reports a set of raw
mjr 77:0b96f6867312 222 * timing reports for input read from the IR sensor, for learning
mjr 77:0b96f6867312 223 * remote purposes.
mjr 77:0b96f6867312 224 *
mjr 77:0b96f6867312 225 * @param n number of items to report, up to maxRawIR
mjr 77:0b96f6867312 226 * @param data items to report; each is a timing reading, in 2us
mjr 77:0b96f6867312 227 * increments, with the low bit in each report set to 0 for
mjr 77:0b96f6867312 228 * a "space" (IR off) or 1 for a "mark" (IR on)
mjr 77:0b96f6867312 229 */
mjr 77:0b96f6867312 230 bool reportRawIR(int n, const uint16_t *data);
mjr 77:0b96f6867312 231
mjr 77:0b96f6867312 232 /**
mjr 77:0b96f6867312 233 * Maximum number of raw IR readings that can be sent in one report
mjr 77:0b96f6867312 234 * via reportRawIR().
mjr 77:0b96f6867312 235 */
mjr 77:0b96f6867312 236 static const int maxRawIR = (reportLen - 3)/2;
mjr 77:0b96f6867312 237
mjr 77:0b96f6867312 238 /**
mjr 77:0b96f6867312 239 * Write an IR input report. This reports a decoded command read in
mjr 77:0b96f6867312 240 * learning mode to the host.
mjr 77:0b96f6867312 241 *
mjr 77:0b96f6867312 242 * @param pro protocol ID (see IRProtocolID.h)
mjr 77:0b96f6867312 243 * @param flags bit flags: 0x02 = protocol uses dittos
mjr 77:0b96f6867312 244 * @param code decoded command code
mjr 77:0b96f6867312 245 */
mjr 77:0b96f6867312 246 bool reportIRCode(uint8_t pro, uint8_t flags, uint64_t code);
mjr 35:e959ffba78fd 247
mjr 77:0b96f6867312 248 /**
mjr 77:0b96f6867312 249 * Send a joystick report to the host
mjr 77:0b96f6867312 250 *
mjr 77:0b96f6867312 251 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 252 */
mjr 77:0b96f6867312 253 bool update();
mjr 77:0b96f6867312 254
mjr 77:0b96f6867312 255 /**
mjr 77:0b96f6867312 256 * Move the cursor to (x, y)
mjr 77:0b96f6867312 257 *
mjr 77:0b96f6867312 258 * @param x x-axis position
mjr 77:0b96f6867312 259 * @param y y-axis position
mjr 77:0b96f6867312 260 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 261 */
mjr 77:0b96f6867312 262 bool move(int16_t x, int16_t y);
mjr 77:0b96f6867312 263
mjr 77:0b96f6867312 264 /**
mjr 77:0b96f6867312 265 * Set the z position
mjr 77:0b96f6867312 266 *
mjr 77:0b96f6867312 267 * @param z z-axis osition
mjr 77:0b96f6867312 268 */
mjr 77:0b96f6867312 269 bool setZ(int16_t z);
mjr 77:0b96f6867312 270
mjr 77:0b96f6867312 271 /**
mjr 77:0b96f6867312 272 * Press one or several buttons
mjr 77:0b96f6867312 273 *
mjr 77:0b96f6867312 274 * @param buttons button state, as a bitwise combination of JOY_Bn values
mjr 77:0b96f6867312 275 * @returns true if there is no error, false otherwise
mjr 77:0b96f6867312 276 */
mjr 77:0b96f6867312 277 bool buttons(uint32_t buttons);
mjr 77:0b96f6867312 278
mjr 77:0b96f6867312 279 /* USB descriptor overrides */
mjr 77:0b96f6867312 280 virtual const uint8_t *configurationDesc();
mjr 77:0b96f6867312 281 virtual const uint8_t *reportDesc(int idx, uint16_t &len);
mjr 39:b3815a1c3802 282
mjr 77:0b96f6867312 283 /* USB descriptor string overrides */
mjr 77:0b96f6867312 284 virtual const uint8_t *stringImanufacturerDesc();
mjr 77:0b96f6867312 285 virtual const uint8_t *stringIserialDesc();
mjr 77:0b96f6867312 286 virtual const uint8_t *stringIproductDesc();
mjr 77:0b96f6867312 287
mjr 77:0b96f6867312 288 /* set/get idle time */
mjr 77:0b96f6867312 289 virtual void setIdleTime(int ifc, int rptid, int t)
mjr 77:0b96f6867312 290 {
mjr 77:0b96f6867312 291 // Remember the new value if operating on the keyboard. Remember
mjr 77:0b96f6867312 292 // separate keyboard and media control idle times, in case the
mjr 77:0b96f6867312 293 // host wants separate report rates.
mjr 77:0b96f6867312 294 if (ifc == IFC_ID_KB)
mjr 77:0b96f6867312 295 {
mjr 77:0b96f6867312 296 if (rptid == REPORT_ID_KB)
mjr 77:0b96f6867312 297 kbIdleTime = t;
mjr 77:0b96f6867312 298 else if (rptid == REPORT_ID_MEDIA)
mjr 77:0b96f6867312 299 mediaIdleTime = t;
mjr 77:0b96f6867312 300 }
mjr 77:0b96f6867312 301 }
mjr 77:0b96f6867312 302 virtual uint8_t getIdleTime(int ifc, int rptid)
mjr 77:0b96f6867312 303 {
mjr 77:0b96f6867312 304 // Return the kb idle time if the kb interface is the one requested.
mjr 77:0b96f6867312 305 if (ifc == IFC_ID_KB)
mjr 77:0b96f6867312 306 {
mjr 77:0b96f6867312 307 if (rptid == REPORT_ID_KB)
mjr 77:0b96f6867312 308 return kbIdleTime;
mjr 77:0b96f6867312 309 if (rptid == REPORT_ID_MEDIA)
mjr 77:0b96f6867312 310 return mediaIdleTime;
mjr 77:0b96f6867312 311 }
mjr 77:0b96f6867312 312
mjr 77:0b96f6867312 313 // we don't use idle times for other interfaces or report types
mjr 77:0b96f6867312 314 return 0;
mjr 77:0b96f6867312 315 }
mjr 77:0b96f6867312 316
mjr 77:0b96f6867312 317 /* callback overrides */
mjr 77:0b96f6867312 318 virtual bool USBCallback_setConfiguration(uint8_t configuration);
mjr 77:0b96f6867312 319 virtual bool USBCallback_setInterface(uint16_t interface, uint8_t alternate)
mjr 77:0b96f6867312 320 { return interface == 0 || interface == 1; }
mjr 77:0b96f6867312 321
mjr 77:0b96f6867312 322 virtual bool EP1_OUT_callback();
mjr 77:0b96f6867312 323 virtual bool EP4_OUT_callback();
mjr 77:0b96f6867312 324
mjr 77:0b96f6867312 325 private:
mjr 38:091e511ce8a0 326
mjr 77:0b96f6867312 327 // Incoming LedWiz message buffer. Each LedWiz message is exactly 8 bytes.
mjr 77:0b96f6867312 328 CircBuf<LedWizMsg, 16> lwbuf;
mjr 77:0b96f6867312 329
mjr 77:0b96f6867312 330 bool enableJoystick;
mjr 77:0b96f6867312 331 bool useKB;
mjr 77:0b96f6867312 332 uint8_t kbIdleTime;
mjr 77:0b96f6867312 333 uint8_t mediaIdleTime;
mjr 77:0b96f6867312 334 int16_t _x;
mjr 77:0b96f6867312 335 int16_t _y;
mjr 77:0b96f6867312 336 int16_t _z;
mjr 77:0b96f6867312 337 uint16_t _buttonsLo;
mjr 77:0b96f6867312 338 uint16_t _buttonsHi;
mjr 77:0b96f6867312 339 uint16_t _status;
mjr 77:0b96f6867312 340
mjr 77:0b96f6867312 341 void _init();
mjr 0:5acbbe3f4cf4 342 };
mjr 0:5acbbe3f4cf4 343
mjr 38:091e511ce8a0 344 #endif