An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Wed Jun 03 18:52:22 2015 +0000
Revision:
24:e902bc7cdc1e
Parent:
23:14f8c5004cd0
Child:
25:e22b88bd783a
Restored CCD sensor as the default sensor in config.h

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 17:ab3cec0c8bf4 3 // To customize your private configuration, simply open this file in the
mjr 17:ab3cec0c8bf4 4 // mbed on-line IDE, make your changes, save the file, and click the Compile
mjr 17:ab3cec0c8bf4 5 // button at the top of the window. That will generate a customized .bin
mjr 17:ab3cec0c8bf4 6 // file that you can download onto your KL25Z board.
mjr 17:ab3cec0c8bf4 7
mjr 17:ab3cec0c8bf4 8
mjr 17:ab3cec0c8bf4 9 // --------------------------------------------------------------------------
mjr 21:5048e16cc9ef 10 //
mjr 21:5048e16cc9ef 11 // Enable/disable joystick functions.
mjr 21:5048e16cc9ef 12 //
mjr 21:5048e16cc9ef 13 // This controls whether or not we send joystick reports to the PC with the
mjr 21:5048e16cc9ef 14 // plunger and accelerometer readings. By default, this is enabled. If
mjr 21:5048e16cc9ef 15 // you want to use two or more physical KL25Z Pinscape controllers in your
mjr 21:5048e16cc9ef 16 // system (e.g., if you want to increase the number of output ports
mjr 21:5048e16cc9ef 17 // available by using two or more KL25Z's), you should disable the joystick
mjr 21:5048e16cc9ef 18 // features on the second (and third+) controller. It's not useful to have
mjr 21:5048e16cc9ef 19 // more than one board reporting the accelerometer readings to the host -
mjr 21:5048e16cc9ef 20 // doing so will just add USB overhead. This setting lets you turn off the
mjr 21:5048e16cc9ef 21 // reports for the secondary controllers, turning the secondary boards into
mjr 21:5048e16cc9ef 22 // output-only devices.
mjr 21:5048e16cc9ef 23 //
mjr 21:5048e16cc9ef 24 // Note that you can't use button inputs on a controller that has the
mjr 21:5048e16cc9ef 25 // joystick features disabled, because the buttons are handled via the
mjr 21:5048e16cc9ef 26 // joystick reports. Wire all of your buttons to the primary KL25Z that
mjr 21:5048e16cc9ef 27 // has the joystick features enabled.
mjr 21:5048e16cc9ef 28 //
mjr 21:5048e16cc9ef 29 // To disable the joystick features, just comment out the next line (add
mjr 21:5048e16cc9ef 30 // two slashes at the beginning of the line).
mjr 21:5048e16cc9ef 31 //
mjr 21:5048e16cc9ef 32 #define ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 33
mjr 21:5048e16cc9ef 34
mjr 21:5048e16cc9ef 35 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 36 //
mjr 17:ab3cec0c8bf4 37 // LedWiz default unit number.
mjr 17:ab3cec0c8bf4 38 //
mjr 21:5048e16cc9ef 39 // Each LedWiz device has a unit number, from 1 to 16. This lets you install
mjr 17:ab3cec0c8bf4 40 // more than one LedWiz in your system: as long as each one has a different
mjr 17:ab3cec0c8bf4 41 // unit number, the software on the PC can tell them apart and route commands
mjr 17:ab3cec0c8bf4 42 // to the right device.
mjr 17:ab3cec0c8bf4 43 //
mjr 21:5048e16cc9ef 44 // A *real* LedWiz has its unit number set at the factory; they set it to
mjr 21:5048e16cc9ef 45 // unit 1 unless you specifically request a different number when you place
mjr 21:5048e16cc9ef 46 // your order.
mjr 21:5048e16cc9ef 47 //
mjr 21:5048e16cc9ef 48 // For our *emulated* LedWiz, we default to unit #8. However, if we're set
mjr 21:5048e16cc9ef 49 // up as a secondary Pinscape controller with the joystick functions turned
mjr 21:5048e16cc9ef 50 // off, we'll use unit #9 instead.
mjr 17:ab3cec0c8bf4 51 //
mjr 21:5048e16cc9ef 52 // The reason we start at unit #8 is that we want to avoid conflicting with
mjr 21:5048e16cc9ef 53 // any real LedWiz devices you have in your system. If you have a real
mjr 21:5048e16cc9ef 54 // LedWiz, it's probably unit #1, since that's the standard factor setting.
mjr 21:5048e16cc9ef 55 // If you have two real LedWiz's, they're probably units #1 and #2. If you
mjr 21:5048e16cc9ef 56 // have three... well, I don't think anyone actually has three, but if you
mjr 21:5048e16cc9ef 57 // did it would probably be unit #3. And so on. That's why we start at #8 -
mjr 21:5048e16cc9ef 58 // it seems really unlikely that this will conflict with anybody's existing
mjr 21:5048e16cc9ef 59 // setup. On the off chance it does, simply change the setting here to a
mjr 21:5048e16cc9ef 60 // different unit number that's not already used in your system.
mjr 17:ab3cec0c8bf4 61 //
mjr 21:5048e16cc9ef 62 // Note 1: the unit number here is the *user visible* unit number that
mjr 21:5048e16cc9ef 63 // you use on the PC side. It's the number you specify in your DOF
mjr 21:5048e16cc9ef 64 // configuration and so forth. Internally, the USB reports subtract
mjr 21:5048e16cc9ef 65 // one from this number - e.g., nominal unit #1 shows up as 0 in the USB
mjr 21:5048e16cc9ef 66 // reports. If you're trying to puzzle out why all of the USB reports
mjr 21:5048e16cc9ef 67 // are all off by one from the unit number you select here, that's why.
mjr 17:ab3cec0c8bf4 68 //
mjr 17:ab3cec0c8bf4 69 // Note 2: the DOF Configtool (google it) knows about the Pinscape
mjr 21:5048e16cc9ef 70 // controller (it's known there as just a "KL25Z" rather than Pinscape).
mjr 21:5048e16cc9ef 71 // And the DOF tool knows that it uses #8 as its default unit number, so
mjr 21:5048e16cc9ef 72 // it names the .ini file for this controller xxx8.ini. If you change the
mjr 21:5048e16cc9ef 73 // unit number here, remember to rename the DOF-generated .ini file to
mjr 21:5048e16cc9ef 74 // match, by changing the "8" at the end of the filename to the new number
mjr 21:5048e16cc9ef 75 // you set here.
mjr 21:5048e16cc9ef 76 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER =
mjr 21:5048e16cc9ef 77 #ifdef ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 78 0x08; // joystick enabled - assume we're the primary KL25Z, so use unit #8
mjr 21:5048e16cc9ef 79 #else
mjr 21:5048e16cc9ef 80 0x09; // joystick disabled - assume we're a secondary, output-only KL25Z, so use #9
mjr 21:5048e16cc9ef 81 #endif
mjr 17:ab3cec0c8bf4 82
mjr 17:ab3cec0c8bf4 83 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 84 //
mjr 17:ab3cec0c8bf4 85 // Plunger CCD sensor.
mjr 17:ab3cec0c8bf4 86 //
mjr 17:ab3cec0c8bf4 87 // If you're NOT using the CCD sensor, comment out the next line (by adding
mjr 17:ab3cec0c8bf4 88 // two slashes at the start of the line).
mjr 17:ab3cec0c8bf4 89
mjr 24:e902bc7cdc1e 90 #define ENABLE_CCD_SENSOR
mjr 17:ab3cec0c8bf4 91
mjr 17:ab3cec0c8bf4 92 // The KL25Z pins that the CCD sensor is physically attached to:
mjr 17:ab3cec0c8bf4 93 //
mjr 17:ab3cec0c8bf4 94 // CCD_SI_PIN = the SI (sensor data input) pin
mjr 17:ab3cec0c8bf4 95 // CCD_CLOCK_PIN = the sensor clock pin
mjr 17:ab3cec0c8bf4 96 // CCD_SO_PIN = the SO (sensor data output) pin
mjr 17:ab3cec0c8bf4 97 //
mjr 17:ab3cec0c8bf4 98 // The SI an Clock pins are DigitalOut pins, so these can be set to just
mjr 17:ab3cec0c8bf4 99 // about any gpio pins that aren't used for something else. The SO pin must
mjr 17:ab3cec0c8bf4 100 // be an AnalogIn capable pin - only a few of the KL25Z gpio pins qualify,
mjr 17:ab3cec0c8bf4 101 // so check the pinout diagram to find suitable candidates if you need to
mjr 17:ab3cec0c8bf4 102 // change this. Note that some of the gpio pins shown in the mbed pinout
mjr 17:ab3cec0c8bf4 103 // diagrams are committed to other uses by the mbed software or by the KL25Z
mjr 17:ab3cec0c8bf4 104 // wiring itself, so if you do change these, be sure that the new pins you
mjr 17:ab3cec0c8bf4 105 // select are really available.
mjr 17:ab3cec0c8bf4 106
mjr 17:ab3cec0c8bf4 107 const PinName CCD_SI_PIN = PTE20;
mjr 17:ab3cec0c8bf4 108 const PinName CCD_CLOCK_PIN = PTE21;
mjr 17:ab3cec0c8bf4 109 const PinName CCD_SO_PIN = PTB0;
mjr 17:ab3cec0c8bf4 110
mjr 17:ab3cec0c8bf4 111 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 112 //
mjr 17:ab3cec0c8bf4 113 // Plunger potentiometer sensor.
mjr 17:ab3cec0c8bf4 114 //
mjr 23:14f8c5004cd0 115 // If you're using a potentiometer as the plunger sensor, un-comment the
mjr 23:14f8c5004cd0 116 // next line (by removing the two slashes at the start of the line), and
mjr 23:14f8c5004cd0 117 // also comment out the ENABLE_CCD_SENSOR line above.
mjr 17:ab3cec0c8bf4 118
mjr 24:e902bc7cdc1e 119 //#define ENABLE_POT_SENSOR
mjr 17:ab3cec0c8bf4 120
mjr 23:14f8c5004cd0 121 // The KL25Z pin that your potentiometer is attached to. The potentiometer
mjr 23:14f8c5004cd0 122 // requires wiring three connectins:
mjr 23:14f8c5004cd0 123 //
mjr 23:14f8c5004cd0 124 // - Wire the fixed resistance end of the potentiometer nearest the KNOB
mjr 23:14f8c5004cd0 125 // end of the plunger to the 3.3V output from the KL25Z
mjr 23:14f8c5004cd0 126 //
mjr 23:14f8c5004cd0 127 // - Wire the other fixed resistance end to KL25Z Ground
mjr 23:14f8c5004cd0 128 //
mjr 23:14f8c5004cd0 129 // - Wire the potentiometer wiper (the variable output terminal) to the
mjr 23:14f8c5004cd0 130 // KL25Z pin identified below.
mjr 23:14f8c5004cd0 131 //
mjr 23:14f8c5004cd0 132 // Note that you can change the pin selection below, but if you do, the new
mjr 23:14f8c5004cd0 133 // pin must be AnalogIn capable. Only a few of the KL25Z pins qualify. Refer
mjr 23:14f8c5004cd0 134 // to the KL25Z pinout diagram to find another AnalogIn pin if you need to
mjr 23:14f8c5004cd0 135 // change this for any reason. Note that the default is to use the same analog
mjr 23:14f8c5004cd0 136 // input that the CCD sensor would use if it were enabled, which is why you
mjr 23:14f8c5004cd0 137 // have to be sure to disable the CCD support in the software if you're using
mjr 23:14f8c5004cd0 138 // a potentiometer as the sensor.
mjr 17:ab3cec0c8bf4 139
mjr 17:ab3cec0c8bf4 140 const PinName POT_PIN = PTB0;
mjr 17:ab3cec0c8bf4 141
mjr 17:ab3cec0c8bf4 142 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 143 //
mjr 17:ab3cec0c8bf4 144 // Plunger calibration button and indicator light.
mjr 17:ab3cec0c8bf4 145 //
mjr 17:ab3cec0c8bf4 146 // These specify the pin names of the plunger calibration button connections.
mjr 17:ab3cec0c8bf4 147 // If you're not using these, you can set these to NC. (You can even use the
mjr 17:ab3cec0c8bf4 148 // button but not the LED; set the LED to NC if you're only using the button.)
mjr 17:ab3cec0c8bf4 149 //
mjr 17:ab3cec0c8bf4 150 // If you're using the button, wire one terminal of a momentary switch or
mjr 17:ab3cec0c8bf4 151 // pushbutton to the input pin you select, and wire the other terminal to the
mjr 17:ab3cec0c8bf4 152 // KL25Z ground. Push and hold the button for a few seconds to enter plunger
mjr 17:ab3cec0c8bf4 153 // calibration mode.
mjr 17:ab3cec0c8bf4 154 //
mjr 17:ab3cec0c8bf4 155 // If you're using the LED, you'll need to build a little transistor power
mjr 17:ab3cec0c8bf4 156 // booster circuit to power the LED, as described in the build guide. The
mjr 17:ab3cec0c8bf4 157 // LED gives you visual confirmation that the you've triggered calibration
mjr 17:ab3cec0c8bf4 158 // mode and lets you know when the mode times out. Note that the LED on
mjr 17:ab3cec0c8bf4 159 // board the KL25Z also changes color to indicate the same information, so
mjr 17:ab3cec0c8bf4 160 // if the KL25Z is positioned so that you can see it while you're doing the
mjr 17:ab3cec0c8bf4 161 // calibration, you don't really need a separate button LED. But the
mjr 17:ab3cec0c8bf4 162 // separate LED is spiffy, especially if it's embedded in the pushbutton.
mjr 17:ab3cec0c8bf4 163 //
mjr 17:ab3cec0c8bf4 164 // Note that you can skip the pushbutton altogether and trigger calibration
mjr 17:ab3cec0c8bf4 165 // from the Windows control software. But again, the button is spiffier.
mjr 17:ab3cec0c8bf4 166
mjr 17:ab3cec0c8bf4 167 // calibration button input
mjr 17:ab3cec0c8bf4 168 const PinName CAL_BUTTON_PIN = PTE29;
mjr 17:ab3cec0c8bf4 169
mjr 17:ab3cec0c8bf4 170 // calibration button indicator LED
mjr 17:ab3cec0c8bf4 171 const PinName CAL_BUTTON_LED = PTE23;
mjr 17:ab3cec0c8bf4 172
mjr 17:ab3cec0c8bf4 173
mjr 17:ab3cec0c8bf4 174 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 175 //
mjr 17:ab3cec0c8bf4 176 // Pseudo "Launch Ball" button.
mjr 17:ab3cec0c8bf4 177 //
mjr 17:ab3cec0c8bf4 178 // Zeb of zebsboards.com came up with a clever scheme for his plunger kit
mjr 17:ab3cec0c8bf4 179 // that lets the plunger simulate a Launch Ball button for tables where
mjr 17:ab3cec0c8bf4 180 // the original used a Launch button instead of a plunger (e.g., Medieval
mjr 17:ab3cec0c8bf4 181 // Madness, T2, or Star Trek: The Next Generation). The scheme uses an
mjr 17:ab3cec0c8bf4 182 // LedWiz output to tell us when such a table is loaded. On the DOF
mjr 17:ab3cec0c8bf4 183 // Configtool site, this is called "ZB Launch Ball". When this LedWiz
mjr 17:ab3cec0c8bf4 184 // output is ON, it tells us that the table will ignore the analog plunger
mjr 17:ab3cec0c8bf4 185 // because it doesn't have a plunger object, so the analog plunger should
mjr 17:ab3cec0c8bf4 186 // send a Launch Ball button press signal when the user releases the plunger.
mjr 17:ab3cec0c8bf4 187 //
mjr 17:ab3cec0c8bf4 188 // If you wish to use this feature, you need to do two things:
mjr 17:ab3cec0c8bf4 189 //
mjr 17:ab3cec0c8bf4 190 // First, adjust the two lines below to set the LedWiz output and joystick
mjr 17:ab3cec0c8bf4 191 // button you wish to use for this feature. The defaults below should be
mjr 17:ab3cec0c8bf4 192 // fine for most people, but if you're using the Pinscape controller for
mjr 17:ab3cec0c8bf4 193 // your physical button wiring, you should set the launch button to match
mjr 17:ab3cec0c8bf4 194 // where you physically wired your actual Launch Ball button. Likewise,
mjr 17:ab3cec0c8bf4 195 // change the LedWiz port if you're using the one below for some actual
mjr 17:ab3cec0c8bf4 196 // hardware output. This is a virtual port that won't control any hardware;
mjr 17:ab3cec0c8bf4 197 // it's just for signaling the plunger that we're in "button mode". Note
mjr 17:ab3cec0c8bf4 198 // that the numbering for the both the LedWiz port and joystick button
mjr 17:ab3cec0c8bf4 199 // start at 1 to match the DOF Configtool and VP dialog numbering.
mjr 17:ab3cec0c8bf4 200 //
mjr 17:ab3cec0c8bf4 201 // Second, in the DOF Configtool, make sure you have a Pinscape controller
mjr 17:ab3cec0c8bf4 202 // in your cabinet configuration, then go to your Port Assignments and set
mjr 17:ab3cec0c8bf4 203 // the port defined below to "ZB Launch Ball".
mjr 17:ab3cec0c8bf4 204 //
mjr 17:ab3cec0c8bf4 205 // Third, open the Visual Pinball editor, open the Preferences | Keys
mjr 17:ab3cec0c8bf4 206 // dialog, and find the Plunger item. Open the drop-down list under that
mjr 17:ab3cec0c8bf4 207 // item and select the button number defined below.
mjr 17:ab3cec0c8bf4 208 //
mjr 21:5048e16cc9ef 209 // To disable this feature, just set ZBLaunchBallPort to 0 here.
mjr 17:ab3cec0c8bf4 210
mjr 17:ab3cec0c8bf4 211 const int ZBLaunchBallPort = 32;
mjr 17:ab3cec0c8bf4 212 const int LaunchBallButton = 24;
mjr 17:ab3cec0c8bf4 213
mjr 18:5e890ebd0023 214 // Distance necessary to push the plunger to activate the simulated
mjr 18:5e890ebd0023 215 // launch ball button, in inches. A standard pinball plunger can be
mjr 18:5e890ebd0023 216 // pushed forward about 1/2". However, the barrel spring is very
mjr 18:5e890ebd0023 217 // stiff, and anything more than about 1/8" requires quite a bit
mjr 18:5e890ebd0023 218 // of force. Ideally the force required should be about the same as
mjr 18:5e890ebd0023 219 // for any ordinary pushbutton.
mjr 18:5e890ebd0023 220 //
mjr 18:5e890ebd0023 221 // On my cabinet, empirically, a distance around 2mm (.08") seems
mjr 18:5e890ebd0023 222 // to work pretty well. It's far enough that it doesn't trigger
mjr 18:5e890ebd0023 223 // spuriously, but short enough that it responds to a reasonably
mjr 18:5e890ebd0023 224 // light push.
mjr 18:5e890ebd0023 225 //
mjr 18:5e890ebd0023 226 // You might need to adjust this up or down to get the right feel.
mjr 18:5e890ebd0023 227 // Alternatively, if you don't like the "push" gesture at all and
mjr 18:5e890ebd0023 228 // would prefer to only make the plunger respond to a pull-and-release
mjr 18:5e890ebd0023 229 // motion, simply set this to, say, 2.0 - it's impossible to push a
mjr 18:5e890ebd0023 230 // plunger forward that far, so that will effectively turn off the
mjr 18:5e890ebd0023 231 // push mode.
mjr 18:5e890ebd0023 232 const float LaunchBallPushDistance = .08;
mjr 18:5e890ebd0023 233
mjr 17:ab3cec0c8bf4 234
mjr 21:5048e16cc9ef 235 #ifdef DECL_EXTERNS
mjr 17:ab3cec0c8bf4 236 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 237 //
mjr 17:ab3cec0c8bf4 238
mjr 17:ab3cec0c8bf4 239 // Joystick button input pin assignments.
mjr 17:ab3cec0c8bf4 240 //
mjr 17:ab3cec0c8bf4 241 // You can wire up to 32 GPIO ports to buttons (equipped with
mjr 17:ab3cec0c8bf4 242 // momentary switches). Connect each switch between the desired
mjr 17:ab3cec0c8bf4 243 // GPIO port and ground (J9 pin 12 or 14). When the button is pressed,
mjr 17:ab3cec0c8bf4 244 // we'll tell the host PC that the corresponding joystick button is
mjr 17:ab3cec0c8bf4 245 // pressed. We debounce the keystrokes in software, so you can simply
mjr 17:ab3cec0c8bf4 246 // wire directly to pushbuttons with no additional external hardware.
mjr 17:ab3cec0c8bf4 247 //
mjr 17:ab3cec0c8bf4 248 // Note that we assign 24 buttons by default, even though the USB
mjr 17:ab3cec0c8bf4 249 // joystick interface can handle up to 32 buttons. VP itself only
mjr 17:ab3cec0c8bf4 250 // allows mapping of up to 24 buttons in the preferences dialog
mjr 17:ab3cec0c8bf4 251 // (although it can recognize 32 buttons internally). If you want
mjr 17:ab3cec0c8bf4 252 // more buttons, you can reassign pins that are assigned by default
mjr 17:ab3cec0c8bf4 253 // as LedWiz outputs. To reassign a pin, find the pin you wish to
mjr 17:ab3cec0c8bf4 254 // reassign in the LedWizPortMap array below, and change the pin name
mjr 17:ab3cec0c8bf4 255 // there to NC (for Not Connected). You can then change one of the
mjr 17:ab3cec0c8bf4 256 // "NC" entries below to the reallocated pin name. The limit is 32
mjr 17:ab3cec0c8bf4 257 // buttons total.
mjr 17:ab3cec0c8bf4 258 //
mjr 17:ab3cec0c8bf4 259 // Note: PTD1 (pin J2-12) should NOT be assigned as a button input,
mjr 17:ab3cec0c8bf4 260 // as this pin is physically connected on the KL25Z to the on-board
mjr 17:ab3cec0c8bf4 261 // indicator LED's blue segment. This precludes any other use of
mjr 17:ab3cec0c8bf4 262 // the pin.
mjr 17:ab3cec0c8bf4 263 PinName buttonMap[] = {
mjr 17:ab3cec0c8bf4 264 PTC2, // J10 pin 10, joystick button 1
mjr 17:ab3cec0c8bf4 265 PTB3, // J10 pin 8, joystick button 2
mjr 17:ab3cec0c8bf4 266 PTB2, // J10 pin 6, joystick button 3
mjr 17:ab3cec0c8bf4 267 PTB1, // J10 pin 4, joystick button 4
mjr 17:ab3cec0c8bf4 268
mjr 17:ab3cec0c8bf4 269 PTE30, // J10 pin 11, joystick button 5
mjr 17:ab3cec0c8bf4 270 PTE22, // J10 pin 5, joystick button 6
mjr 17:ab3cec0c8bf4 271
mjr 17:ab3cec0c8bf4 272 PTE5, // J9 pin 15, joystick button 7
mjr 17:ab3cec0c8bf4 273 PTE4, // J9 pin 13, joystick button 8
mjr 17:ab3cec0c8bf4 274 PTE3, // J9 pin 11, joystick button 9
mjr 17:ab3cec0c8bf4 275 PTE2, // J9 pin 9, joystick button 10
mjr 17:ab3cec0c8bf4 276 PTB11, // J9 pin 7, joystick button 11
mjr 17:ab3cec0c8bf4 277 PTB10, // J9 pin 5, joystick button 12
mjr 17:ab3cec0c8bf4 278 PTB9, // J9 pin 3, joystick button 13
mjr 17:ab3cec0c8bf4 279 PTB8, // J9 pin 1, joystick button 14
mjr 17:ab3cec0c8bf4 280
mjr 17:ab3cec0c8bf4 281 PTC12, // J2 pin 1, joystick button 15
mjr 17:ab3cec0c8bf4 282 PTC13, // J2 pin 3, joystick button 16
mjr 17:ab3cec0c8bf4 283 PTC16, // J2 pin 5, joystick button 17
mjr 17:ab3cec0c8bf4 284 PTC17, // J2 pin 7, joystick button 18
mjr 17:ab3cec0c8bf4 285 PTA16, // J2 pin 9, joystick button 19
mjr 17:ab3cec0c8bf4 286 PTA17, // J2 pin 11, joystick button 20
mjr 17:ab3cec0c8bf4 287 PTE31, // J2 pin 13, joystick button 21
mjr 17:ab3cec0c8bf4 288 PTD6, // J2 pin 17, joystick button 22
mjr 17:ab3cec0c8bf4 289 PTD7, // J2 pin 19, joystick button 23
mjr 17:ab3cec0c8bf4 290
mjr 17:ab3cec0c8bf4 291 PTE1, // J2 pin 20, joystick button 24
mjr 17:ab3cec0c8bf4 292
mjr 17:ab3cec0c8bf4 293 NC, // not used, joystick button 25
mjr 17:ab3cec0c8bf4 294 NC, // not used, joystick button 26
mjr 17:ab3cec0c8bf4 295 NC, // not used, joystick button 27
mjr 17:ab3cec0c8bf4 296 NC, // not used, joystick button 28
mjr 17:ab3cec0c8bf4 297 NC, // not used, joystick button 29
mjr 17:ab3cec0c8bf4 298 NC, // not used, joystick button 30
mjr 17:ab3cec0c8bf4 299 NC, // not used, joystick button 31
mjr 17:ab3cec0c8bf4 300 NC // not used, joystick button 32
mjr 17:ab3cec0c8bf4 301 };
mjr 17:ab3cec0c8bf4 302
mjr 17:ab3cec0c8bf4 303 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 304 //
mjr 17:ab3cec0c8bf4 305 // LED-Wiz emulation output pin assignments.
mjr 17:ab3cec0c8bf4 306 //
mjr 17:ab3cec0c8bf4 307 // The LED-Wiz protocol allows setting individual intensity levels
mjr 17:ab3cec0c8bf4 308 // on all outputs, with 48 levels of intensity. This can be used
mjr 17:ab3cec0c8bf4 309 // to control lamp brightness and motor speeds, among other things.
mjr 17:ab3cec0c8bf4 310 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 17:ab3cec0c8bf4 311 // can support the full complement of 32 outputs, we can only provide
mjr 17:ab3cec0c8bf4 312 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 17:ab3cec0c8bf4 313 // can only be switched fully on and fully off - we can't support
mjr 17:ab3cec0c8bf4 314 // dimming on these, so they'll ignore any intensity level setting
mjr 17:ab3cec0c8bf4 315 // requested by the host. Use these for devices that don't have any
mjr 17:ab3cec0c8bf4 316 // use for intensity settings anyway, such as contactors and knockers.
mjr 17:ab3cec0c8bf4 317 //
mjr 17:ab3cec0c8bf4 318 // Ports with pins assigned as "NC" are not connected. That is,
mjr 17:ab3cec0c8bf4 319 // there's no physical pin for that LedWiz port number. You can
mjr 17:ab3cec0c8bf4 320 // send LedWiz commands to turn NC ports on and off, but doing so
mjr 17:ab3cec0c8bf4 321 // will have no effect. The reason we leave some ports unassigned
mjr 17:ab3cec0c8bf4 322 // is that we don't have enough physical GPIO pins to fill out the
mjr 17:ab3cec0c8bf4 323 // full LedWiz complement of 32 ports. Many pins are already taken
mjr 17:ab3cec0c8bf4 324 // for other purposes, such as button inputs or the plunger CCD
mjr 17:ab3cec0c8bf4 325 // interface.
mjr 17:ab3cec0c8bf4 326 //
mjr 17:ab3cec0c8bf4 327 // The mapping between physical output pins on the KL25Z and the
mjr 17:ab3cec0c8bf4 328 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 17:ab3cec0c8bf4 329 // customize this by changing the entries in the array below if you
mjr 17:ab3cec0c8bf4 330 // wish to rearrange the pins for any reason. Be aware that some
mjr 17:ab3cec0c8bf4 331 // of the physical outputs are already used for other purposes
mjr 17:ab3cec0c8bf4 332 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 17:ab3cec0c8bf4 333 // CCD sensor - but you can of course reassign those as well by
mjr 17:ab3cec0c8bf4 334 // changing the corresponding declarations elsewhere in this module).
mjr 17:ab3cec0c8bf4 335 // The assignments we make here have two main objectives: first,
mjr 17:ab3cec0c8bf4 336 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 17:ab3cec0c8bf4 337 // wiring by keeping the output pins together physically), and
mjr 17:ab3cec0c8bf4 338 // second, to make the physical pin layout match the LED-Wiz port
mjr 17:ab3cec0c8bf4 339 // numbering order to the extent possible. There's one big wrench
mjr 17:ab3cec0c8bf4 340 // in the works, though, which is the limited number and discontiguous
mjr 17:ab3cec0c8bf4 341 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 17:ab3cec0c8bf4 342 // us from doing the most obvious sequential ordering of the pins,
mjr 17:ab3cec0c8bf4 343 // so we end up with the outputs arranged into several blocks.
mjr 17:ab3cec0c8bf4 344 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 17:ab3cec0c8bf4 345 // read on...
mjr 17:ab3cec0c8bf4 346 //
mjr 17:ab3cec0c8bf4 347 // With the LED-Wiz, the host software configuration usually
mjr 17:ab3cec0c8bf4 348 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 17:ab3cec0c8bf4 349 // (for the red, green, and blue components, which need to be
mjr 17:ab3cec0c8bf4 350 // physically wired to separate outputs to allow each color to be
mjr 17:ab3cec0c8bf4 351 // controlled independently). To facilitate this, we arrange the
mjr 17:ab3cec0c8bf4 352 // PWM-enabled outputs so that they're grouped together in the
mjr 17:ab3cec0c8bf4 353 // port numbering scheme. Unfortunately, these outputs aren't
mjr 17:ab3cec0c8bf4 354 // together in a single group in the physical pin layout, so to
mjr 17:ab3cec0c8bf4 355 // group them logically in the LED-Wiz port numbering scheme, we
mjr 17:ab3cec0c8bf4 356 // have to break up the overall numbering scheme into several blocks.
mjr 17:ab3cec0c8bf4 357 // So our port numbering goes sequentially down each column of
mjr 17:ab3cec0c8bf4 358 // header pins, but there are several break points where we have
mjr 17:ab3cec0c8bf4 359 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 17:ab3cec0c8bf4 360 // logically.
mjr 17:ab3cec0c8bf4 361 //
mjr 17:ab3cec0c8bf4 362 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 17:ab3cec0c8bf4 363 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 17:ab3cec0c8bf4 364 // documentation - this is the physical pin that the port controls.
mjr 17:ab3cec0c8bf4 365 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 17:ab3cec0c8bf4 366 // number that you use on the PC side (in the DirectOutput config
mjr 17:ab3cec0c8bf4 367 // file, for example) to address the port. PWM-capable ports are
mjr 17:ab3cec0c8bf4 368 // marked as such - we group the PWM-capable ports into the first
mjr 17:ab3cec0c8bf4 369 // 10 LED-Wiz port numbers.
mjr 17:ab3cec0c8bf4 370 //
mjr 17:ab3cec0c8bf4 371 // If you wish to reallocate a pin in the array below to some other
mjr 17:ab3cec0c8bf4 372 // use, such as a button input port, simply change the pin name in
mjr 17:ab3cec0c8bf4 373 // the entry to NC (for Not Connected). This will disable the given
mjr 17:ab3cec0c8bf4 374 // logical LedWiz port number and free up the physical pin.
mjr 17:ab3cec0c8bf4 375 //
mjr 17:ab3cec0c8bf4 376 // If you wish to reallocate a pin currently assigned to the button
mjr 17:ab3cec0c8bf4 377 // input array, simply change the entry for the pin in the buttonMap[]
mjr 17:ab3cec0c8bf4 378 // array above to NC (for "not connected"), and plug the pin name into
mjr 17:ab3cec0c8bf4 379 // a slot of your choice in the array below.
mjr 17:ab3cec0c8bf4 380 //
mjr 17:ab3cec0c8bf4 381 // Note: PTD1 (pin J2-12) should NOT be assigned as an LedWiz output,
mjr 17:ab3cec0c8bf4 382 // as this pin is physically connected on the KL25Z to the on-board
mjr 17:ab3cec0c8bf4 383 // indicator LED's blue segment. This precludes any other use of
mjr 17:ab3cec0c8bf4 384 // the pin.
mjr 17:ab3cec0c8bf4 385 //
mjr 17:ab3cec0c8bf4 386 struct {
mjr 17:ab3cec0c8bf4 387 PinName pin;
mjr 17:ab3cec0c8bf4 388 bool isPWM;
mjr 17:ab3cec0c8bf4 389 } ledWizPortMap[32] = {
mjr 17:ab3cec0c8bf4 390 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 17:ab3cec0c8bf4 391 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 17:ab3cec0c8bf4 392 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 17:ab3cec0c8bf4 393 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 17:ab3cec0c8bf4 394 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 17:ab3cec0c8bf4 395 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 17:ab3cec0c8bf4 396 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 17:ab3cec0c8bf4 397 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 17:ab3cec0c8bf4 398 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 17:ab3cec0c8bf4 399 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 17:ab3cec0c8bf4 400 { PTD2, false }, // pin J2-8, LW port 11
mjr 17:ab3cec0c8bf4 401 { PTC8, false }, // pin J1-14, LW port 12
mjr 17:ab3cec0c8bf4 402 { PTC9, false }, // pin J1-16, LW port 13
mjr 17:ab3cec0c8bf4 403 { PTC7, false }, // pin J1-1, LW port 14
mjr 17:ab3cec0c8bf4 404 { PTC0, false }, // pin J1-3, LW port 15
mjr 17:ab3cec0c8bf4 405 { PTC3, false }, // pin J1-5, LW port 16
mjr 17:ab3cec0c8bf4 406 { PTC4, false }, // pin J1-7, LW port 17
mjr 17:ab3cec0c8bf4 407 { PTC5, false }, // pin J1-9, LW port 18
mjr 17:ab3cec0c8bf4 408 { PTC6, false }, // pin J1-11, LW port 19
mjr 17:ab3cec0c8bf4 409 { PTC10, false }, // pin J1-13, LW port 20
mjr 17:ab3cec0c8bf4 410 { PTC11, false }, // pin J1-15, LW port 21
mjr 17:ab3cec0c8bf4 411 { PTE0, false }, // pin J2-18, LW port 22
mjr 17:ab3cec0c8bf4 412 { NC, false }, // Not used, LW port 23
mjr 17:ab3cec0c8bf4 413 { NC, false }, // Not used, LW port 24
mjr 17:ab3cec0c8bf4 414 { NC, false }, // Not used, LW port 25
mjr 17:ab3cec0c8bf4 415 { NC, false }, // Not used, LW port 26
mjr 17:ab3cec0c8bf4 416 { NC, false }, // Not used, LW port 27
mjr 17:ab3cec0c8bf4 417 { NC, false }, // Not used, LW port 28
mjr 17:ab3cec0c8bf4 418 { NC, false }, // Not used, LW port 29
mjr 17:ab3cec0c8bf4 419 { NC, false }, // Not used, LW port 30
mjr 17:ab3cec0c8bf4 420 { NC, false }, // Not used, LW port 31
mjr 17:ab3cec0c8bf4 421 { NC, false } // Not used, LW port 32
mjr 17:ab3cec0c8bf4 422 };
mjr 17:ab3cec0c8bf4 423
mjr 21:5048e16cc9ef 424
mjr 21:5048e16cc9ef 425 #endif // DECL_EXTERNS