An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Tue Sep 01 04:27:15 2015 +0000
Revision:
25:e22b88bd783a
Parent:
24:e902bc7cdc1e
Child:
26:cb71c4af2912
Centralized the CCD pixel count setting to a single config.h option; added an option to config.h to select the board's mounting orientation for the accelerometer

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 17:ab3cec0c8bf4 3 // To customize your private configuration, simply open this file in the
mjr 17:ab3cec0c8bf4 4 // mbed on-line IDE, make your changes, save the file, and click the Compile
mjr 17:ab3cec0c8bf4 5 // button at the top of the window. That will generate a customized .bin
mjr 17:ab3cec0c8bf4 6 // file that you can download onto your KL25Z board.
mjr 17:ab3cec0c8bf4 7
mjr 25:e22b88bd783a 8 #ifndef CONFIG_H
mjr 25:e22b88bd783a 9 #define CONFIG_H
mjr 17:ab3cec0c8bf4 10
mjr 17:ab3cec0c8bf4 11 // --------------------------------------------------------------------------
mjr 21:5048e16cc9ef 12 //
mjr 21:5048e16cc9ef 13 // Enable/disable joystick functions.
mjr 21:5048e16cc9ef 14 //
mjr 21:5048e16cc9ef 15 // This controls whether or not we send joystick reports to the PC with the
mjr 21:5048e16cc9ef 16 // plunger and accelerometer readings. By default, this is enabled. If
mjr 21:5048e16cc9ef 17 // you want to use two or more physical KL25Z Pinscape controllers in your
mjr 21:5048e16cc9ef 18 // system (e.g., if you want to increase the number of output ports
mjr 21:5048e16cc9ef 19 // available by using two or more KL25Z's), you should disable the joystick
mjr 21:5048e16cc9ef 20 // features on the second (and third+) controller. It's not useful to have
mjr 21:5048e16cc9ef 21 // more than one board reporting the accelerometer readings to the host -
mjr 21:5048e16cc9ef 22 // doing so will just add USB overhead. This setting lets you turn off the
mjr 21:5048e16cc9ef 23 // reports for the secondary controllers, turning the secondary boards into
mjr 21:5048e16cc9ef 24 // output-only devices.
mjr 21:5048e16cc9ef 25 //
mjr 21:5048e16cc9ef 26 // Note that you can't use button inputs on a controller that has the
mjr 21:5048e16cc9ef 27 // joystick features disabled, because the buttons are handled via the
mjr 21:5048e16cc9ef 28 // joystick reports. Wire all of your buttons to the primary KL25Z that
mjr 21:5048e16cc9ef 29 // has the joystick features enabled.
mjr 21:5048e16cc9ef 30 //
mjr 21:5048e16cc9ef 31 // To disable the joystick features, just comment out the next line (add
mjr 21:5048e16cc9ef 32 // two slashes at the beginning of the line).
mjr 21:5048e16cc9ef 33 //
mjr 21:5048e16cc9ef 34 #define ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 35
mjr 21:5048e16cc9ef 36
mjr 25:e22b88bd783a 37 // Accelerometer orientation. The accelerometer feature lets Visual Pinball
mjr 25:e22b88bd783a 38 // (and other pinball software) sense nudges to the cabinet, and simulate
mjr 25:e22b88bd783a 39 // the effect on the ball's trajectory during play. We report the direction
mjr 25:e22b88bd783a 40 // of the accelerometer readings as well as the strength, so it's important
mjr 25:e22b88bd783a 41 // for VP and the KL25Z to agree on the physical orientation of the
mjr 25:e22b88bd783a 42 // accelerometer relative to the cabinet. The accelerometer on the KL25Z
mjr 25:e22b88bd783a 43 // is always mounted the same way on the board, but we still have to know
mjr 25:e22b88bd783a 44 // which way you mount the board in your cabinet. We assume as default
mjr 25:e22b88bd783a 45 // orientation where the KL25Z is mounted flat on the bottom of your
mjr 25:e22b88bd783a 46 // cabinet with the USB ports pointing forward, toward the coin door. If
mjr 25:e22b88bd783a 47 // it's more convenient for you to mount the board in a different direction,
mjr 25:e22b88bd783a 48 // you simply need to select the matching direction here. Comment out the
mjr 25:e22b88bd783a 49 // ORIENTATION_PORTS_AT_FRONT line and un-comment the line that matches
mjr 25:e22b88bd783a 50 // your board's orientation.
mjr 25:e22b88bd783a 51
mjr 25:e22b88bd783a 52 #define ORIENTATION_PORTS_AT_FRONT // USB ports pointing toward front of cabinet
mjr 25:e22b88bd783a 53 // #define ORIENTATION_PORTS_AT_LEFT // USB ports pointing toward left side of cab
mjr 25:e22b88bd783a 54 // #define ORIENTATION_PORTS_AT_RIGHT // USB ports pointing toward right side of cab
mjr 25:e22b88bd783a 55 // #define ORIENTATION_PORTS_AT_REAR // USB ports pointing toward back of cabinet
mjr 25:e22b88bd783a 56
mjr 25:e22b88bd783a 57
mjr 21:5048e16cc9ef 58 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 59 //
mjr 17:ab3cec0c8bf4 60 // LedWiz default unit number.
mjr 17:ab3cec0c8bf4 61 //
mjr 21:5048e16cc9ef 62 // Each LedWiz device has a unit number, from 1 to 16. This lets you install
mjr 17:ab3cec0c8bf4 63 // more than one LedWiz in your system: as long as each one has a different
mjr 17:ab3cec0c8bf4 64 // unit number, the software on the PC can tell them apart and route commands
mjr 17:ab3cec0c8bf4 65 // to the right device.
mjr 17:ab3cec0c8bf4 66 //
mjr 21:5048e16cc9ef 67 // A *real* LedWiz has its unit number set at the factory; they set it to
mjr 21:5048e16cc9ef 68 // unit 1 unless you specifically request a different number when you place
mjr 21:5048e16cc9ef 69 // your order.
mjr 21:5048e16cc9ef 70 //
mjr 21:5048e16cc9ef 71 // For our *emulated* LedWiz, we default to unit #8. However, if we're set
mjr 21:5048e16cc9ef 72 // up as a secondary Pinscape controller with the joystick functions turned
mjr 21:5048e16cc9ef 73 // off, we'll use unit #9 instead.
mjr 17:ab3cec0c8bf4 74 //
mjr 21:5048e16cc9ef 75 // The reason we start at unit #8 is that we want to avoid conflicting with
mjr 21:5048e16cc9ef 76 // any real LedWiz devices you have in your system. If you have a real
mjr 21:5048e16cc9ef 77 // LedWiz, it's probably unit #1, since that's the standard factor setting.
mjr 21:5048e16cc9ef 78 // If you have two real LedWiz's, they're probably units #1 and #2. If you
mjr 21:5048e16cc9ef 79 // have three... well, I don't think anyone actually has three, but if you
mjr 21:5048e16cc9ef 80 // did it would probably be unit #3. And so on. That's why we start at #8 -
mjr 21:5048e16cc9ef 81 // it seems really unlikely that this will conflict with anybody's existing
mjr 21:5048e16cc9ef 82 // setup. On the off chance it does, simply change the setting here to a
mjr 21:5048e16cc9ef 83 // different unit number that's not already used in your system.
mjr 17:ab3cec0c8bf4 84 //
mjr 21:5048e16cc9ef 85 // Note 1: the unit number here is the *user visible* unit number that
mjr 21:5048e16cc9ef 86 // you use on the PC side. It's the number you specify in your DOF
mjr 21:5048e16cc9ef 87 // configuration and so forth. Internally, the USB reports subtract
mjr 21:5048e16cc9ef 88 // one from this number - e.g., nominal unit #1 shows up as 0 in the USB
mjr 21:5048e16cc9ef 89 // reports. If you're trying to puzzle out why all of the USB reports
mjr 21:5048e16cc9ef 90 // are all off by one from the unit number you select here, that's why.
mjr 17:ab3cec0c8bf4 91 //
mjr 17:ab3cec0c8bf4 92 // Note 2: the DOF Configtool (google it) knows about the Pinscape
mjr 21:5048e16cc9ef 93 // controller (it's known there as just a "KL25Z" rather than Pinscape).
mjr 21:5048e16cc9ef 94 // And the DOF tool knows that it uses #8 as its default unit number, so
mjr 21:5048e16cc9ef 95 // it names the .ini file for this controller xxx8.ini. If you change the
mjr 21:5048e16cc9ef 96 // unit number here, remember to rename the DOF-generated .ini file to
mjr 21:5048e16cc9ef 97 // match, by changing the "8" at the end of the filename to the new number
mjr 21:5048e16cc9ef 98 // you set here.
mjr 21:5048e16cc9ef 99 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER =
mjr 21:5048e16cc9ef 100 #ifdef ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 101 0x08; // joystick enabled - assume we're the primary KL25Z, so use unit #8
mjr 21:5048e16cc9ef 102 #else
mjr 21:5048e16cc9ef 103 0x09; // joystick disabled - assume we're a secondary, output-only KL25Z, so use #9
mjr 21:5048e16cc9ef 104 #endif
mjr 17:ab3cec0c8bf4 105
mjr 17:ab3cec0c8bf4 106 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 107 //
mjr 17:ab3cec0c8bf4 108 // Plunger CCD sensor.
mjr 17:ab3cec0c8bf4 109 //
mjr 17:ab3cec0c8bf4 110 // If you're NOT using the CCD sensor, comment out the next line (by adding
mjr 17:ab3cec0c8bf4 111 // two slashes at the start of the line).
mjr 17:ab3cec0c8bf4 112
mjr 24:e902bc7cdc1e 113 #define ENABLE_CCD_SENSOR
mjr 17:ab3cec0c8bf4 114
mjr 25:e22b88bd783a 115 // Physical pixel count for your sensor. This software has been tested with
mjr 25:e22b88bd783a 116 // TAOS TSL1410R (1280 pixels) and TSL1412R (1536 pixels) sensors. It might
mjr 25:e22b88bd783a 117 // work with other similar sensors as well, but you'll probably have to make
mjr 25:e22b88bd783a 118 // some changes to the software interface to the sensor if you're using any
mjr 25:e22b88bd783a 119 // sensor outside of the TAOS TSL14xxR series.
mjr 25:e22b88bd783a 120 //
mjr 25:e22b88bd783a 121 // If you're not using a CCD sensor, you can ignore this.
mjr 25:e22b88bd783a 122 const int CCD_NPIXELS = 1280;
mjr 25:e22b88bd783a 123
mjr 25:e22b88bd783a 124 // Number of pixels from the CCD to sample on each high-res scan. We don't
mjr 25:e22b88bd783a 125 // sample every pixel from the sensor on each scan, because (a) we don't
mjr 25:e22b88bd783a 126 // have to, and (b) we don't want to. We don't have to sample all of the
mjr 25:e22b88bd783a 127 // pixels because these sensors have much finer resolution than we need to
mjr 25:e22b88bd783a 128 // get good results. On a typical pinball cabinet setup with a 1920x1080
mjr 25:e22b88bd783a 129 // HD TV display, the on-screen plunger travel distance is about 165 pixels,
mjr 25:e22b88bd783a 130 // so that's all the pixels we need to sample for pixel-accurate animation.
mjr 25:e22b88bd783a 131 // Even so, we still *could* sample at higher resolution, but we don't *want*
mjr 25:e22b88bd783a 132 // to sample more pixels than we have to, because reading each pixel takes
mjr 25:e22b88bd783a 133 // time. The limiting factor for read speed is the sampling time for the ADC
mjr 25:e22b88bd783a 134 // (analog to digital converter); it needs about 20us per sample to get an
mjr 25:e22b88bd783a 135 // accurate voltage reading. We want to animate the on-screen plunger in
mjr 25:e22b88bd783a 136 // real time, with minimal lag, so it's important that we complete each scan
mjr 25:e22b88bd783a 137 // as quickly as possible. The fewer pixels we sample, the faster we
mjr 25:e22b88bd783a 138 // complete each scan.
mjr 25:e22b88bd783a 139 //
mjr 25:e22b88bd783a 140 // Happily, the time needed to read the approximately 165 pixels required
mjr 25:e22b88bd783a 141 // for pixel-accurate positioning on the display is short enough that we can
mjr 25:e22b88bd783a 142 // complete a scan within the cycle time for USB reports. USB gives us a
mjr 25:e22b88bd783a 143 // whole separate timing factor; we can't go much *faster* with USB than
mjr 25:e22b88bd783a 144 // sending a new report about every 10ms. The sensor timing is such that
mjr 25:e22b88bd783a 145 // we can read about 165 pixels in well under 10ms. So that's really the
mjr 25:e22b88bd783a 146 // sweet spot for our scans.
mjr 25:e22b88bd783a 147 //
mjr 25:e22b88bd783a 148 // Note that we distribute the sampled pixels evenly across the full range
mjr 25:e22b88bd783a 149 // of the sensor's pixels. That is, we read every nth pixel, and skip the
mjr 25:e22b88bd783a 150 // ones in between. That means that the sample count here has to be an even
mjr 25:e22b88bd783a 151 // divisor of the physical pixel count. Empirically, reading every 8th
mjr 25:e22b88bd783a 152 // pixel gives us good results on both the TSL1410R and TSL1412R, so you
mjr 25:e22b88bd783a 153 // shouldn't need to change this if you're using one of those sensors. If
mjr 25:e22b88bd783a 154 // you're using a different sensor, you should be sure to adjust this so that
mjr 25:e22b88bd783a 155 // it works out to an integer result with no remainder.
mjr 25:e22b88bd783a 156 //
mjr 25:e22b88bd783a 157 const int CCD_NPIXELS_SAMPLED = CCD_NPIXELS / 8;
mjr 25:e22b88bd783a 158
mjr 17:ab3cec0c8bf4 159 // The KL25Z pins that the CCD sensor is physically attached to:
mjr 17:ab3cec0c8bf4 160 //
mjr 17:ab3cec0c8bf4 161 // CCD_SI_PIN = the SI (sensor data input) pin
mjr 17:ab3cec0c8bf4 162 // CCD_CLOCK_PIN = the sensor clock pin
mjr 17:ab3cec0c8bf4 163 // CCD_SO_PIN = the SO (sensor data output) pin
mjr 17:ab3cec0c8bf4 164 //
mjr 17:ab3cec0c8bf4 165 // The SI an Clock pins are DigitalOut pins, so these can be set to just
mjr 17:ab3cec0c8bf4 166 // about any gpio pins that aren't used for something else. The SO pin must
mjr 17:ab3cec0c8bf4 167 // be an AnalogIn capable pin - only a few of the KL25Z gpio pins qualify,
mjr 17:ab3cec0c8bf4 168 // so check the pinout diagram to find suitable candidates if you need to
mjr 17:ab3cec0c8bf4 169 // change this. Note that some of the gpio pins shown in the mbed pinout
mjr 17:ab3cec0c8bf4 170 // diagrams are committed to other uses by the mbed software or by the KL25Z
mjr 17:ab3cec0c8bf4 171 // wiring itself, so if you do change these, be sure that the new pins you
mjr 17:ab3cec0c8bf4 172 // select are really available.
mjr 17:ab3cec0c8bf4 173
mjr 17:ab3cec0c8bf4 174 const PinName CCD_SI_PIN = PTE20;
mjr 17:ab3cec0c8bf4 175 const PinName CCD_CLOCK_PIN = PTE21;
mjr 17:ab3cec0c8bf4 176 const PinName CCD_SO_PIN = PTB0;
mjr 17:ab3cec0c8bf4 177
mjr 17:ab3cec0c8bf4 178 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 179 //
mjr 17:ab3cec0c8bf4 180 // Plunger potentiometer sensor.
mjr 17:ab3cec0c8bf4 181 //
mjr 23:14f8c5004cd0 182 // If you're using a potentiometer as the plunger sensor, un-comment the
mjr 23:14f8c5004cd0 183 // next line (by removing the two slashes at the start of the line), and
mjr 23:14f8c5004cd0 184 // also comment out the ENABLE_CCD_SENSOR line above.
mjr 17:ab3cec0c8bf4 185
mjr 24:e902bc7cdc1e 186 //#define ENABLE_POT_SENSOR
mjr 17:ab3cec0c8bf4 187
mjr 23:14f8c5004cd0 188 // The KL25Z pin that your potentiometer is attached to. The potentiometer
mjr 23:14f8c5004cd0 189 // requires wiring three connectins:
mjr 23:14f8c5004cd0 190 //
mjr 23:14f8c5004cd0 191 // - Wire the fixed resistance end of the potentiometer nearest the KNOB
mjr 23:14f8c5004cd0 192 // end of the plunger to the 3.3V output from the KL25Z
mjr 23:14f8c5004cd0 193 //
mjr 23:14f8c5004cd0 194 // - Wire the other fixed resistance end to KL25Z Ground
mjr 23:14f8c5004cd0 195 //
mjr 23:14f8c5004cd0 196 // - Wire the potentiometer wiper (the variable output terminal) to the
mjr 23:14f8c5004cd0 197 // KL25Z pin identified below.
mjr 23:14f8c5004cd0 198 //
mjr 23:14f8c5004cd0 199 // Note that you can change the pin selection below, but if you do, the new
mjr 23:14f8c5004cd0 200 // pin must be AnalogIn capable. Only a few of the KL25Z pins qualify. Refer
mjr 23:14f8c5004cd0 201 // to the KL25Z pinout diagram to find another AnalogIn pin if you need to
mjr 23:14f8c5004cd0 202 // change this for any reason. Note that the default is to use the same analog
mjr 23:14f8c5004cd0 203 // input that the CCD sensor would use if it were enabled, which is why you
mjr 23:14f8c5004cd0 204 // have to be sure to disable the CCD support in the software if you're using
mjr 23:14f8c5004cd0 205 // a potentiometer as the sensor.
mjr 17:ab3cec0c8bf4 206
mjr 17:ab3cec0c8bf4 207 const PinName POT_PIN = PTB0;
mjr 17:ab3cec0c8bf4 208
mjr 17:ab3cec0c8bf4 209 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 210 //
mjr 17:ab3cec0c8bf4 211 // Plunger calibration button and indicator light.
mjr 17:ab3cec0c8bf4 212 //
mjr 17:ab3cec0c8bf4 213 // These specify the pin names of the plunger calibration button connections.
mjr 17:ab3cec0c8bf4 214 // If you're not using these, you can set these to NC. (You can even use the
mjr 17:ab3cec0c8bf4 215 // button but not the LED; set the LED to NC if you're only using the button.)
mjr 17:ab3cec0c8bf4 216 //
mjr 17:ab3cec0c8bf4 217 // If you're using the button, wire one terminal of a momentary switch or
mjr 17:ab3cec0c8bf4 218 // pushbutton to the input pin you select, and wire the other terminal to the
mjr 17:ab3cec0c8bf4 219 // KL25Z ground. Push and hold the button for a few seconds to enter plunger
mjr 17:ab3cec0c8bf4 220 // calibration mode.
mjr 17:ab3cec0c8bf4 221 //
mjr 17:ab3cec0c8bf4 222 // If you're using the LED, you'll need to build a little transistor power
mjr 17:ab3cec0c8bf4 223 // booster circuit to power the LED, as described in the build guide. The
mjr 17:ab3cec0c8bf4 224 // LED gives you visual confirmation that the you've triggered calibration
mjr 17:ab3cec0c8bf4 225 // mode and lets you know when the mode times out. Note that the LED on
mjr 17:ab3cec0c8bf4 226 // board the KL25Z also changes color to indicate the same information, so
mjr 17:ab3cec0c8bf4 227 // if the KL25Z is positioned so that you can see it while you're doing the
mjr 17:ab3cec0c8bf4 228 // calibration, you don't really need a separate button LED. But the
mjr 17:ab3cec0c8bf4 229 // separate LED is spiffy, especially if it's embedded in the pushbutton.
mjr 17:ab3cec0c8bf4 230 //
mjr 17:ab3cec0c8bf4 231 // Note that you can skip the pushbutton altogether and trigger calibration
mjr 17:ab3cec0c8bf4 232 // from the Windows control software. But again, the button is spiffier.
mjr 17:ab3cec0c8bf4 233
mjr 17:ab3cec0c8bf4 234 // calibration button input
mjr 17:ab3cec0c8bf4 235 const PinName CAL_BUTTON_PIN = PTE29;
mjr 17:ab3cec0c8bf4 236
mjr 17:ab3cec0c8bf4 237 // calibration button indicator LED
mjr 17:ab3cec0c8bf4 238 const PinName CAL_BUTTON_LED = PTE23;
mjr 17:ab3cec0c8bf4 239
mjr 17:ab3cec0c8bf4 240
mjr 17:ab3cec0c8bf4 241 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 242 //
mjr 17:ab3cec0c8bf4 243 // Pseudo "Launch Ball" button.
mjr 17:ab3cec0c8bf4 244 //
mjr 17:ab3cec0c8bf4 245 // Zeb of zebsboards.com came up with a clever scheme for his plunger kit
mjr 17:ab3cec0c8bf4 246 // that lets the plunger simulate a Launch Ball button for tables where
mjr 17:ab3cec0c8bf4 247 // the original used a Launch button instead of a plunger (e.g., Medieval
mjr 17:ab3cec0c8bf4 248 // Madness, T2, or Star Trek: The Next Generation). The scheme uses an
mjr 17:ab3cec0c8bf4 249 // LedWiz output to tell us when such a table is loaded. On the DOF
mjr 17:ab3cec0c8bf4 250 // Configtool site, this is called "ZB Launch Ball". When this LedWiz
mjr 17:ab3cec0c8bf4 251 // output is ON, it tells us that the table will ignore the analog plunger
mjr 17:ab3cec0c8bf4 252 // because it doesn't have a plunger object, so the analog plunger should
mjr 17:ab3cec0c8bf4 253 // send a Launch Ball button press signal when the user releases the plunger.
mjr 17:ab3cec0c8bf4 254 //
mjr 17:ab3cec0c8bf4 255 // If you wish to use this feature, you need to do two things:
mjr 17:ab3cec0c8bf4 256 //
mjr 17:ab3cec0c8bf4 257 // First, adjust the two lines below to set the LedWiz output and joystick
mjr 17:ab3cec0c8bf4 258 // button you wish to use for this feature. The defaults below should be
mjr 17:ab3cec0c8bf4 259 // fine for most people, but if you're using the Pinscape controller for
mjr 17:ab3cec0c8bf4 260 // your physical button wiring, you should set the launch button to match
mjr 17:ab3cec0c8bf4 261 // where you physically wired your actual Launch Ball button. Likewise,
mjr 17:ab3cec0c8bf4 262 // change the LedWiz port if you're using the one below for some actual
mjr 17:ab3cec0c8bf4 263 // hardware output. This is a virtual port that won't control any hardware;
mjr 17:ab3cec0c8bf4 264 // it's just for signaling the plunger that we're in "button mode". Note
mjr 17:ab3cec0c8bf4 265 // that the numbering for the both the LedWiz port and joystick button
mjr 17:ab3cec0c8bf4 266 // start at 1 to match the DOF Configtool and VP dialog numbering.
mjr 17:ab3cec0c8bf4 267 //
mjr 17:ab3cec0c8bf4 268 // Second, in the DOF Configtool, make sure you have a Pinscape controller
mjr 17:ab3cec0c8bf4 269 // in your cabinet configuration, then go to your Port Assignments and set
mjr 17:ab3cec0c8bf4 270 // the port defined below to "ZB Launch Ball".
mjr 17:ab3cec0c8bf4 271 //
mjr 17:ab3cec0c8bf4 272 // Third, open the Visual Pinball editor, open the Preferences | Keys
mjr 17:ab3cec0c8bf4 273 // dialog, and find the Plunger item. Open the drop-down list under that
mjr 17:ab3cec0c8bf4 274 // item and select the button number defined below.
mjr 17:ab3cec0c8bf4 275 //
mjr 21:5048e16cc9ef 276 // To disable this feature, just set ZBLaunchBallPort to 0 here.
mjr 17:ab3cec0c8bf4 277
mjr 17:ab3cec0c8bf4 278 const int ZBLaunchBallPort = 32;
mjr 17:ab3cec0c8bf4 279 const int LaunchBallButton = 24;
mjr 17:ab3cec0c8bf4 280
mjr 18:5e890ebd0023 281 // Distance necessary to push the plunger to activate the simulated
mjr 18:5e890ebd0023 282 // launch ball button, in inches. A standard pinball plunger can be
mjr 18:5e890ebd0023 283 // pushed forward about 1/2". However, the barrel spring is very
mjr 18:5e890ebd0023 284 // stiff, and anything more than about 1/8" requires quite a bit
mjr 18:5e890ebd0023 285 // of force. Ideally the force required should be about the same as
mjr 18:5e890ebd0023 286 // for any ordinary pushbutton.
mjr 18:5e890ebd0023 287 //
mjr 18:5e890ebd0023 288 // On my cabinet, empirically, a distance around 2mm (.08") seems
mjr 18:5e890ebd0023 289 // to work pretty well. It's far enough that it doesn't trigger
mjr 18:5e890ebd0023 290 // spuriously, but short enough that it responds to a reasonably
mjr 18:5e890ebd0023 291 // light push.
mjr 18:5e890ebd0023 292 //
mjr 18:5e890ebd0023 293 // You might need to adjust this up or down to get the right feel.
mjr 18:5e890ebd0023 294 // Alternatively, if you don't like the "push" gesture at all and
mjr 18:5e890ebd0023 295 // would prefer to only make the plunger respond to a pull-and-release
mjr 18:5e890ebd0023 296 // motion, simply set this to, say, 2.0 - it's impossible to push a
mjr 18:5e890ebd0023 297 // plunger forward that far, so that will effectively turn off the
mjr 18:5e890ebd0023 298 // push mode.
mjr 18:5e890ebd0023 299 const float LaunchBallPushDistance = .08;
mjr 18:5e890ebd0023 300
mjr 25:e22b88bd783a 301 #endif // CONFIG_H
mjr 25:e22b88bd783a 302
mjr 17:ab3cec0c8bf4 303
mjr 21:5048e16cc9ef 304 #ifdef DECL_EXTERNS
mjr 17:ab3cec0c8bf4 305 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 306 //
mjr 17:ab3cec0c8bf4 307
mjr 17:ab3cec0c8bf4 308 // Joystick button input pin assignments.
mjr 17:ab3cec0c8bf4 309 //
mjr 17:ab3cec0c8bf4 310 // You can wire up to 32 GPIO ports to buttons (equipped with
mjr 17:ab3cec0c8bf4 311 // momentary switches). Connect each switch between the desired
mjr 17:ab3cec0c8bf4 312 // GPIO port and ground (J9 pin 12 or 14). When the button is pressed,
mjr 17:ab3cec0c8bf4 313 // we'll tell the host PC that the corresponding joystick button is
mjr 17:ab3cec0c8bf4 314 // pressed. We debounce the keystrokes in software, so you can simply
mjr 17:ab3cec0c8bf4 315 // wire directly to pushbuttons with no additional external hardware.
mjr 17:ab3cec0c8bf4 316 //
mjr 17:ab3cec0c8bf4 317 // Note that we assign 24 buttons by default, even though the USB
mjr 17:ab3cec0c8bf4 318 // joystick interface can handle up to 32 buttons. VP itself only
mjr 17:ab3cec0c8bf4 319 // allows mapping of up to 24 buttons in the preferences dialog
mjr 17:ab3cec0c8bf4 320 // (although it can recognize 32 buttons internally). If you want
mjr 17:ab3cec0c8bf4 321 // more buttons, you can reassign pins that are assigned by default
mjr 17:ab3cec0c8bf4 322 // as LedWiz outputs. To reassign a pin, find the pin you wish to
mjr 17:ab3cec0c8bf4 323 // reassign in the LedWizPortMap array below, and change the pin name
mjr 17:ab3cec0c8bf4 324 // there to NC (for Not Connected). You can then change one of the
mjr 17:ab3cec0c8bf4 325 // "NC" entries below to the reallocated pin name. The limit is 32
mjr 17:ab3cec0c8bf4 326 // buttons total.
mjr 17:ab3cec0c8bf4 327 //
mjr 17:ab3cec0c8bf4 328 // Note: PTD1 (pin J2-12) should NOT be assigned as a button input,
mjr 17:ab3cec0c8bf4 329 // as this pin is physically connected on the KL25Z to the on-board
mjr 17:ab3cec0c8bf4 330 // indicator LED's blue segment. This precludes any other use of
mjr 17:ab3cec0c8bf4 331 // the pin.
mjr 17:ab3cec0c8bf4 332 PinName buttonMap[] = {
mjr 17:ab3cec0c8bf4 333 PTC2, // J10 pin 10, joystick button 1
mjr 17:ab3cec0c8bf4 334 PTB3, // J10 pin 8, joystick button 2
mjr 17:ab3cec0c8bf4 335 PTB2, // J10 pin 6, joystick button 3
mjr 17:ab3cec0c8bf4 336 PTB1, // J10 pin 4, joystick button 4
mjr 17:ab3cec0c8bf4 337
mjr 17:ab3cec0c8bf4 338 PTE30, // J10 pin 11, joystick button 5
mjr 17:ab3cec0c8bf4 339 PTE22, // J10 pin 5, joystick button 6
mjr 17:ab3cec0c8bf4 340
mjr 17:ab3cec0c8bf4 341 PTE5, // J9 pin 15, joystick button 7
mjr 17:ab3cec0c8bf4 342 PTE4, // J9 pin 13, joystick button 8
mjr 17:ab3cec0c8bf4 343 PTE3, // J9 pin 11, joystick button 9
mjr 17:ab3cec0c8bf4 344 PTE2, // J9 pin 9, joystick button 10
mjr 17:ab3cec0c8bf4 345 PTB11, // J9 pin 7, joystick button 11
mjr 17:ab3cec0c8bf4 346 PTB10, // J9 pin 5, joystick button 12
mjr 17:ab3cec0c8bf4 347 PTB9, // J9 pin 3, joystick button 13
mjr 17:ab3cec0c8bf4 348 PTB8, // J9 pin 1, joystick button 14
mjr 17:ab3cec0c8bf4 349
mjr 17:ab3cec0c8bf4 350 PTC12, // J2 pin 1, joystick button 15
mjr 17:ab3cec0c8bf4 351 PTC13, // J2 pin 3, joystick button 16
mjr 17:ab3cec0c8bf4 352 PTC16, // J2 pin 5, joystick button 17
mjr 17:ab3cec0c8bf4 353 PTC17, // J2 pin 7, joystick button 18
mjr 17:ab3cec0c8bf4 354 PTA16, // J2 pin 9, joystick button 19
mjr 17:ab3cec0c8bf4 355 PTA17, // J2 pin 11, joystick button 20
mjr 17:ab3cec0c8bf4 356 PTE31, // J2 pin 13, joystick button 21
mjr 17:ab3cec0c8bf4 357 PTD6, // J2 pin 17, joystick button 22
mjr 17:ab3cec0c8bf4 358 PTD7, // J2 pin 19, joystick button 23
mjr 17:ab3cec0c8bf4 359
mjr 17:ab3cec0c8bf4 360 PTE1, // J2 pin 20, joystick button 24
mjr 17:ab3cec0c8bf4 361
mjr 17:ab3cec0c8bf4 362 NC, // not used, joystick button 25
mjr 17:ab3cec0c8bf4 363 NC, // not used, joystick button 26
mjr 17:ab3cec0c8bf4 364 NC, // not used, joystick button 27
mjr 17:ab3cec0c8bf4 365 NC, // not used, joystick button 28
mjr 17:ab3cec0c8bf4 366 NC, // not used, joystick button 29
mjr 17:ab3cec0c8bf4 367 NC, // not used, joystick button 30
mjr 17:ab3cec0c8bf4 368 NC, // not used, joystick button 31
mjr 17:ab3cec0c8bf4 369 NC // not used, joystick button 32
mjr 17:ab3cec0c8bf4 370 };
mjr 17:ab3cec0c8bf4 371
mjr 17:ab3cec0c8bf4 372 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 373 //
mjr 17:ab3cec0c8bf4 374 // LED-Wiz emulation output pin assignments.
mjr 17:ab3cec0c8bf4 375 //
mjr 17:ab3cec0c8bf4 376 // The LED-Wiz protocol allows setting individual intensity levels
mjr 17:ab3cec0c8bf4 377 // on all outputs, with 48 levels of intensity. This can be used
mjr 17:ab3cec0c8bf4 378 // to control lamp brightness and motor speeds, among other things.
mjr 17:ab3cec0c8bf4 379 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 17:ab3cec0c8bf4 380 // can support the full complement of 32 outputs, we can only provide
mjr 17:ab3cec0c8bf4 381 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 17:ab3cec0c8bf4 382 // can only be switched fully on and fully off - we can't support
mjr 17:ab3cec0c8bf4 383 // dimming on these, so they'll ignore any intensity level setting
mjr 17:ab3cec0c8bf4 384 // requested by the host. Use these for devices that don't have any
mjr 17:ab3cec0c8bf4 385 // use for intensity settings anyway, such as contactors and knockers.
mjr 17:ab3cec0c8bf4 386 //
mjr 17:ab3cec0c8bf4 387 // Ports with pins assigned as "NC" are not connected. That is,
mjr 17:ab3cec0c8bf4 388 // there's no physical pin for that LedWiz port number. You can
mjr 17:ab3cec0c8bf4 389 // send LedWiz commands to turn NC ports on and off, but doing so
mjr 17:ab3cec0c8bf4 390 // will have no effect. The reason we leave some ports unassigned
mjr 17:ab3cec0c8bf4 391 // is that we don't have enough physical GPIO pins to fill out the
mjr 17:ab3cec0c8bf4 392 // full LedWiz complement of 32 ports. Many pins are already taken
mjr 17:ab3cec0c8bf4 393 // for other purposes, such as button inputs or the plunger CCD
mjr 17:ab3cec0c8bf4 394 // interface.
mjr 17:ab3cec0c8bf4 395 //
mjr 17:ab3cec0c8bf4 396 // The mapping between physical output pins on the KL25Z and the
mjr 17:ab3cec0c8bf4 397 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 17:ab3cec0c8bf4 398 // customize this by changing the entries in the array below if you
mjr 17:ab3cec0c8bf4 399 // wish to rearrange the pins for any reason. Be aware that some
mjr 17:ab3cec0c8bf4 400 // of the physical outputs are already used for other purposes
mjr 17:ab3cec0c8bf4 401 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 17:ab3cec0c8bf4 402 // CCD sensor - but you can of course reassign those as well by
mjr 17:ab3cec0c8bf4 403 // changing the corresponding declarations elsewhere in this module).
mjr 17:ab3cec0c8bf4 404 // The assignments we make here have two main objectives: first,
mjr 17:ab3cec0c8bf4 405 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 17:ab3cec0c8bf4 406 // wiring by keeping the output pins together physically), and
mjr 17:ab3cec0c8bf4 407 // second, to make the physical pin layout match the LED-Wiz port
mjr 17:ab3cec0c8bf4 408 // numbering order to the extent possible. There's one big wrench
mjr 17:ab3cec0c8bf4 409 // in the works, though, which is the limited number and discontiguous
mjr 17:ab3cec0c8bf4 410 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 17:ab3cec0c8bf4 411 // us from doing the most obvious sequential ordering of the pins,
mjr 17:ab3cec0c8bf4 412 // so we end up with the outputs arranged into several blocks.
mjr 17:ab3cec0c8bf4 413 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 17:ab3cec0c8bf4 414 // read on...
mjr 17:ab3cec0c8bf4 415 //
mjr 17:ab3cec0c8bf4 416 // With the LED-Wiz, the host software configuration usually
mjr 17:ab3cec0c8bf4 417 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 17:ab3cec0c8bf4 418 // (for the red, green, and blue components, which need to be
mjr 17:ab3cec0c8bf4 419 // physically wired to separate outputs to allow each color to be
mjr 17:ab3cec0c8bf4 420 // controlled independently). To facilitate this, we arrange the
mjr 17:ab3cec0c8bf4 421 // PWM-enabled outputs so that they're grouped together in the
mjr 17:ab3cec0c8bf4 422 // port numbering scheme. Unfortunately, these outputs aren't
mjr 17:ab3cec0c8bf4 423 // together in a single group in the physical pin layout, so to
mjr 17:ab3cec0c8bf4 424 // group them logically in the LED-Wiz port numbering scheme, we
mjr 17:ab3cec0c8bf4 425 // have to break up the overall numbering scheme into several blocks.
mjr 17:ab3cec0c8bf4 426 // So our port numbering goes sequentially down each column of
mjr 17:ab3cec0c8bf4 427 // header pins, but there are several break points where we have
mjr 17:ab3cec0c8bf4 428 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 17:ab3cec0c8bf4 429 // logically.
mjr 17:ab3cec0c8bf4 430 //
mjr 17:ab3cec0c8bf4 431 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 17:ab3cec0c8bf4 432 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 17:ab3cec0c8bf4 433 // documentation - this is the physical pin that the port controls.
mjr 17:ab3cec0c8bf4 434 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 17:ab3cec0c8bf4 435 // number that you use on the PC side (in the DirectOutput config
mjr 17:ab3cec0c8bf4 436 // file, for example) to address the port. PWM-capable ports are
mjr 17:ab3cec0c8bf4 437 // marked as such - we group the PWM-capable ports into the first
mjr 17:ab3cec0c8bf4 438 // 10 LED-Wiz port numbers.
mjr 17:ab3cec0c8bf4 439 //
mjr 17:ab3cec0c8bf4 440 // If you wish to reallocate a pin in the array below to some other
mjr 17:ab3cec0c8bf4 441 // use, such as a button input port, simply change the pin name in
mjr 17:ab3cec0c8bf4 442 // the entry to NC (for Not Connected). This will disable the given
mjr 17:ab3cec0c8bf4 443 // logical LedWiz port number and free up the physical pin.
mjr 17:ab3cec0c8bf4 444 //
mjr 17:ab3cec0c8bf4 445 // If you wish to reallocate a pin currently assigned to the button
mjr 17:ab3cec0c8bf4 446 // input array, simply change the entry for the pin in the buttonMap[]
mjr 17:ab3cec0c8bf4 447 // array above to NC (for "not connected"), and plug the pin name into
mjr 17:ab3cec0c8bf4 448 // a slot of your choice in the array below.
mjr 17:ab3cec0c8bf4 449 //
mjr 17:ab3cec0c8bf4 450 // Note: PTD1 (pin J2-12) should NOT be assigned as an LedWiz output,
mjr 17:ab3cec0c8bf4 451 // as this pin is physically connected on the KL25Z to the on-board
mjr 17:ab3cec0c8bf4 452 // indicator LED's blue segment. This precludes any other use of
mjr 17:ab3cec0c8bf4 453 // the pin.
mjr 17:ab3cec0c8bf4 454 //
mjr 17:ab3cec0c8bf4 455 struct {
mjr 17:ab3cec0c8bf4 456 PinName pin;
mjr 17:ab3cec0c8bf4 457 bool isPWM;
mjr 17:ab3cec0c8bf4 458 } ledWizPortMap[32] = {
mjr 17:ab3cec0c8bf4 459 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 17:ab3cec0c8bf4 460 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 17:ab3cec0c8bf4 461 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 17:ab3cec0c8bf4 462 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 17:ab3cec0c8bf4 463 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 17:ab3cec0c8bf4 464 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 17:ab3cec0c8bf4 465 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 17:ab3cec0c8bf4 466 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 17:ab3cec0c8bf4 467 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 17:ab3cec0c8bf4 468 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 17:ab3cec0c8bf4 469 { PTD2, false }, // pin J2-8, LW port 11
mjr 17:ab3cec0c8bf4 470 { PTC8, false }, // pin J1-14, LW port 12
mjr 17:ab3cec0c8bf4 471 { PTC9, false }, // pin J1-16, LW port 13
mjr 17:ab3cec0c8bf4 472 { PTC7, false }, // pin J1-1, LW port 14
mjr 17:ab3cec0c8bf4 473 { PTC0, false }, // pin J1-3, LW port 15
mjr 17:ab3cec0c8bf4 474 { PTC3, false }, // pin J1-5, LW port 16
mjr 17:ab3cec0c8bf4 475 { PTC4, false }, // pin J1-7, LW port 17
mjr 17:ab3cec0c8bf4 476 { PTC5, false }, // pin J1-9, LW port 18
mjr 17:ab3cec0c8bf4 477 { PTC6, false }, // pin J1-11, LW port 19
mjr 17:ab3cec0c8bf4 478 { PTC10, false }, // pin J1-13, LW port 20
mjr 17:ab3cec0c8bf4 479 { PTC11, false }, // pin J1-15, LW port 21
mjr 17:ab3cec0c8bf4 480 { PTE0, false }, // pin J2-18, LW port 22
mjr 25:e22b88bd783a 481 { NC, false }, // Not connected, LW port 23
mjr 25:e22b88bd783a 482 { NC, false }, // Not connected, LW port 24
mjr 25:e22b88bd783a 483 { NC, false }, // Not connected, LW port 25
mjr 25:e22b88bd783a 484 { NC, false }, // Not connected, LW port 26
mjr 25:e22b88bd783a 485 { NC, false }, // Not connected, LW port 27
mjr 25:e22b88bd783a 486 { NC, false }, // Not connected, LW port 28
mjr 25:e22b88bd783a 487 { NC, false }, // Not connected, LW port 29
mjr 25:e22b88bd783a 488 { NC, false }, // Not connected, LW port 30
mjr 25:e22b88bd783a 489 { NC, false }, // Not connected, LW port 31
mjr 25:e22b88bd783a 490 { NC, false } // Not connected, LW port 32
mjr 17:ab3cec0c8bf4 491 };
mjr 17:ab3cec0c8bf4 492
mjr 21:5048e16cc9ef 493
mjr 25:e22b88bd783a 494 #endif // DECL_EXTERNS