MPU-9250 with Kalman Filter
Dependencies: ADXL362-helloworld MPU9250_SPI mbed
Fork of ADXL362-helloworld by
Revision 10:f2ef74678956, committed 2017-04-26
- Comitter:
- mfurukawa
- Date:
- Wed Apr 26 07:52:10 2017 +0000
- Parent:
- 9:e700b2d586d6
- Commit message:
- public revision
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/AHRS/MadgwickAHRS.c Wed Apr 26 07:52:10 2017 +0000
@@ -0,0 +1,227 @@
+//=====================================================================================================
+// MadgwickAHRS.c
+//=====================================================================================================
+//
+// Implementation of Madgwick's IMU and AHRS algorithms.
+// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
+//
+// Date Author Notes
+// 29/09/2011 SOH Madgwick Initial release
+// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
+// 19/02/2012 SOH Madgwick Magnetometer measurement is normalised
+//
+//=====================================================================================================
+
+//---------------------------------------------------------------------------------------------------
+// Header files
+
+#include "MadgwickAHRS.h"
+#include <math.h>
+
+//---------------------------------------------------------------------------------------------------
+// Definitions
+
+#define sampleFreq 512.0f // sample frequency in Hz
+#define betaDef 0.1f // 2 * proportional gain
+
+//---------------------------------------------------------------------------------------------------
+// Variable definitions
+
+volatile float beta = betaDef; // 2 * proportional gain (Kp)
+volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
+
+//---------------------------------------------------------------------------------------------------
+// Function declarations
+
+float invSqrt(float x);
+
+//====================================================================================================
+// Functions
+
+//---------------------------------------------------------------------------------------------------
+// AHRS algorithm update
+
+void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
+ float recipNorm;
+ float s0, s1, s2, s3;
+ float qDot1, qDot2, qDot3, qDot4;
+ float hx, hy;
+ float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
+
+ // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
+ if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
+ MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az);
+ return;
+ }
+
+ // Rate of change of quaternion from gyroscope
+ qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
+ qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
+ qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
+ qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
+
+ // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+ if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+ // Normalise accelerometer measurement
+ recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+ ax *= recipNorm;
+ ay *= recipNorm;
+ az *= recipNorm;
+
+ // Normalise magnetometer measurement
+ recipNorm = invSqrt(mx * mx + my * my + mz * mz);
+ mx *= recipNorm;
+ my *= recipNorm;
+ mz *= recipNorm;
+
+ // Auxiliary variables to avoid repeated arithmetic
+ _2q0mx = 2.0f * q0 * mx;
+ _2q0my = 2.0f * q0 * my;
+ _2q0mz = 2.0f * q0 * mz;
+ _2q1mx = 2.0f * q1 * mx;
+ _2q0 = 2.0f * q0;
+ _2q1 = 2.0f * q1;
+ _2q2 = 2.0f * q2;
+ _2q3 = 2.0f * q3;
+ _2q0q2 = 2.0f * q0 * q2;
+ _2q2q3 = 2.0f * q2 * q3;
+ q0q0 = q0 * q0;
+ q0q1 = q0 * q1;
+ q0q2 = q0 * q2;
+ q0q3 = q0 * q3;
+ q1q1 = q1 * q1;
+ q1q2 = q1 * q2;
+ q1q3 = q1 * q3;
+ q2q2 = q2 * q2;
+ q2q3 = q2 * q3;
+ q3q3 = q3 * q3;
+
+ // Reference direction of Earth's magnetic field
+ hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
+ hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
+ _2bx = sqrt(hx * hx + hy * hy);
+ _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
+ _4bx = 2.0f * _2bx;
+ _4bz = 2.0f * _2bz;
+
+ // Gradient decent algorithm corrective step
+ s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+ s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+ s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+ s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+ recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
+ s0 *= recipNorm;
+ s1 *= recipNorm;
+ s2 *= recipNorm;
+ s3 *= recipNorm;
+
+ // Apply feedback step
+ qDot1 -= beta * s0;
+ qDot2 -= beta * s1;
+ qDot3 -= beta * s2;
+ qDot4 -= beta * s3;
+ }
+
+ // Integrate rate of change of quaternion to yield quaternion
+ q0 += qDot1 * (1.0f / sampleFreq);
+ q1 += qDot2 * (1.0f / sampleFreq);
+ q2 += qDot3 * (1.0f / sampleFreq);
+ q3 += qDot4 * (1.0f / sampleFreq);
+
+ // Normalise quaternion
+ recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+ q0 *= recipNorm;
+ q1 *= recipNorm;
+ q2 *= recipNorm;
+ q3 *= recipNorm;
+}
+
+//---------------------------------------------------------------------------------------------------
+// IMU algorithm update
+
+void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
+ float recipNorm;
+ float s0, s1, s2, s3;
+ float qDot1, qDot2, qDot3, qDot4;
+ float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
+
+ // Rate of change of quaternion from gyroscope
+ qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
+ qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
+ qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
+ qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
+
+ // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+ if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+ // Normalise accelerometer measurement
+ recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+ ax *= recipNorm;
+ ay *= recipNorm;
+ az *= recipNorm;
+
+ // Auxiliary variables to avoid repeated arithmetic
+ _2q0 = 2.0f * q0;
+ _2q1 = 2.0f * q1;
+ _2q2 = 2.0f * q2;
+ _2q3 = 2.0f * q3;
+ _4q0 = 4.0f * q0;
+ _4q1 = 4.0f * q1;
+ _4q2 = 4.0f * q2;
+ _8q1 = 8.0f * q1;
+ _8q2 = 8.0f * q2;
+ q0q0 = q0 * q0;
+ q1q1 = q1 * q1;
+ q2q2 = q2 * q2;
+ q3q3 = q3 * q3;
+
+ // Gradient decent algorithm corrective step
+ s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
+ s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
+ s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
+ s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
+ recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
+ s0 *= recipNorm;
+ s1 *= recipNorm;
+ s2 *= recipNorm;
+ s3 *= recipNorm;
+
+ // Apply feedback step
+ qDot1 -= beta * s0;
+ qDot2 -= beta * s1;
+ qDot3 -= beta * s2;
+ qDot4 -= beta * s3;
+ }
+
+ // Integrate rate of change of quaternion to yield quaternion
+ q0 += qDot1 * (1.0f / sampleFreq);
+ q1 += qDot2 * (1.0f / sampleFreq);
+ q2 += qDot3 * (1.0f / sampleFreq);
+ q3 += qDot4 * (1.0f / sampleFreq);
+
+ // Normalise quaternion
+ recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+ q0 *= recipNorm;
+ q1 *= recipNorm;
+ q2 *= recipNorm;
+ q3 *= recipNorm;
+}
+
+//---------------------------------------------------------------------------------------------------
+// Fast inverse square-root
+// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
+
+float invSqrt(float x) {
+ float halfx = 0.5f * x;
+ float y = x;
+ long i = *(long*)&y;
+ i = 0x5f3759df - (i>>1);
+ y = *(float*)&i;
+ y = y * (1.5f - (halfx * y * y));
+ return y;
+}
+
+//====================================================================================================
+// END OF CODE
+//====================================================================================================
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AHRS/MadgwickAHRS.h Wed Apr 26 07:52:10 2017 +0000 @@ -0,0 +1,31 @@ +//===================================================================================================== +// MadgwickAHRS.h +//===================================================================================================== +// +// Implementation of Madgwick's IMU and AHRS algorithms. +// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms +// +// Date Author Notes +// 29/09/2011 SOH Madgwick Initial release +// 02/10/2011 SOH Madgwick Optimised for reduced CPU load +// +//===================================================================================================== +#ifndef MadgwickAHRS_h +#define MadgwickAHRS_h + +//---------------------------------------------------------------------------------------------------- +// Variable declaration + +extern volatile float beta; // algorithm gain +extern volatile float q0, q1, q2, q3; // quaternion of sensor frame relative to auxiliary frame + +//--------------------------------------------------------------------------------------------------- +// Function declarations + +void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz); +void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az); + +#endif +//===================================================================================================== +// End of file +//=====================================================================================================
--- a/main.cpp Fri Jun 17 06:07:57 2016 +0000
+++ b/main.cpp Wed Apr 26 07:52:10 2017 +0000
@@ -10,6 +10,7 @@
#include "mbed.h"
#include "MPU9250.h"
+#include "AHRS/MadgwickAHRS.h"
/*
MOSI (Master Out Slave In) p5
@@ -20,65 +21,161 @@
// https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp
-int main()
-{
-
- Serial pc(USBTX, USBRX);
- pc.baud(115200);
- SPI spi(p5, p6, p7);
+class KalmanFilter {
+ private:
+ float P, K, xhat, Q, R;
+ public:
+ KalmanFilter();
+ KalmanFilter(float _Q, float _R);
+ float update(float obs);
+
+};
+KalmanFilter::KalmanFilter(){
+ P = 0.0; // Convariance Matrix
+ K = 0.0; // Kalman Gain
+ xhat = 0.0;// Initial Predicted Value
+ Q = 1e-3; // Error
+ R = 0.01;
+ }
+
+ // override
+KalmanFilter::KalmanFilter(float _Q, float _R){
+ P = 0.0; // Convariance Matrix
+ K = 0.0; // Kalman Gain
+ xhat = 0.0;// Initial Predicted Value
+ Q = _Q; // Error
+ R = _R;
+ }
+
+float KalmanFilter::update(float obs){
+ // Predict
+ float xhat_m = xhat ; // xhat[k-1]
+ float P_m = P + Q; // P[k-1]
+
+ // Update
+ float S = P_m + R; // Remained Error
+ K = P_m / S; // Update Kalman Gain
+ xhat = xhat_m + K * (obs - xhat_m); // predicted value
+ P = (1 - K) * P_m; // Convariance Matrix of Error BTW True Value and Predicted True Value
+
+ return xhat;
+}
- //define the mpu9250 object
- mpu9250_spi *imu[2];
+//define the mpu9250 object
+mpu9250_spi *imu[2];
+Serial pc(USBTX, USBRX);
+SPI spi(p5, p6, p7);
+KalmanFilter *kf[12];
+Ticker ticker;
+float theta[2][3],thetaOffset[2][3],x,y,z;
+
+// Calibration wait
+int count = 100;
+
+// Sampling Term
+float smplT = 10; //ms
+
+void init(void){
+ theta[0][0] = 0;
+ theta[0][1] = 0;
+ theta[0][2] = 0;
+ theta[1][0] = 0;
+ theta[1][1] = 0;
+ theta[1][2] = 0;
+ thetaOffset[0][0] = 0;
+ thetaOffset[0][1] = 0;
+ thetaOffset[0][2] = 0;
+ thetaOffset[1][0] = 0;
+ thetaOffset[1][1] = 0;
+ thetaOffset[1][2] = 0;
+
+ pc.baud(115200);
+
imu[0] = new mpu9250_spi(spi, p8);
imu[1] = new mpu9250_spi(spi, p9);
-
+
+ for(int i=0; i<12; i++)
+ kf[i] = new KalmanFilter(1e-3, 0.001);
+
for(int i=0; i<2; i++) {
-
+
imu[0]->deselect();
imu[1]->deselect();
imu[i]->select();
if(imu[i]->init(1,BITS_DLPF_CFG_188HZ)) { //INIT the mpu9250
printf("\nCouldn't initialize MPU9250 via SPI!");
+ wait(90);
}
printf("\nWHOAMI=0x%2x\n",imu[i]->whoami()); //output the I2C address to know if SPI is working, it should be 104
- wait(1);
+ wait(0.1);
printf("Gyro_scale=%u\n",imu[i]->set_gyro_scale(BITS_FS_2000DPS)); //Set full scale range for gyros
- wait(1);
+ wait(0.1);
printf("Acc_scale=%u\n",imu[i]->set_acc_scale(BITS_FS_16G)); //Set full scale range for accs
- wait(1);
+ wait(0.1);
printf("AK8963 WHIAM=0x%2x\n",imu[i]->AK8963_whoami());
wait(0.1);
imu[i]->AK8963_calib_Magnetometer();
wait(0.1);
}
- imu[0]->select();
- imu[1]->deselect();
- while(1) {
+
+}
- //myled = 1;
+void eventFunc(void)
+{
+ count--;
+
+ for(int i=0; i<2; i++) {
+
+ imu[0]->deselect();
+ imu[1]->deselect();
- //wait_us(1);
+ imu[i]->select();
+ imu[i]->read_acc();
+ imu[i]->read_rot();
- for(int i=0; i<2; i++) {
+ x = kf[i*6 ]->update(imu[i]->gyroscope_data[0]) - thetaOffset[i][0];
+ y = kf[i*6+1]->update(imu[i]->gyroscope_data[1]) - thetaOffset[i][1];
+ z = kf[i*6+2]->update(imu[i]->gyroscope_data[2]) - thetaOffset[i][2];
+ theta[i][0] += x * smplT / 1000 ; // x(n) = x(n-1) + dx*dt
+ theta[i][1] += y * smplT / 1000 ;
+ theta[i][2] += z * smplT / 1000 ;
- imu[0]->deselect();
- imu[1]->deselect();
+ if (count == 0){
+ thetaOffset[i][0] = x;
+ thetaOffset[i][1] = y;
+ thetaOffset[i][2] = z;
- imu[i]->select();
- imu[i]->read_acc();
- imu[i]->read_rot();
-
- printf("%10.3f,%10.3f,%10.3f %10.3f,%10.3f,%10.3f ",
- imu[i]->gyroscope_data[0],
- imu[i]->gyroscope_data[1],
- imu[i]->gyroscope_data[2],
- imu[i]->accelerometer_data[0],
- imu[i]->accelerometer_data[1],
- imu[i]->accelerometer_data[2]
+ theta[i][0] = 0;
+ theta[i][1] = 0;
+ theta[i][2] = 0;
+ }
+ if(count < 0)
+
+ printf("%10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f ",
+ x,y,z,
+ kf[i*6+3]->update(imu[i]->accelerometer_data[0]),
+ kf[i*6+4]->update(imu[i]->accelerometer_data[1]),
+ kf[i*6+5]->update(imu[i]->accelerometer_data[2]),
+ theta[i][0],
+ theta[i][1],
+ theta[i][2]
);
+
+ }
+ printf("\n");
+}
+int main()
+{
+
+ init();
+
+ ticker.attach_us(eventFunc, smplT * 1000); // 10ms = 100Hz
+
+ while(1) {
+
/*
imu[i]->read_all();
printf("%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f ",
@@ -95,7 +192,5 @@
);*/
//myled = 0;
//wait(0.5);
- }
- printf("\n");
}
}
Masahiro Furukawa
