The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
TARGET_UBRIDGE/cmsis_armclang.h
- Committer:
- Anna Bridge
- Date:
- 2018-06-22
- Revision:
- 169:a7c7b631e539
- Parent:
- 160:5571c4ff569f
File content as of revision 169:a7c7b631e539:
/**************************************************************************//** * @file cmsis_armclang.h * @brief CMSIS compiler armclang (Arm Compiler 6) header file * @version V5.0.4 * @date 10. January 2018 ******************************************************************************/ /* * Copyright (c) 2009-2018 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */ #ifndef __CMSIS_ARMCLANG_H #define __CMSIS_ARMCLANG_H #pragma clang system_header /* treat file as system include file */ #ifndef __ARM_COMPAT_H #include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */ #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE __inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static __inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((__noreturn__)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __attribute__((packed, aligned(1))) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */ struct __attribute__((packed)) T_UINT32 { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */ __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */ __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */ __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ /** \brief Enable IRQ Interrupts \details Enables IRQ interrupts by clearing the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __enable_irq(); see arm_compat.h */ /** \brief Disable IRQ Interrupts \details Disables IRQ interrupts by setting the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __disable_irq(); see arm_compat.h */ /** \brief Get Control Register \details Returns the content of the Control Register. \return Control Register value */ __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) { uint32_t result; __ASM volatile ("MRS %0, control" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Control Register (non-secure) \details Returns the content of the non-secure Control Register when in secure mode. \return non-secure Control Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) { uint32_t result; __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Control Register \details Writes the given value to the Control Register. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) { __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Control Register (non-secure) \details Writes the given value to the non-secure Control Register when in secure state. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) { __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); } #endif /** \brief Get IPSR Register \details Returns the content of the IPSR Register. \return IPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_IPSR(void) { uint32_t result; __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); return(result); } /** \brief Get APSR Register \details Returns the content of the APSR Register. \return APSR Register value */ __STATIC_FORCEINLINE uint32_t __get_APSR(void) { uint32_t result; __ASM volatile ("MRS %0, apsr" : "=r" (result) ); return(result); } /** \brief Get xPSR Register \details Returns the content of the xPSR Register. \return xPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_xPSR(void) { uint32_t result; __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); return(result); } /** \brief Get Process Stack Pointer \details Returns the current value of the Process Stack Pointer (PSP). \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __get_PSP(void) { register uint32_t result; __ASM volatile ("MRS %0, psp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer (non-secure) \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) { register uint32_t result; __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Process Stack Pointer \details Assigns the given value to the Process Stack Pointer (PSP). \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) { __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) { __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); } #endif /** \brief Get Main Stack Pointer \details Returns the current value of the Main Stack Pointer (MSP). \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __get_MSP(void) { register uint32_t result; __ASM volatile ("MRS %0, msp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer (non-secure) \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) { register uint32_t result; __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Main Stack Pointer \details Assigns the given value to the Main Stack Pointer (MSP). \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) { __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer (non-secure) \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) { __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); } #endif #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Stack Pointer (non-secure) \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. \return SP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) { register uint32_t result; __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); return(result); } /** \brief Set Stack Pointer (non-secure) \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. \param [in] topOfStack Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) { __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); } #endif /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) { uint32_t result; __ASM volatile ("MRS %0, primask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Priority Mask (non-secure) \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Priority Mask (non-secure) \details Assigns the given value to the non-secure Priority Mask Register when in secure state. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) { __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); } #endif #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Enable FIQ \details Enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /* see arm_compat.h */ /** \brief Disable FIQ \details Disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /* see arm_compat.h */ /** \brief Get Base Priority \details Returns the current value of the Base Priority register. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) { uint32_t result; __ASM volatile ("MRS %0, basepri" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Base Priority (non-secure) \details Returns the current value of the non-secure Base Priority register when in secure state. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) { uint32_t result; __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Base Priority \details Assigns the given value to the Base Priority register. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) { __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Base Priority (non-secure) \details Assigns the given value to the non-secure Base Priority register when in secure state. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) { __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); } #endif /** \brief Set Base Priority with condition \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, or the new value increases the BASEPRI priority level. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) { __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); } /** \brief Get Fault Mask \details Returns the current value of the Fault Mask register. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Fault Mask (non-secure) \details Returns the current value of the non-secure Fault Mask register when in secure state. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Fault Mask \details Assigns the given value to the Fault Mask register. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Fault Mask (non-secure) \details Assigns the given value to the non-secure Fault Mask register when in secure state. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) { __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); } #endif #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Get Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else register uint32_t result; __ASM volatile ("MRS %0, psplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else register uint32_t result; __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); #endif } #endif /** \brief Get Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else register uint32_t result; __ASM volatile ("MRS %0, msplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else register uint32_t result; __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. \param [in] MainStackPtrLimit Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); #endif } #endif #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ #if ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr #else #define __get_FPSCR() ((uint32_t)0U) #endif /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __set_FPSCR __builtin_arm_set_fpscr #else #define __set_FPSCR(x) ((void)(x)) #endif #endif /* ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ /*@} end of CMSIS_Core_RegAccFunctions */ /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ /* Define macros for porting to both thumb1 and thumb2. * For thumb1, use low register (r0-r7), specified by constraint "l" * Otherwise, use general registers, specified by constraint "r" */ #if defined (__thumb__) && !defined (__thumb2__) #define __CMSIS_GCC_OUT_REG(r) "=l" (r) #define __CMSIS_GCC_USE_REG(r) "l" (r) #else #define __CMSIS_GCC_OUT_REG(r) "=r" (r) #define __CMSIS_GCC_USE_REG(r) "r" (r) #endif /** \brief No Operation \details No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __builtin_arm_nop /** \brief Wait For Interrupt \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __builtin_arm_wfi /** \brief Wait For Event \details Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __builtin_arm_wfe /** \brief Send Event \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __builtin_arm_sev /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() __builtin_arm_isb(0xF); /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() __builtin_arm_dsb(0xF); /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() __builtin_arm_dmb(0xF); /** \brief Reverse byte order (32 bit) \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. \param [in] value Value to reverse \return Reversed value */ #define __REV(value) __builtin_bswap32(value) /** \brief Reverse byte order (16 bit) \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. \param [in] value Value to reverse \return Reversed value */ #define __REV16(value) __ROR(__REV(value), 16) /** \brief Reverse byte order (16 bit) \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. \param [in] value Value to reverse \return Reversed value */ #define __REVSH(value) (int16_t)__builtin_bswap16(value) /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) { op2 %= 32U; if (op2 == 0U) { return op1; } return (op1 >> op2) | (op1 << (32U - op2)); } /** \brief Breakpoint \details Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __ASM volatile ("bkpt "#value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #define __RBIT __builtin_arm_rbit /** \brief Count leading zeros \details Counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ (uint8_t)__builtin_clz #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDREXB (uint8_t)__builtin_arm_ldrex /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDREXH (uint16_t)__builtin_arm_ldrex /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDREXW (uint32_t)__builtin_arm_ldrex /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXB (uint32_t)__builtin_arm_strex /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXH (uint32_t)__builtin_arm_strex /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXW (uint32_t)__builtin_arm_strex /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ #define __CLREX __builtin_arm_clrex #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __builtin_arm_ssat /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __builtin_arm_usat /** \brief Rotate Right with Extend (32 bit) \details Moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the bitstring. \param [in] value Value to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) { uint32_t result; __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); } /** \brief LDRT Unprivileged (8 bit) \details Executes a Unprivileged LDRT instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (16 bit) \details Executes a Unprivileged LDRT instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (32 bit) \details Executes a Unprivileged LDRT instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief STRT Unprivileged (8 bit) \details Executes a Unprivileged STRT instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (16 bit) \details Executes a Unprivileged STRT instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (32 bit) \details Executes a Unprivileged STRT instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); } #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) { if ((sat >= 1U) && (sat <= 32U)) { const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); const int32_t min = -1 - max ; if (val > max) { return max; } else if (val < min) { return min; } } return val; } /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) { if (sat <= 31U) { const uint32_t max = ((1U << sat) - 1U); if (val > (int32_t)max) { return max; } else if (val < 0) { return 0U; } } return (uint32_t)val; } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Load-Acquire (8 bit) \details Executes a LDAB instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); } /** \brief Load-Acquire (16 bit) \details Executes a LDAH instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); } /** \brief Load-Acquire (32 bit) \details Executes a LDA instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief Store-Release (8 bit) \details Executes a STLB instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (16 bit) \details Executes a STLH instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (32 bit) \details Executes a STL instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Load-Acquire Exclusive (8 bit) \details Executes a LDAB exclusive instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDAEXB (uint8_t)__builtin_arm_ldaex /** \brief Load-Acquire Exclusive (16 bit) \details Executes a LDAH exclusive instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDAEXH (uint16_t)__builtin_arm_ldaex /** \brief Load-Acquire Exclusive (32 bit) \details Executes a LDA exclusive instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDAEX (uint32_t)__builtin_arm_ldaex /** \brief Store-Release Exclusive (8 bit) \details Executes a STLB exclusive instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEXB (uint32_t)__builtin_arm_stlex /** \brief Store-Release Exclusive (16 bit) \details Executes a STLH exclusive instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEXH (uint32_t)__builtin_arm_stlex /** \brief Store-Release Exclusive (32 bit) \details Executes a STL exclusive instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEX (uint32_t)__builtin_arm_stlex #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ /* ################### Compiler specific Intrinsics ########################### */ /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics Access to dedicated SIMD instructions @{ */ #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } #define __SSAT16(ARG1,ARG2) \ ({ \ int32_t __RES, __ARG1 = (ARG1); \ __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) #define __USAT16(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) { uint32_t result; __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); return(result); } __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) { uint32_t result; __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); return(result); } __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2) { int32_t result; __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2) { int32_t result; __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } #if 0 #define __PKHBT(ARG1,ARG2,ARG3) \ ({ \ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ __RES; \ }) #define __PKHTB(ARG1,ARG2,ARG3) \ ({ \ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ if (ARG3 == 0) \ __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ else \ __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ __RES; \ }) #endif #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) { int32_t result; __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); return(result); } #endif /* (__ARM_FEATURE_DSP == 1) */ /*@} end of group CMSIS_SIMD_intrinsics */ #endif /* __CMSIS_ARMCLANG_H */