The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
TARGET_K66F/TOOLCHAIN_IAR/fsl_uart.h
- Committer:
- AnnaBridge
- Date:
- 2019-02-20
- Revision:
- 172:65be27845400
- Parent:
- 171:3a7713b1edbc
File content as of revision 172:65be27845400:
/* * Copyright (c) 2015-2016, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _FSL_UART_H_ #define _FSL_UART_H_ #include "fsl_common.h" /*! * @addtogroup uart_driver * @{ */ /******************************************************************************* * Definitions ******************************************************************************/ /*! @name Driver version */ /*@{*/ /*! @brief UART driver version 2.1.4. */ #define FSL_UART_DRIVER_VERSION (MAKE_VERSION(2, 1, 4)) /*@}*/ /*! @brief Error codes for the UART driver. */ enum _uart_status { kStatus_UART_TxBusy = MAKE_STATUS(kStatusGroup_UART, 0), /*!< Transmitter is busy. */ kStatus_UART_RxBusy = MAKE_STATUS(kStatusGroup_UART, 1), /*!< Receiver is busy. */ kStatus_UART_TxIdle = MAKE_STATUS(kStatusGroup_UART, 2), /*!< UART transmitter is idle. */ kStatus_UART_RxIdle = MAKE_STATUS(kStatusGroup_UART, 3), /*!< UART receiver is idle. */ kStatus_UART_TxWatermarkTooLarge = MAKE_STATUS(kStatusGroup_UART, 4), /*!< TX FIFO watermark too large */ kStatus_UART_RxWatermarkTooLarge = MAKE_STATUS(kStatusGroup_UART, 5), /*!< RX FIFO watermark too large */ kStatus_UART_FlagCannotClearManually = MAKE_STATUS(kStatusGroup_UART, 6), /*!< UART flag can't be manually cleared. */ kStatus_UART_Error = MAKE_STATUS(kStatusGroup_UART, 7), /*!< Error happens on UART. */ kStatus_UART_RxRingBufferOverrun = MAKE_STATUS(kStatusGroup_UART, 8), /*!< UART RX software ring buffer overrun. */ kStatus_UART_RxHardwareOverrun = MAKE_STATUS(kStatusGroup_UART, 9), /*!< UART RX receiver overrun. */ kStatus_UART_NoiseError = MAKE_STATUS(kStatusGroup_UART, 10), /*!< UART noise error. */ kStatus_UART_FramingError = MAKE_STATUS(kStatusGroup_UART, 11), /*!< UART framing error. */ kStatus_UART_ParityError = MAKE_STATUS(kStatusGroup_UART, 12), /*!< UART parity error. */ kStatus_UART_BaudrateNotSupport = MAKE_STATUS(kStatusGroup_UART, 13), /*!< Baudrate is not support in current clock source */ }; /*! @brief UART parity mode. */ typedef enum _uart_parity_mode { kUART_ParityDisabled = 0x0U, /*!< Parity disabled */ kUART_ParityEven = 0x2U, /*!< Parity enabled, type even, bit setting: PE|PT = 10 */ kUART_ParityOdd = 0x3U, /*!< Parity enabled, type odd, bit setting: PE|PT = 11 */ } uart_parity_mode_t; /*! @brief UART stop bit count. */ typedef enum _uart_stop_bit_count { kUART_OneStopBit = 0U, /*!< One stop bit */ kUART_TwoStopBit = 1U, /*!< Two stop bits */ } uart_stop_bit_count_t; /*! * @brief UART interrupt configuration structure, default settings all disabled. * * This structure contains the settings for all of the UART interrupt configurations. */ enum _uart_interrupt_enable { #if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT kUART_LinBreakInterruptEnable = (UART_BDH_LBKDIE_MASK), /*!< LIN break detect interrupt. */ #endif kUART_RxActiveEdgeInterruptEnable = (UART_BDH_RXEDGIE_MASK), /*!< RX active edge interrupt. */ kUART_TxDataRegEmptyInterruptEnable = (UART_C2_TIE_MASK << 8), /*!< Transmit data register empty interrupt. */ kUART_TransmissionCompleteInterruptEnable = (UART_C2_TCIE_MASK << 8), /*!< Transmission complete interrupt. */ kUART_RxDataRegFullInterruptEnable = (UART_C2_RIE_MASK << 8), /*!< Receiver data register full interrupt. */ kUART_IdleLineInterruptEnable = (UART_C2_ILIE_MASK << 8), /*!< Idle line interrupt. */ kUART_RxOverrunInterruptEnable = (UART_C3_ORIE_MASK << 16), /*!< Receiver overrun interrupt. */ kUART_NoiseErrorInterruptEnable = (UART_C3_NEIE_MASK << 16), /*!< Noise error flag interrupt. */ kUART_FramingErrorInterruptEnable = (UART_C3_FEIE_MASK << 16), /*!< Framing error flag interrupt. */ kUART_ParityErrorInterruptEnable = (UART_C3_PEIE_MASK << 16), /*!< Parity error flag interrupt. */ #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO kUART_RxFifoOverflowInterruptEnable = (UART_CFIFO_RXOFE_MASK << 24), /*!< RX FIFO overflow interrupt. */ kUART_TxFifoOverflowInterruptEnable = (UART_CFIFO_TXOFE_MASK << 24), /*!< TX FIFO overflow interrupt. */ kUART_RxFifoUnderflowInterruptEnable = (UART_CFIFO_RXUFE_MASK << 24), /*!< RX FIFO underflow interrupt. */ #endif kUART_AllInterruptsEnable = #if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT kUART_LinBreakInterruptEnable | #endif kUART_RxActiveEdgeInterruptEnable | kUART_TxDataRegEmptyInterruptEnable | kUART_TransmissionCompleteInterruptEnable | kUART_RxDataRegFullInterruptEnable | kUART_IdleLineInterruptEnable | kUART_RxOverrunInterruptEnable | kUART_NoiseErrorInterruptEnable | kUART_FramingErrorInterruptEnable | kUART_ParityErrorInterruptEnable #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO | kUART_RxFifoOverflowInterruptEnable | kUART_TxFifoOverflowInterruptEnable | kUART_RxFifoUnderflowInterruptEnable #endif , }; /*! * @brief UART status flags. * * This provides constants for the UART status flags for use in the UART functions. */ enum _uart_flags { kUART_TxDataRegEmptyFlag = (UART_S1_TDRE_MASK), /*!< TX data register empty flag. */ kUART_TransmissionCompleteFlag = (UART_S1_TC_MASK), /*!< Transmission complete flag. */ kUART_RxDataRegFullFlag = (UART_S1_RDRF_MASK), /*!< RX data register full flag. */ kUART_IdleLineFlag = (UART_S1_IDLE_MASK), /*!< Idle line detect flag. */ kUART_RxOverrunFlag = (UART_S1_OR_MASK), /*!< RX overrun flag. */ kUART_NoiseErrorFlag = (UART_S1_NF_MASK), /*!< RX takes 3 samples of each received bit. If any of these samples differ, noise flag sets */ kUART_FramingErrorFlag = (UART_S1_FE_MASK), /*!< Frame error flag, sets if logic 0 was detected where stop bit expected */ kUART_ParityErrorFlag = (UART_S1_PF_MASK), /*!< If parity enabled, sets upon parity error detection */ #if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT kUART_LinBreakFlag = (UART_S2_LBKDIF_MASK << 8), /*!< LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit enabled */ #endif kUART_RxActiveEdgeFlag = (UART_S2_RXEDGIF_MASK << 8), /*!< RX pin active edge interrupt flag, sets when active edge detected */ kUART_RxActiveFlag = (UART_S2_RAF_MASK << 8), /*!< Receiver Active Flag (RAF), sets at beginning of valid start bit */ #if defined(FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS) && FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS kUART_NoiseErrorInRxDataRegFlag = (UART_ED_NOISY_MASK << 16), /*!< Noisy bit, sets if noise detected. */ kUART_ParityErrorInRxDataRegFlag = (UART_ED_PARITYE_MASK << 16), /*!< Paritye bit, sets if parity error detected. */ #endif #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO kUART_TxFifoEmptyFlag = (UART_SFIFO_TXEMPT_MASK << 24), /*!< TXEMPT bit, sets if TX buffer is empty */ kUART_RxFifoEmptyFlag = (UART_SFIFO_RXEMPT_MASK << 24), /*!< RXEMPT bit, sets if RX buffer is empty */ kUART_TxFifoOverflowFlag = (UART_SFIFO_TXOF_MASK << 24), /*!< TXOF bit, sets if TX buffer overflow occurred */ kUART_RxFifoOverflowFlag = (UART_SFIFO_RXOF_MASK << 24), /*!< RXOF bit, sets if receive buffer overflow */ kUART_RxFifoUnderflowFlag = (UART_SFIFO_RXUF_MASK << 24), /*!< RXUF bit, sets if receive buffer underflow */ #endif }; /*! @brief UART configuration structure. */ typedef struct _uart_config { uint32_t baudRate_Bps; /*!< UART baud rate */ uart_parity_mode_t parityMode; /*!< Parity mode, disabled (default), even, odd */ #if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT uart_stop_bit_count_t stopBitCount; /*!< Number of stop bits, 1 stop bit (default) or 2 stop bits */ #endif #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO uint8_t txFifoWatermark; /*!< TX FIFO watermark */ uint8_t rxFifoWatermark; /*!< RX FIFO watermark */ #endif bool enableTx; /*!< Enable TX */ bool enableRx; /*!< Enable RX */ } uart_config_t; /*! @brief UART transfer structure. */ typedef struct _uart_transfer { uint8_t *data; /*!< The buffer of data to be transfer.*/ size_t dataSize; /*!< The byte count to be transfer. */ } uart_transfer_t; /* Forward declaration of the handle typedef. */ typedef struct _uart_handle uart_handle_t; /*! @brief UART transfer callback function. */ typedef void (*uart_transfer_callback_t)(UART_Type *base, uart_handle_t *handle, status_t status, void *userData); /*! @brief UART handle structure. */ struct _uart_handle { uint8_t *volatile txData; /*!< Address of remaining data to send. */ volatile size_t txDataSize; /*!< Size of the remaining data to send. */ size_t txDataSizeAll; /*!< Size of the data to send out. */ uint8_t *volatile rxData; /*!< Address of remaining data to receive. */ volatile size_t rxDataSize; /*!< Size of the remaining data to receive. */ size_t rxDataSizeAll; /*!< Size of the data to receive. */ uint8_t *rxRingBuffer; /*!< Start address of the receiver ring buffer. */ size_t rxRingBufferSize; /*!< Size of the ring buffer. */ volatile uint16_t rxRingBufferHead; /*!< Index for the driver to store received data into ring buffer. */ volatile uint16_t rxRingBufferTail; /*!< Index for the user to get data from the ring buffer. */ uart_transfer_callback_t callback; /*!< Callback function. */ void *userData; /*!< UART callback function parameter.*/ volatile uint8_t txState; /*!< TX transfer state. */ volatile uint8_t rxState; /*!< RX transfer state */ }; /******************************************************************************* * API ******************************************************************************/ #if defined(__cplusplus) extern "C" { #endif /* _cplusplus */ /*! * @name Initialization and deinitialization * @{ */ /*! * @brief Initializes a UART instance with a user configuration structure and peripheral clock. * * This function configures the UART module with the user-defined settings. The user can configure the configuration * structure and also get the default configuration by using the UART_GetDefaultConfig() function. * The example below shows how to use this API to configure UART. * @code * uart_config_t uartConfig; * uartConfig.baudRate_Bps = 115200U; * uartConfig.parityMode = kUART_ParityDisabled; * uartConfig.stopBitCount = kUART_OneStopBit; * uartConfig.txFifoWatermark = 0; * uartConfig.rxFifoWatermark = 1; * UART_Init(UART1, &uartConfig, 20000000U); * @endcode * * @param base UART peripheral base address. * @param config Pointer to the user-defined configuration structure. * @param srcClock_Hz UART clock source frequency in HZ. * @retval kStatus_UART_BaudrateNotSupport Baudrate is not support in current clock source. * @retval kStatus_Success Status UART initialize succeed */ status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz); /*! * @brief Deinitializes a UART instance. * * This function waits for TX complete, disables TX and RX, and disables the UART clock. * * @param base UART peripheral base address. */ void UART_Deinit(UART_Type *base); /*! * @brief Gets the default configuration structure. * * This function initializes the UART configuration structure to a default value. The default * values are as follows. * uartConfig->baudRate_Bps = 115200U; * uartConfig->bitCountPerChar = kUART_8BitsPerChar; * uartConfig->parityMode = kUART_ParityDisabled; * uartConfig->stopBitCount = kUART_OneStopBit; * uartConfig->txFifoWatermark = 0; * uartConfig->rxFifoWatermark = 1; * uartConfig->enableTx = false; * uartConfig->enableRx = false; * * @param config Pointer to configuration structure. */ void UART_GetDefaultConfig(uart_config_t *config); /*! * @brief Sets the UART instance baud rate. * * This function configures the UART module baud rate. This function is used to update * the UART module baud rate after the UART module is initialized by the UART_Init. * @code * UART_SetBaudRate(UART1, 115200U, 20000000U); * @endcode * * @param base UART peripheral base address. * @param baudRate_Bps UART baudrate to be set. * @param srcClock_Hz UART clock source freqency in Hz. * @retval kStatus_UART_BaudrateNotSupport Baudrate is not support in the current clock source. * @retval kStatus_Success Set baudrate succeeded. */ status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz); /* @} */ /*! * @name Status * @{ */ /*! * @brief Gets UART status flags. * * This function gets all UART status flags. The flags are returned as the logical * OR value of the enumerators @ref _uart_flags. To check a specific status, * compare the return value with enumerators in @ref _uart_flags. * For example, to check whether the TX is empty, do the following. * @code * if (kUART_TxDataRegEmptyFlag & UART_GetStatusFlags(UART1)) * { * ... * } * @endcode * * @param base UART peripheral base address. * @return UART status flags which are ORed by the enumerators in the _uart_flags. */ uint32_t UART_GetStatusFlags(UART_Type *base); /*! * @brief Clears status flags with the provided mask. * * This function clears UART status flags with a provided mask. An automatically cleared flag * can't be cleared by this function. * These flags can only be cleared or set by hardware. * kUART_TxDataRegEmptyFlag, kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, * kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag, kUART_ParityErrorInRxDataRegFlag, * kUART_TxFifoEmptyFlag,kUART_RxFifoEmptyFlag * Note that this API should be called when the Tx/Rx is idle. Otherwise it has no effect. * * @param base UART peripheral base address. * @param mask The status flags to be cleared; it is logical OR value of @ref _uart_flags. * @retval kStatus_UART_FlagCannotClearManually The flag can't be cleared by this function but * it is cleared automatically by hardware. * @retval kStatus_Success Status in the mask is cleared. */ status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask); /* @} */ /*! * @name Interrupts * @{ */ /*! * @brief Enables UART interrupts according to the provided mask. * * This function enables the UART interrupts according to the provided mask. The mask * is a logical OR of enumeration members. See @ref _uart_interrupt_enable. * For example, to enable TX empty interrupt and RX full interrupt, do the following. * @code * UART_EnableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable); * @endcode * * @param base UART peripheral base address. * @param mask The interrupts to enable. Logical OR of @ref _uart_interrupt_enable. */ void UART_EnableInterrupts(UART_Type *base, uint32_t mask); /*! * @brief Disables the UART interrupts according to the provided mask. * * This function disables the UART interrupts according to the provided mask. The mask * is a logical OR of enumeration members. See @ref _uart_interrupt_enable. * For example, to disable TX empty interrupt and RX full interrupt do the following. * @code * UART_DisableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable); * @endcode * * @param base UART peripheral base address. * @param mask The interrupts to disable. Logical OR of @ref _uart_interrupt_enable. */ void UART_DisableInterrupts(UART_Type *base, uint32_t mask); /*! * @brief Gets the enabled UART interrupts. * * This function gets the enabled UART interrupts. The enabled interrupts are returned * as the logical OR value of the enumerators @ref _uart_interrupt_enable. To check * a specific interrupts enable status, compare the return value with enumerators * in @ref _uart_interrupt_enable. * For example, to check whether TX empty interrupt is enabled, do the following. * @code * uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1); * * if (kUART_TxDataRegEmptyInterruptEnable & enabledInterrupts) * { * ... * } * @endcode * * @param base UART peripheral base address. * @return UART interrupt flags which are logical OR of the enumerators in @ref _uart_interrupt_enable. */ uint32_t UART_GetEnabledInterrupts(UART_Type *base); /* @} */ #if defined(FSL_FEATURE_UART_HAS_DMA_SELECT) && FSL_FEATURE_UART_HAS_DMA_SELECT /*! * @name DMA Control * @{ */ /*! * @brief Gets the UART data register address. * * This function returns the UART data register address, which is mainly used by DMA/eDMA. * * @param base UART peripheral base address. * @return UART data register addresses which are used both by the transmitter and the receiver. */ static inline uint32_t UART_GetDataRegisterAddress(UART_Type *base) { return (uint32_t) & (base->D); } /*! * @brief Enables or disables the UART transmitter DMA request. * * This function enables or disables the transmit data register empty flag, S1[TDRE], to generate the DMA requests. * * @param base UART peripheral base address. * @param enable True to enable, false to disable. */ static inline void UART_EnableTxDMA(UART_Type *base, bool enable) { if (enable) { #if (defined(FSL_FEATURE_UART_IS_SCI) && FSL_FEATURE_UART_IS_SCI) base->C4 |= UART_C4_TDMAS_MASK; #else base->C5 |= UART_C5_TDMAS_MASK; #endif base->C2 |= UART_C2_TIE_MASK; } else { #if (defined(FSL_FEATURE_UART_IS_SCI) && FSL_FEATURE_UART_IS_SCI) base->C4 &= ~UART_C4_TDMAS_MASK; #else base->C5 &= ~UART_C5_TDMAS_MASK; #endif base->C2 &= ~UART_C2_TIE_MASK; } } /*! * @brief Enables or disables the UART receiver DMA. * * This function enables or disables the receiver data register full flag, S1[RDRF], to generate DMA requests. * * @param base UART peripheral base address. * @param enable True to enable, false to disable. */ static inline void UART_EnableRxDMA(UART_Type *base, bool enable) { if (enable) { #if (defined(FSL_FEATURE_UART_IS_SCI) && FSL_FEATURE_UART_IS_SCI) base->C4 |= UART_C4_RDMAS_MASK; #else base->C5 |= UART_C5_RDMAS_MASK; #endif base->C2 |= UART_C2_RIE_MASK; } else { #if (defined(FSL_FEATURE_UART_IS_SCI) && FSL_FEATURE_UART_IS_SCI) base->C4 &= ~UART_C4_RDMAS_MASK; #else base->C5 &= ~UART_C5_RDMAS_MASK; #endif base->C2 &= ~UART_C2_RIE_MASK; } } /* @} */ #endif /* FSL_FEATURE_UART_HAS_DMA_SELECT */ /*! * @name Bus Operations * @{ */ /*! * @brief Enables or disables the UART transmitter. * * This function enables or disables the UART transmitter. * * @param base UART peripheral base address. * @param enable True to enable, false to disable. */ static inline void UART_EnableTx(UART_Type *base, bool enable) { if (enable) { base->C2 |= UART_C2_TE_MASK; } else { base->C2 &= ~UART_C2_TE_MASK; } } /*! * @brief Enables or disables the UART receiver. * * This function enables or disables the UART receiver. * * @param base UART peripheral base address. * @param enable True to enable, false to disable. */ static inline void UART_EnableRx(UART_Type *base, bool enable) { if (enable) { base->C2 |= UART_C2_RE_MASK; } else { base->C2 &= ~UART_C2_RE_MASK; } } /*! * @brief Writes to the TX register. * * This function writes data to the TX register directly. The upper layer must ensure * that the TX register is empty or TX FIFO has empty room before calling this function. * * @param base UART peripheral base address. * @param data The byte to write. */ static inline void UART_WriteByte(UART_Type *base, uint8_t data) { base->D = data; } /*! * @brief Reads the RX register directly. * * This function reads data from the RX register directly. The upper layer must * ensure that the RX register is full or that the TX FIFO has data before calling this function. * * @param base UART peripheral base address. * @return The byte read from UART data register. */ static inline uint8_t UART_ReadByte(UART_Type *base) { return base->D; } /*! * @brief Writes to the TX register using a blocking method. * * This function polls the TX register, waits for the TX register to be empty or for the TX FIFO * to have room and writes data to the TX buffer. * * @note This function does not check whether all data is sent out to the bus. * Before disabling the TX, check kUART_TransmissionCompleteFlag to ensure that the TX is * finished. * * @param base UART peripheral base address. * @param data Start address of the data to write. * @param length Size of the data to write. */ void UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length); /*! * @brief Read RX data register using a blocking method. * * This function polls the RX register, waits for the RX register to be full or for RX FIFO to * have data, and reads data from the TX register. * * @param base UART peripheral base address. * @param data Start address of the buffer to store the received data. * @param length Size of the buffer. * @retval kStatus_UART_RxHardwareOverrun Receiver overrun occurred while receiving data. * @retval kStatus_UART_NoiseError A noise error occurred while receiving data. * @retval kStatus_UART_FramingError A framing error occurred while receiving data. * @retval kStatus_UART_ParityError A parity error occurred while receiving data. * @retval kStatus_Success Successfully received all data. */ status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length); /* @} */ /*! * @name Transactional * @{ */ /*! * @brief Initializes the UART handle. * * This function initializes the UART handle which can be used for other UART * transactional APIs. Usually, for a specified UART instance, * call this API once to get the initialized handle. * * @param base UART peripheral base address. * @param handle UART handle pointer. * @param callback The callback function. * @param userData The parameter of the callback function. */ void UART_TransferCreateHandle(UART_Type *base, uart_handle_t *handle, uart_transfer_callback_t callback, void *userData); /*! * @brief Sets up the RX ring buffer. * * This function sets up the RX ring buffer to a specific UART handle. * * When the RX ring buffer is used, data received are stored into the ring buffer even when the * user doesn't call the UART_TransferReceiveNonBlocking() API. If data is already received * in the ring buffer, the user can get the received data from the ring buffer directly. * * @note When using the RX ring buffer, one byte is reserved for internal use. In other * words, if @p ringBufferSize is 32, only 31 bytes are used for saving data. * * @param base UART peripheral base address. * @param handle UART handle pointer. * @param ringBuffer Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer. * @param ringBufferSize Size of the ring buffer. */ void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize); /*! * @brief Aborts the background transfer and uninstalls the ring buffer. * * This function aborts the background transfer and uninstalls the ring buffer. * * @param base UART peripheral base address. * @param handle UART handle pointer. */ void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle); /*! * @brief Transmits a buffer of data using the interrupt method. * * This function sends data using an interrupt method. This is a non-blocking function, which * returns directly without waiting for all data to be written to the TX register. When * all data is written to the TX register in the ISR, the UART driver calls the callback * function and passes the @ref kStatus_UART_TxIdle as status parameter. * * @note The kStatus_UART_TxIdle is passed to the upper layer when all data is written * to the TX register. However, it does not ensure that all data is sent out. Before disabling the TX, * check the kUART_TransmissionCompleteFlag to ensure that the TX is finished. * * @param base UART peripheral base address. * @param handle UART handle pointer. * @param xfer UART transfer structure. See #uart_transfer_t. * @retval kStatus_Success Successfully start the data transmission. * @retval kStatus_UART_TxBusy Previous transmission still not finished; data not all written to TX register yet. * @retval kStatus_InvalidArgument Invalid argument. */ status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer); /*! * @brief Aborts the interrupt-driven data transmit. * * This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out * how many bytes are not sent out. * * @param base UART peripheral base address. * @param handle UART handle pointer. */ void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle); /*! * @brief Gets the number of bytes written to the UART TX register. * * This function gets the number of bytes written to the UART TX * register by using the interrupt method. * * @param base UART peripheral base address. * @param handle UART handle pointer. * @param count Send bytes count. * @retval kStatus_NoTransferInProgress No send in progress. * @retval kStatus_InvalidArgument The parameter is invalid. * @retval kStatus_Success Get successfully through the parameter \p count; */ status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count); /*! * @brief Receives a buffer of data using an interrupt method. * * This function receives data using an interrupt method. This is a non-blocking function, which * returns without waiting for all data to be received. * If the RX ring buffer is used and not empty, the data in the ring buffer is copied and * the parameter @p receivedBytes shows how many bytes are copied from the ring buffer. * After copying, if the data in the ring buffer is not enough to read, the receive * request is saved by the UART driver. When the new data arrives, the receive request * is serviced first. When all data is received, the UART driver notifies the upper layer * through a callback function and passes the status parameter @ref kStatus_UART_RxIdle. * For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. * The 5 bytes are copied to the xfer->data and this function returns with the * parameter @p receivedBytes set to 5. For the left 5 bytes, newly arrived data is * saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. * If the RX ring buffer is not enabled, this function enables the RX and RX interrupt * to receive data to the xfer->data. When all data is received, the upper layer is notified. * * @param base UART peripheral base address. * @param handle UART handle pointer. * @param xfer UART transfer structure, see #uart_transfer_t. * @param receivedBytes Bytes received from the ring buffer directly. * @retval kStatus_Success Successfully queue the transfer into transmit queue. * @retval kStatus_UART_RxBusy Previous receive request is not finished. * @retval kStatus_InvalidArgument Invalid argument. */ status_t UART_TransferReceiveNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer, size_t *receivedBytes); /*! * @brief Aborts the interrupt-driven data receiving. * * This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know * how many bytes are not received yet. * * @param base UART peripheral base address. * @param handle UART handle pointer. */ void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle); /*! * @brief Gets the number of bytes that have been received. * * This function gets the number of bytes that have been received. * * @param base UART peripheral base address. * @param handle UART handle pointer. * @param count Receive bytes count. * @retval kStatus_NoTransferInProgress No receive in progress. * @retval kStatus_InvalidArgument Parameter is invalid. * @retval kStatus_Success Get successfully through the parameter \p count; */ status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count); /*! * @brief UART IRQ handle function. * * This function handles the UART transmit and receive IRQ request. * * @param base UART peripheral base address. * @param handle UART handle pointer. */ void UART_TransferHandleIRQ(UART_Type *base, uart_handle_t *handle); /*! * @brief UART Error IRQ handle function. * * This function handles the UART error IRQ request. * * @param base UART peripheral base address. * @param handle UART handle pointer. */ void UART_TransferHandleErrorIRQ(UART_Type *base, uart_handle_t *handle); /* @} */ #if defined(__cplusplus) } #endif /*! @}*/ #endif /* _FSL_UART_H_ */