mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_RENESAS/TARGET_RZ_A1H/spi_api.c

Committer:
mbed_official
Date:
2014-12-09
Revision:
430:d406b7919023
Parent:
420:8e6e2662709e
Child:
441:d2c15dda23c1

File content as of revision 430:d406b7919023:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include <math.h>

#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"


#include "rspi_iodefine.h"

static const PinMap PinMap_SPI_SCLK[] = {
    {P10_12, SPI_0, 4},
    {P11_12, SPI_1, 2},
    {P8_3,   SPI_2, 3},
    {NC   , NC   , 0}
};

static const PinMap PinMap_SPI_SSEL[] = {
    {P10_13, SPI_0, 4},
    {P11_13, SPI_1, 2},
    {P8_4,   SPI_2, 3},
    {NC   , NC   , 0}
};

static const PinMap PinMap_SPI_MOSI[] = {
    {P10_14, SPI_0, 4},
    {P11_14, SPI_1, 2},
    {P8_5,   SPI_2, 3},
    {NC   , NC   , 0}
};

static const PinMap PinMap_SPI_MISO[] = {
    {P10_15, SPI_0, 4},
    {P11_15, SPI_1, 2},
    {P8_6,   SPI_2, 3},
    {NC   , NC   , 0}
};

struct st_rspi *RSPI[] = RSPI_ADDRESS_LIST;

static inline void spi_disable(spi_t *obj);
static inline void spi_enable(spi_t *obj);
static inline int spi_readable(spi_t *obj);
static inline void spi_write(spi_t *obj, int value);
static inline int spi_writable(spi_t *obj);
static inline int spi_read(spi_t *obj);

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
    // determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
    //SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    //SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
    obj->spi = spi_mosi; //pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT((int)obj->spi != NC);
    
    // enable power and clocking
    volatile uint8_t dummy;
    switch ((int)obj->spi) {
        case SPI_0: CPGSTBCR10 &= ~(0x80); break;
        case SPI_1: CPGSTBCR10 &= ~(0x40); break;
        case SPI_2: CPGSTBCR10 &= ~(0x20); break;
    }
    dummy = CPGSTBCR10;
    
    RSPI[obj->spi]->SPCR  = 0x00;  // CTRL to 0
    RSPI[obj->spi]->SPSCR = 0x00;  // no sequential operation
    RSPI[obj->spi]->SSLP  = 0x00;  // SSL 'L' active 
    RSPI[obj->spi]->SPDCR = 0x20;  // byte access
    RSPI[obj->spi]->SPCKD = 0x00;  // SSL -> enable CLK delay : 1RSPCK
    RSPI[obj->spi]->SSLND = 0x00;  // CLK end -> SSL neg delay : 1RSPCK
    RSPI[obj->spi]->SPND  = 0x00;  // delay between CMD : 1RSPCK + 2P1CLK
    RSPI[obj->spi]->SPPCR = 0x20;  // 

    RSPI[obj->spi]->SPBFCR= 0xf0;  // and set trigger count: read 1, write 1
    RSPI[obj->spi]->SPBFCR= 0x30;  // and reset buffer

    // set default format and frequency
    if (ssel == NC) {
        spi_format(obj, 8, 0, 0);  // 8 bits, mode 0, master
    } else {
        spi_format(obj, 8, 0, 1);  // 8 bits, mode 0, slave
    }
    spi_frequency(obj, 1000000);
    
    // enable the ssp channel
    spi_enable(obj);

    // pin out the spi pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);
    if (ssel != NC) {
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
    }
}

void spi_free(spi_t *obj) {}

void spi_format(spi_t *obj, int bits, int mode, int slave) {
    spi_disable(obj);
    MBED_ASSERT(((bits >= 4) && (bits <= 16)) && (mode >= 0 && mode <= 3));

    int polarity = (mode & 0x2) ? 1 : 0;
    int phase = (mode & 0x1) ? 1 : 0;
    uint16_t tmp = 0, mask = 0xf03;
    
    tmp |= phase;
    tmp |= polarity << 1;

    int DSS;             // DSS (data select size)
    switch (bits) {
        case 8:
            DSS = 0x7; break;
        case 16:
            DSS = 0xf; break;
        case 32:
            DSS = 0x2; break;
        default:
            error("SPI module don't support other than 8/16/32bits");
            return ;
    }
    tmp |= (DSS << 8);

    // set it up
    RSPI[obj->spi]->SPCMD0 &= ~mask;
    RSPI[obj->spi]->SPCMD0 |= (mask & tmp);

    if (slave) {
        RSPI[obj->spi]->SPCR &=~(1 << 3);
    } else {
        RSPI[obj->spi]->SPCR |= (1 << 3);
    }
    
    spi_enable(obj);
}

void spi_frequency(spi_t *obj, int hz) {
    spi_disable(obj);
    const int P1CLK = 66666666; // 66.6666MHz
    uint8_t div, brdv;
    uint16_t mask = 0x000c;

    if (hz <= P1CLK/2 && hz >= P1CLK/255) {
        div = (P1CLK / hz / 2) -1;
        brdv = 0x0 << 2;
    } else if (hz >= P1CLK/255/2) {
        div = (P1CLK / hz / 2 /2) -1;
        brdv = 0x1 << 2;
    } else if (hz >= P1CLK/255/4) {
        div = (P1CLK / hz / 2 /4) -1;
        brdv = 0x2 << 2;
    } else if (hz >= P1CLK/255/8) {
        div = (P1CLK / hz / 2 /8) -1;
        brdv = 0x3 << 2;
    } else {
        error("Couldn't setup requested SPI frequency");
        return;
    }

    RSPI[obj->spi]->SPBR = div;

    RSPI[obj->spi]->SPCMD0 &= ~mask;
    RSPI[obj->spi]->SPCMD0 |= (mask & brdv);

    
    spi_enable(obj);
}

static inline void spi_disable(spi_t *obj) {
    RSPI[obj->spi]->SPCR &= ~(1 << 6);  // SPE to 0
}

static inline void spi_enable(spi_t *obj) {
    RSPI[obj->spi]->SPCR |=  (1 << 6);  // SPE to 1
}

static inline int spi_readable(spi_t *obj) {
    return RSPI[obj->spi]->SPSR & (1 << 7);
}

static inline int spi_tend(spi_t *obj) {
    return RSPI[obj->spi]->SPSR & (1 << 6);
}

static inline int spi_writable(spi_t *obj) {
    return RSPI[obj->spi]->SPSR & (1 << 5);
}

static inline void spi_write(spi_t *obj, int value) {
    while (!spi_writable(obj));
    RSPI[obj->spi]->SPDR.UINT8[0] = value;
}

static inline int spi_read(spi_t *obj) {
    //while (!spi_readable(obj));
    return RSPI[obj->spi]->SPDR.UINT8[0];
}

int spi_master_write(spi_t *obj, int value) {
    spi_write(obj, value);
    while(!spi_tend(obj));
    return spi_read(obj);
}

int spi_slave_receive(spi_t *obj) {
    return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0);
}

int spi_slave_read(spi_t *obj) {
    return RSPI[obj->spi]->SPDR.UINT8[0];
}

void spi_slave_write(spi_t *obj, int value) {
    while (spi_writable(obj) == 0) ;
    RSPI[obj->spi]->SPDR.UINT8[0] = value;
}

int spi_busy(spi_t *obj) {
    return (RSPI[obj->spi]->SPSR & (1 << 6)) ? (0) : (1);
}