mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_NUCLEO_F103RB/serial_api.c

Committer:
mbed_official
Date:
2014-08-04
Revision:
271:ccdf646660f2
Parent:
242:7074e42da0b2
Child:
402:09075a3b15e3

File content as of revision 271:ccdf646660f2:

/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "mbed_assert.h"
#include "serial_api.h"

#if DEVICE_SERIAL

#include "cmsis.h"
#include "pinmap.h"
#include <string.h>

static const PinMap PinMap_UART_TX[] = {
    {PA_2,  UART_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
    {PA_9,  UART_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
    {PB_6,  UART_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 3)}, // GPIO_Remap_USART1
    {PB_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
    {PC_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 5)}, // GPIO_PartialRemap_USART3
    {NC,    NC,     0}
};

static const PinMap PinMap_UART_RX[] = {
    {PA_3,  UART_2, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)},
    {PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)},
    {PB_7,  UART_1, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 3)}, // GPIO_Remap_USART1
    {PB_11, UART_3, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)},
    {PC_11, UART_3, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 5)}, // GPIO_PartialRemap_USART3
    {NC,    NC,     0}
};

#define UART_NUM (3)

static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0};

static uart_irq_handler irq_handler;

int stdio_uart_inited = 0;
serial_t stdio_uart;

static void init_usart(serial_t *obj) {
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    USART_InitTypeDef USART_InitStructure;

    USART_Cmd(usart, DISABLE);

    USART_InitStructure.USART_BaudRate            = obj->baudrate;
    USART_InitStructure.USART_WordLength          = obj->databits;
    USART_InitStructure.USART_StopBits            = obj->stopbits;
    USART_InitStructure.USART_Parity              = obj->parity;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

    if (obj->pin_rx == NC) {
        USART_InitStructure.USART_Mode = USART_Mode_Tx;
    } else if (obj->pin_tx == NC) {
        USART_InitStructure.USART_Mode = USART_Mode_Rx;
    } else {
        USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
    }

    USART_Init(usart, &USART_InitStructure);

    USART_Cmd(usart, ENABLE);
}

void serial_init(serial_t *obj, PinName tx, PinName rx) {
    // Determine the UART to use (UART_1, UART_2, ...)
    UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
    UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);

    // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
    obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
    MBED_ASSERT(obj->uart != (UARTName)NC);

    // Enable USART clock
    if (obj->uart == UART_1) {
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
        obj->index = 0;
    }
    if (obj->uart == UART_2) {
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
        obj->index = 1;
    }
    if (obj->uart == UART_3) {
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
        obj->index = 2;
    }

    // Configure the UART pins
    pinmap_pinout(tx, PinMap_UART_TX);
    pinmap_pinout(rx, PinMap_UART_RX);

    // Configure UART
    obj->baudrate = 9600;
    obj->databits = USART_WordLength_8b;
    obj->stopbits = USART_StopBits_1;
    obj->parity = USART_Parity_No;

    obj->pin_tx = tx;
    obj->pin_rx = rx;

    init_usart(obj);

    // For stdio management
    if (obj->uart == STDIO_UART) {
        stdio_uart_inited = 1;
        memcpy(&stdio_uart, obj, sizeof(serial_t));
    }
}

void serial_free(serial_t *obj) {
    // Reset UART and disable clock
    if (obj->uart == UART_1) {
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE);
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, DISABLE);
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, DISABLE);
    }
    if (obj->uart == UART_2) {
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, DISABLE);
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, DISABLE);
    }
    if (obj->uart == UART_3) {
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, DISABLE);
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, DISABLE);
    }

    // Configure GPIOs
    pin_function(obj->pin_tx, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0));
    pin_function(obj->pin_rx, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0));

    serial_irq_ids[obj->index] = 0;
}

void serial_baud(serial_t *obj, int baudrate) {
    obj->baudrate = baudrate;
    init_usart(obj);
}

void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
    if (data_bits == 9) {
        obj->databits = USART_WordLength_9b;
    } else {
        obj->databits = USART_WordLength_8b;
    }

    switch (parity) {
        case ParityOdd:
        case ParityForced0:
            obj->parity = USART_Parity_Odd;
            break;
        case ParityEven:
        case ParityForced1:
            obj->parity = USART_Parity_Even;
            break;
        default: // ParityNone
            obj->parity = USART_Parity_No;
            break;
    }

    if (stop_bits == 2) {
        obj->stopbits = USART_StopBits_2;
    } else {
        obj->stopbits = USART_StopBits_1;
    }

    init_usart(obj);
}

/******************************************************************************
 * INTERRUPTS HANDLING
 ******************************************************************************/

// not api
static void uart_irq(USART_TypeDef* usart, int id) {
    if (serial_irq_ids[id] != 0) {
        if (USART_GetITStatus(usart, USART_IT_TC) != RESET) {
            irq_handler(serial_irq_ids[id], TxIrq);
            USART_ClearITPendingBit(usart, USART_IT_TC);
        }
        if (USART_GetITStatus(usart, USART_IT_RXNE) != RESET) {
            irq_handler(serial_irq_ids[id], RxIrq);
            USART_ClearITPendingBit(usart, USART_IT_RXNE);
        }
    }
}

static void uart1_irq(void) {
    uart_irq((USART_TypeDef*)UART_1, 0);
}
static void uart2_irq(void) {
    uart_irq((USART_TypeDef*)UART_2, 1);
}
static void uart3_irq(void) {
    uart_irq((USART_TypeDef*)UART_3, 2);
}

void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
    irq_handler = handler;
    serial_irq_ids[obj->index] = id;
}

void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
    IRQn_Type irq_n = (IRQn_Type)0;
    uint32_t vector = 0;
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);

    if (obj->uart == UART_1) {
        irq_n = USART1_IRQn;
        vector = (uint32_t)&uart1_irq;
    }

    if (obj->uart == UART_2) {
        irq_n = USART2_IRQn;
        vector = (uint32_t)&uart2_irq;
    }

    if (obj->uart == UART_3) {
        irq_n = USART3_IRQn;
        vector = (uint32_t)&uart3_irq;
    }

    if (enable) {

        if (irq == RxIrq) {
            USART_ITConfig(usart, USART_IT_RXNE, ENABLE);
        } else { // TxIrq
            USART_ITConfig(usart, USART_IT_TC, ENABLE);
        }

        NVIC_SetVector(irq_n, vector);
        NVIC_EnableIRQ(irq_n);

    } else { // disable

        int all_disabled = 0;

        if (irq == RxIrq) {
            USART_ITConfig(usart, USART_IT_RXNE, DISABLE);
            // Check if TxIrq is disabled too
            if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1;
        } else { // TxIrq
            USART_ITConfig(usart, USART_IT_TXE, DISABLE);
            // Check if RxIrq is disabled too
            if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
        }

        if (all_disabled) NVIC_DisableIRQ(irq_n);

    }
}

/******************************************************************************
 * READ/WRITE
 ******************************************************************************/

int serial_getc(serial_t *obj) {
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    while (!serial_readable(obj));
    return (int)(USART_ReceiveData(usart));
}

void serial_putc(serial_t *obj, int c) {
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    while (!serial_writable(obj));
    USART_SendData(usart, (uint16_t)c);
}

int serial_readable(serial_t *obj) {
    int status;
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    // Check if data is received
    status = ((USART_GetFlagStatus(usart, USART_FLAG_RXNE) != RESET) ? 1 : 0);
    return status;
}

int serial_writable(serial_t *obj) {
    int status;
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    // Check if data is transmitted
    status = ((USART_GetFlagStatus(usart, USART_FLAG_TXE) != RESET) ? 1 : 0);
    return status;
}

void serial_clear(serial_t *obj) {
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    USART_ClearFlag(usart, USART_FLAG_TXE);
    USART_ClearFlag(usart, USART_FLAG_RXNE);
}

void serial_pinout_tx(PinName tx) {
    pinmap_pinout(tx, PinMap_UART_TX);
}

void serial_break_set(serial_t *obj) {
    USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
    USART_SendBreak(usart);
}

void serial_break_clear(serial_t *obj) {
}

#endif