CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
mbed_official
Date:
Fri Nov 20 08:45:18 2015 +0000
Revision:
5:3762170b6d4d
Parent:
3:7a284390b0ce
Synchronized with git revision 2eb940b9a73af188d3004a2575fdfbb05febe62b

Full URL: https://github.com/mbedmicro/mbed/commit/2eb940b9a73af188d3004a2575fdfbb05febe62b/

Added option to build rpc library. closes #1426

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 5:3762170b6d4d 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 5:3762170b6d4d 4 * $Date: 19. March 2015
mbed_official 5:3762170b6d4d 5 * $Revision: V.1.4.5
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_lms_norm_q31.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Processing function for the Q31 NLMS filter.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @addtogroup LMS_NORM
emilmont 1:fdd22bb7aa52 49 * @{
emilmont 1:fdd22bb7aa52 50 */
emilmont 1:fdd22bb7aa52 51
emilmont 1:fdd22bb7aa52 52 /**
emilmont 1:fdd22bb7aa52 53 * @brief Processing function for Q31 normalized LMS filter.
emilmont 1:fdd22bb7aa52 54 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
emilmont 1:fdd22bb7aa52 55 * @param[in] *pSrc points to the block of input data.
emilmont 1:fdd22bb7aa52 56 * @param[in] *pRef points to the block of reference data.
emilmont 1:fdd22bb7aa52 57 * @param[out] *pOut points to the block of output data.
emilmont 1:fdd22bb7aa52 58 * @param[out] *pErr points to the block of error data.
emilmont 1:fdd22bb7aa52 59 * @param[in] blockSize number of samples to process.
emilmont 1:fdd22bb7aa52 60 * @return none.
emilmont 1:fdd22bb7aa52 61 *
emilmont 1:fdd22bb7aa52 62 * <b>Scaling and Overflow Behavior:</b>
emilmont 1:fdd22bb7aa52 63 * \par
emilmont 1:fdd22bb7aa52 64 * The function is implemented using an internal 64-bit accumulator.
emilmont 1:fdd22bb7aa52 65 * The accumulator has a 2.62 format and maintains full precision of the intermediate
emilmont 1:fdd22bb7aa52 66 * multiplication results but provides only a single guard bit.
emilmont 1:fdd22bb7aa52 67 * Thus, if the accumulator result overflows it wraps around rather than clip.
emilmont 1:fdd22bb7aa52 68 * In order to avoid overflows completely the input signal must be scaled down by
emilmont 1:fdd22bb7aa52 69 * log2(numTaps) bits. The reference signal should not be scaled down.
emilmont 1:fdd22bb7aa52 70 * After all multiply-accumulates are performed, the 2.62 accumulator is shifted
emilmont 1:fdd22bb7aa52 71 * and saturated to 1.31 format to yield the final result.
emilmont 1:fdd22bb7aa52 72 * The output signal and error signal are in 1.31 format.
emilmont 1:fdd22bb7aa52 73 *
emilmont 1:fdd22bb7aa52 74 * \par
emilmont 2:da51fb522205 75 * In this filter, filter coefficients are updated for each sample and the
emilmont 1:fdd22bb7aa52 76 * updation of filter cofficients are saturted.
emilmont 1:fdd22bb7aa52 77 *
emilmont 1:fdd22bb7aa52 78 */
emilmont 1:fdd22bb7aa52 79
emilmont 1:fdd22bb7aa52 80 void arm_lms_norm_q31(
emilmont 1:fdd22bb7aa52 81 arm_lms_norm_instance_q31 * S,
emilmont 1:fdd22bb7aa52 82 q31_t * pSrc,
emilmont 1:fdd22bb7aa52 83 q31_t * pRef,
emilmont 1:fdd22bb7aa52 84 q31_t * pOut,
emilmont 1:fdd22bb7aa52 85 q31_t * pErr,
emilmont 1:fdd22bb7aa52 86 uint32_t blockSize)
emilmont 1:fdd22bb7aa52 87 {
emilmont 1:fdd22bb7aa52 88 q31_t *pState = S->pState; /* State pointer */
emilmont 1:fdd22bb7aa52 89 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
emilmont 1:fdd22bb7aa52 90 q31_t *pStateCurnt; /* Points to the current sample of the state */
emilmont 1:fdd22bb7aa52 91 q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
emilmont 1:fdd22bb7aa52 92 q31_t mu = S->mu; /* Adaptive factor */
emilmont 1:fdd22bb7aa52 93 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
emilmont 1:fdd22bb7aa52 94 uint32_t tapCnt, blkCnt; /* Loop counters */
emilmont 1:fdd22bb7aa52 95 q63_t energy; /* Energy of the input */
emilmont 1:fdd22bb7aa52 96 q63_t acc; /* Accumulator */
emilmont 1:fdd22bb7aa52 97 q31_t e = 0, d = 0; /* error, reference data sample */
emilmont 1:fdd22bb7aa52 98 q31_t w = 0, in; /* weight factor and state */
emilmont 1:fdd22bb7aa52 99 q31_t x0; /* temporary variable to hold input sample */
emilmont 1:fdd22bb7aa52 100 // uint32_t shift = 32u - ((uint32_t) S->postShift + 1u); /* Shift to be applied to the output */
emilmont 1:fdd22bb7aa52 101 q31_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
emilmont 1:fdd22bb7aa52 102 q31_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
emilmont 1:fdd22bb7aa52 103 q31_t coef; /* Temporary variable for coef */
emilmont 1:fdd22bb7aa52 104 q31_t acc_l, acc_h; /* temporary input */
emilmont 1:fdd22bb7aa52 105 uint32_t uShift = ((uint32_t) S->postShift + 1u);
emilmont 1:fdd22bb7aa52 106 uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */
emilmont 1:fdd22bb7aa52 107
emilmont 1:fdd22bb7aa52 108 energy = S->energy;
emilmont 1:fdd22bb7aa52 109 x0 = S->x0;
emilmont 1:fdd22bb7aa52 110
emilmont 1:fdd22bb7aa52 111 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
emilmont 1:fdd22bb7aa52 112 /* pStateCurnt points to the location where the new input data should be written */
emilmont 1:fdd22bb7aa52 113 pStateCurnt = &(S->pState[(numTaps - 1u)]);
emilmont 1:fdd22bb7aa52 114
emilmont 1:fdd22bb7aa52 115 /* Loop over blockSize number of values */
emilmont 1:fdd22bb7aa52 116 blkCnt = blockSize;
emilmont 1:fdd22bb7aa52 117
emilmont 1:fdd22bb7aa52 118
mbed_official 3:7a284390b0ce 119 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 120
emilmont 1:fdd22bb7aa52 121 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 124 {
emilmont 1:fdd22bb7aa52 125
emilmont 1:fdd22bb7aa52 126 /* Copy the new input sample into the state buffer */
emilmont 1:fdd22bb7aa52 127 *pStateCurnt++ = *pSrc;
emilmont 1:fdd22bb7aa52 128
emilmont 1:fdd22bb7aa52 129 /* Initialize pState pointer */
emilmont 1:fdd22bb7aa52 130 px = pState;
emilmont 1:fdd22bb7aa52 131
emilmont 1:fdd22bb7aa52 132 /* Initialize coeff pointer */
emilmont 1:fdd22bb7aa52 133 pb = (pCoeffs);
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 /* Read the sample from input buffer */
emilmont 1:fdd22bb7aa52 136 in = *pSrc++;
emilmont 1:fdd22bb7aa52 137
emilmont 1:fdd22bb7aa52 138 /* Update the energy calculation */
emilmont 1:fdd22bb7aa52 139 energy = (q31_t) ((((q63_t) energy << 32) -
emilmont 1:fdd22bb7aa52 140 (((q63_t) x0 * x0) << 1)) >> 32);
emilmont 1:fdd22bb7aa52 141 energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
emilmont 1:fdd22bb7aa52 142
emilmont 1:fdd22bb7aa52 143 /* Set the accumulator to zero */
emilmont 1:fdd22bb7aa52 144 acc = 0;
emilmont 1:fdd22bb7aa52 145
emilmont 1:fdd22bb7aa52 146 /* Loop unrolling. Process 4 taps at a time. */
emilmont 1:fdd22bb7aa52 147 tapCnt = numTaps >> 2;
emilmont 1:fdd22bb7aa52 148
emilmont 1:fdd22bb7aa52 149 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 150 {
emilmont 1:fdd22bb7aa52 151 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 152 acc += ((q63_t) (*px++)) * (*pb++);
emilmont 1:fdd22bb7aa52 153 acc += ((q63_t) (*px++)) * (*pb++);
emilmont 1:fdd22bb7aa52 154 acc += ((q63_t) (*px++)) * (*pb++);
emilmont 1:fdd22bb7aa52 155 acc += ((q63_t) (*px++)) * (*pb++);
emilmont 1:fdd22bb7aa52 156
emilmont 1:fdd22bb7aa52 157 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 158 tapCnt--;
emilmont 1:fdd22bb7aa52 159 }
emilmont 1:fdd22bb7aa52 160
emilmont 1:fdd22bb7aa52 161 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
emilmont 1:fdd22bb7aa52 162 tapCnt = numTaps % 0x4u;
emilmont 1:fdd22bb7aa52 163
emilmont 1:fdd22bb7aa52 164 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 165 {
emilmont 1:fdd22bb7aa52 166 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 167 acc += ((q63_t) (*px++)) * (*pb++);
emilmont 1:fdd22bb7aa52 168
emilmont 1:fdd22bb7aa52 169 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 170 tapCnt--;
emilmont 1:fdd22bb7aa52 171 }
emilmont 1:fdd22bb7aa52 172
emilmont 1:fdd22bb7aa52 173 /* Converting the result to 1.31 format */
emilmont 1:fdd22bb7aa52 174 /* Calc lower part of acc */
emilmont 1:fdd22bb7aa52 175 acc_l = acc & 0xffffffff;
emilmont 1:fdd22bb7aa52 176
emilmont 1:fdd22bb7aa52 177 /* Calc upper part of acc */
emilmont 1:fdd22bb7aa52 178 acc_h = (acc >> 32) & 0xffffffff;
emilmont 1:fdd22bb7aa52 179
emilmont 1:fdd22bb7aa52 180 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
emilmont 1:fdd22bb7aa52 181
emilmont 1:fdd22bb7aa52 182 /* Store the result from accumulator into the destination buffer. */
emilmont 1:fdd22bb7aa52 183 *pOut++ = (q31_t) acc;
emilmont 1:fdd22bb7aa52 184
emilmont 1:fdd22bb7aa52 185 /* Compute and store error */
emilmont 1:fdd22bb7aa52 186 d = *pRef++;
emilmont 1:fdd22bb7aa52 187 e = d - (q31_t) acc;
emilmont 1:fdd22bb7aa52 188 *pErr++ = e;
emilmont 1:fdd22bb7aa52 189
emilmont 1:fdd22bb7aa52 190 /* Calculates the reciprocal of energy */
emilmont 1:fdd22bb7aa52 191 postShift = arm_recip_q31(energy + DELTA_Q31,
emilmont 1:fdd22bb7aa52 192 &oneByEnergy, &S->recipTable[0]);
emilmont 1:fdd22bb7aa52 193
emilmont 1:fdd22bb7aa52 194 /* Calculation of product of (e * mu) */
emilmont 1:fdd22bb7aa52 195 errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
emilmont 1:fdd22bb7aa52 196
emilmont 1:fdd22bb7aa52 197 /* Weighting factor for the normalized version */
emilmont 1:fdd22bb7aa52 198 w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
emilmont 1:fdd22bb7aa52 199
emilmont 1:fdd22bb7aa52 200 /* Initialize pState pointer */
emilmont 1:fdd22bb7aa52 201 px = pState;
emilmont 1:fdd22bb7aa52 202
emilmont 1:fdd22bb7aa52 203 /* Initialize coeff pointer */
emilmont 1:fdd22bb7aa52 204 pb = (pCoeffs);
emilmont 1:fdd22bb7aa52 205
emilmont 1:fdd22bb7aa52 206 /* Loop unrolling. Process 4 taps at a time. */
emilmont 1:fdd22bb7aa52 207 tapCnt = numTaps >> 2;
emilmont 1:fdd22bb7aa52 208
emilmont 1:fdd22bb7aa52 209 /* Update filter coefficients */
emilmont 1:fdd22bb7aa52 210 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 211 {
emilmont 1:fdd22bb7aa52 212 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 213
emilmont 1:fdd22bb7aa52 214 /* coef is in 2.30 format */
emilmont 1:fdd22bb7aa52 215 coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
emilmont 1:fdd22bb7aa52 216 /* get coef in 1.31 format by left shifting */
emilmont 1:fdd22bb7aa52 217 *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
emilmont 1:fdd22bb7aa52 218 /* update coefficient buffer to next coefficient */
emilmont 1:fdd22bb7aa52 219 pb++;
emilmont 1:fdd22bb7aa52 220
emilmont 1:fdd22bb7aa52 221 coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
emilmont 1:fdd22bb7aa52 222 *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
emilmont 1:fdd22bb7aa52 223 pb++;
emilmont 1:fdd22bb7aa52 224
emilmont 1:fdd22bb7aa52 225 coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
emilmont 1:fdd22bb7aa52 226 *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
emilmont 1:fdd22bb7aa52 227 pb++;
emilmont 1:fdd22bb7aa52 228
emilmont 1:fdd22bb7aa52 229 coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
emilmont 1:fdd22bb7aa52 230 *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
emilmont 1:fdd22bb7aa52 231 pb++;
emilmont 1:fdd22bb7aa52 232
emilmont 1:fdd22bb7aa52 233 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 234 tapCnt--;
emilmont 1:fdd22bb7aa52 235 }
emilmont 1:fdd22bb7aa52 236
emilmont 1:fdd22bb7aa52 237 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
emilmont 1:fdd22bb7aa52 238 tapCnt = numTaps % 0x4u;
emilmont 1:fdd22bb7aa52 239
emilmont 1:fdd22bb7aa52 240 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 241 {
emilmont 1:fdd22bb7aa52 242 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 243 coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
emilmont 1:fdd22bb7aa52 244 *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
emilmont 1:fdd22bb7aa52 245 pb++;
emilmont 1:fdd22bb7aa52 246
emilmont 1:fdd22bb7aa52 247 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 248 tapCnt--;
emilmont 1:fdd22bb7aa52 249 }
emilmont 1:fdd22bb7aa52 250
emilmont 1:fdd22bb7aa52 251 /* Read the sample from state buffer */
emilmont 1:fdd22bb7aa52 252 x0 = *pState;
emilmont 1:fdd22bb7aa52 253
emilmont 1:fdd22bb7aa52 254 /* Advance state pointer by 1 for the next sample */
emilmont 1:fdd22bb7aa52 255 pState = pState + 1;
emilmont 1:fdd22bb7aa52 256
emilmont 1:fdd22bb7aa52 257 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 258 blkCnt--;
emilmont 1:fdd22bb7aa52 259 }
emilmont 1:fdd22bb7aa52 260
emilmont 1:fdd22bb7aa52 261 /* Save energy and x0 values for the next frame */
emilmont 1:fdd22bb7aa52 262 S->energy = (q31_t) energy;
emilmont 1:fdd22bb7aa52 263 S->x0 = x0;
emilmont 1:fdd22bb7aa52 264
emilmont 1:fdd22bb7aa52 265 /* Processing is complete. Now copy the last numTaps - 1 samples to the
emilmont 1:fdd22bb7aa52 266 satrt of the state buffer. This prepares the state buffer for the
emilmont 1:fdd22bb7aa52 267 next function call. */
emilmont 1:fdd22bb7aa52 268
emilmont 1:fdd22bb7aa52 269 /* Points to the start of the pState buffer */
emilmont 1:fdd22bb7aa52 270 pStateCurnt = S->pState;
emilmont 1:fdd22bb7aa52 271
emilmont 1:fdd22bb7aa52 272 /* Loop unrolling for (numTaps - 1u) samples copy */
emilmont 1:fdd22bb7aa52 273 tapCnt = (numTaps - 1u) >> 2u;
emilmont 1:fdd22bb7aa52 274
emilmont 1:fdd22bb7aa52 275 /* copy data */
emilmont 1:fdd22bb7aa52 276 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 277 {
emilmont 1:fdd22bb7aa52 278 *pStateCurnt++ = *pState++;
emilmont 1:fdd22bb7aa52 279 *pStateCurnt++ = *pState++;
emilmont 1:fdd22bb7aa52 280 *pStateCurnt++ = *pState++;
emilmont 1:fdd22bb7aa52 281 *pStateCurnt++ = *pState++;
emilmont 1:fdd22bb7aa52 282
emilmont 1:fdd22bb7aa52 283 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 284 tapCnt--;
emilmont 1:fdd22bb7aa52 285 }
emilmont 1:fdd22bb7aa52 286
emilmont 1:fdd22bb7aa52 287 /* Calculate remaining number of copies */
emilmont 1:fdd22bb7aa52 288 tapCnt = (numTaps - 1u) % 0x4u;
emilmont 1:fdd22bb7aa52 289
emilmont 1:fdd22bb7aa52 290 /* Copy the remaining q31_t data */
emilmont 1:fdd22bb7aa52 291 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 292 {
emilmont 1:fdd22bb7aa52 293 *pStateCurnt++ = *pState++;
emilmont 1:fdd22bb7aa52 294
emilmont 1:fdd22bb7aa52 295 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 296 tapCnt--;
emilmont 1:fdd22bb7aa52 297 }
emilmont 1:fdd22bb7aa52 298
emilmont 1:fdd22bb7aa52 299 #else
emilmont 1:fdd22bb7aa52 300
emilmont 1:fdd22bb7aa52 301 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 302
emilmont 1:fdd22bb7aa52 303 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 304 {
emilmont 1:fdd22bb7aa52 305
emilmont 1:fdd22bb7aa52 306 /* Copy the new input sample into the state buffer */
emilmont 1:fdd22bb7aa52 307 *pStateCurnt++ = *pSrc;
emilmont 1:fdd22bb7aa52 308
emilmont 1:fdd22bb7aa52 309 /* Initialize pState pointer */
emilmont 1:fdd22bb7aa52 310 px = pState;
emilmont 1:fdd22bb7aa52 311
emilmont 1:fdd22bb7aa52 312 /* Initialize pCoeffs pointer */
emilmont 1:fdd22bb7aa52 313 pb = pCoeffs;
emilmont 1:fdd22bb7aa52 314
emilmont 1:fdd22bb7aa52 315 /* Read the sample from input buffer */
emilmont 1:fdd22bb7aa52 316 in = *pSrc++;
emilmont 1:fdd22bb7aa52 317
emilmont 1:fdd22bb7aa52 318 /* Update the energy calculation */
emilmont 1:fdd22bb7aa52 319 energy =
emilmont 1:fdd22bb7aa52 320 (q31_t) ((((q63_t) energy << 32) - (((q63_t) x0 * x0) << 1)) >> 32);
emilmont 1:fdd22bb7aa52 321 energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
emilmont 1:fdd22bb7aa52 322
emilmont 1:fdd22bb7aa52 323 /* Set the accumulator to zero */
emilmont 1:fdd22bb7aa52 324 acc = 0;
emilmont 1:fdd22bb7aa52 325
emilmont 1:fdd22bb7aa52 326 /* Loop over numTaps number of values */
emilmont 1:fdd22bb7aa52 327 tapCnt = numTaps;
emilmont 1:fdd22bb7aa52 328
emilmont 1:fdd22bb7aa52 329 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 330 {
emilmont 1:fdd22bb7aa52 331 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 332 acc += ((q63_t) (*px++)) * (*pb++);
emilmont 1:fdd22bb7aa52 333
emilmont 1:fdd22bb7aa52 334 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 335 tapCnt--;
emilmont 1:fdd22bb7aa52 336 }
emilmont 1:fdd22bb7aa52 337
emilmont 1:fdd22bb7aa52 338 /* Converting the result to 1.31 format */
emilmont 1:fdd22bb7aa52 339 /* Converting the result to 1.31 format */
emilmont 1:fdd22bb7aa52 340 /* Calc lower part of acc */
emilmont 1:fdd22bb7aa52 341 acc_l = acc & 0xffffffff;
emilmont 1:fdd22bb7aa52 342
emilmont 1:fdd22bb7aa52 343 /* Calc upper part of acc */
emilmont 1:fdd22bb7aa52 344 acc_h = (acc >> 32) & 0xffffffff;
emilmont 1:fdd22bb7aa52 345
emilmont 1:fdd22bb7aa52 346 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
emilmont 1:fdd22bb7aa52 347
emilmont 1:fdd22bb7aa52 348
emilmont 1:fdd22bb7aa52 349 //acc = (q31_t) (acc >> shift);
emilmont 1:fdd22bb7aa52 350
emilmont 1:fdd22bb7aa52 351 /* Store the result from accumulator into the destination buffer. */
emilmont 1:fdd22bb7aa52 352 *pOut++ = (q31_t) acc;
emilmont 1:fdd22bb7aa52 353
emilmont 1:fdd22bb7aa52 354 /* Compute and store error */
emilmont 1:fdd22bb7aa52 355 d = *pRef++;
emilmont 1:fdd22bb7aa52 356 e = d - (q31_t) acc;
emilmont 1:fdd22bb7aa52 357 *pErr++ = e;
emilmont 1:fdd22bb7aa52 358
emilmont 1:fdd22bb7aa52 359 /* Calculates the reciprocal of energy */
emilmont 1:fdd22bb7aa52 360 postShift =
emilmont 1:fdd22bb7aa52 361 arm_recip_q31(energy + DELTA_Q31, &oneByEnergy, &S->recipTable[0]);
emilmont 1:fdd22bb7aa52 362
emilmont 1:fdd22bb7aa52 363 /* Calculation of product of (e * mu) */
emilmont 1:fdd22bb7aa52 364 errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
emilmont 1:fdd22bb7aa52 365
emilmont 1:fdd22bb7aa52 366 /* Weighting factor for the normalized version */
emilmont 1:fdd22bb7aa52 367 w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
emilmont 1:fdd22bb7aa52 368
emilmont 1:fdd22bb7aa52 369 /* Initialize pState pointer */
emilmont 1:fdd22bb7aa52 370 px = pState;
emilmont 1:fdd22bb7aa52 371
emilmont 1:fdd22bb7aa52 372 /* Initialize coeff pointer */
emilmont 1:fdd22bb7aa52 373 pb = (pCoeffs);
emilmont 1:fdd22bb7aa52 374
emilmont 1:fdd22bb7aa52 375 /* Loop over numTaps number of values */
emilmont 1:fdd22bb7aa52 376 tapCnt = numTaps;
emilmont 1:fdd22bb7aa52 377
emilmont 1:fdd22bb7aa52 378 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 379 {
emilmont 1:fdd22bb7aa52 380 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 381 /* coef is in 2.30 format */
emilmont 1:fdd22bb7aa52 382 coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
emilmont 1:fdd22bb7aa52 383 /* get coef in 1.31 format by left shifting */
emilmont 1:fdd22bb7aa52 384 *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
emilmont 1:fdd22bb7aa52 385 /* update coefficient buffer to next coefficient */
emilmont 1:fdd22bb7aa52 386 pb++;
emilmont 1:fdd22bb7aa52 387
emilmont 1:fdd22bb7aa52 388 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 389 tapCnt--;
emilmont 1:fdd22bb7aa52 390 }
emilmont 1:fdd22bb7aa52 391
emilmont 1:fdd22bb7aa52 392 /* Read the sample from state buffer */
emilmont 1:fdd22bb7aa52 393 x0 = *pState;
emilmont 1:fdd22bb7aa52 394
emilmont 1:fdd22bb7aa52 395 /* Advance state pointer by 1 for the next sample */
emilmont 1:fdd22bb7aa52 396 pState = pState + 1;
emilmont 1:fdd22bb7aa52 397
emilmont 1:fdd22bb7aa52 398 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 399 blkCnt--;
emilmont 1:fdd22bb7aa52 400 }
emilmont 1:fdd22bb7aa52 401
emilmont 1:fdd22bb7aa52 402 /* Save energy and x0 values for the next frame */
emilmont 1:fdd22bb7aa52 403 S->energy = (q31_t) energy;
emilmont 1:fdd22bb7aa52 404 S->x0 = x0;
emilmont 1:fdd22bb7aa52 405
emilmont 1:fdd22bb7aa52 406 /* Processing is complete. Now copy the last numTaps - 1 samples to the
emilmont 1:fdd22bb7aa52 407 start of the state buffer. This prepares the state buffer for the
emilmont 1:fdd22bb7aa52 408 next function call. */
emilmont 1:fdd22bb7aa52 409
emilmont 1:fdd22bb7aa52 410 /* Points to the start of the pState buffer */
emilmont 1:fdd22bb7aa52 411 pStateCurnt = S->pState;
emilmont 1:fdd22bb7aa52 412
emilmont 1:fdd22bb7aa52 413 /* Loop for (numTaps - 1u) samples copy */
emilmont 1:fdd22bb7aa52 414 tapCnt = (numTaps - 1u);
emilmont 1:fdd22bb7aa52 415
emilmont 1:fdd22bb7aa52 416 /* Copy the remaining q31_t data */
emilmont 1:fdd22bb7aa52 417 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 418 {
emilmont 1:fdd22bb7aa52 419 *pStateCurnt++ = *pState++;
emilmont 1:fdd22bb7aa52 420
emilmont 1:fdd22bb7aa52 421 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 422 tapCnt--;
emilmont 1:fdd22bb7aa52 423 }
emilmont 1:fdd22bb7aa52 424
mbed_official 3:7a284390b0ce 425 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 426
emilmont 1:fdd22bb7aa52 427 }
emilmont 1:fdd22bb7aa52 428
emilmont 1:fdd22bb7aa52 429 /**
emilmont 1:fdd22bb7aa52 430 * @} end of LMS_NORM group
emilmont 1:fdd22bb7aa52 431 */