CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
mbed_official
Date:
Fri Nov 20 08:45:18 2015 +0000
Revision:
5:3762170b6d4d
Parent:
3:7a284390b0ce
Synchronized with git revision 2eb940b9a73af188d3004a2575fdfbb05febe62b

Full URL: https://github.com/mbedmicro/mbed/commit/2eb940b9a73af188d3004a2575fdfbb05febe62b/

Added option to build rpc library. closes #1426

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 5:3762170b6d4d 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 5:3762170b6d4d 4 * $Date: 19. March 2015
mbed_official 5:3762170b6d4d 5 * $Revision: V.1.4.5
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_conv_partial_fast_q31.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Fast Q31 Partial convolution.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @addtogroup PartialConv
emilmont 1:fdd22bb7aa52 49 * @{
emilmont 1:fdd22bb7aa52 50 */
emilmont 1:fdd22bb7aa52 51
emilmont 1:fdd22bb7aa52 52 /**
emilmont 1:fdd22bb7aa52 53 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4.
emilmont 1:fdd22bb7aa52 54 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 55 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 56 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 57 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 58 * @param[out] *pDst points to the location where the output result is written.
emilmont 1:fdd22bb7aa52 59 * @param[in] firstIndex is the first output sample to start with.
emilmont 1:fdd22bb7aa52 60 * @param[in] numPoints is the number of output points to be computed.
emilmont 1:fdd22bb7aa52 61 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
emilmont 1:fdd22bb7aa52 62 *
emilmont 1:fdd22bb7aa52 63 * \par
emilmont 1:fdd22bb7aa52 64 * See <code>arm_conv_partial_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.
emilmont 1:fdd22bb7aa52 65 */
emilmont 1:fdd22bb7aa52 66
emilmont 1:fdd22bb7aa52 67 arm_status arm_conv_partial_fast_q31(
emilmont 1:fdd22bb7aa52 68 q31_t * pSrcA,
emilmont 1:fdd22bb7aa52 69 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 70 q31_t * pSrcB,
emilmont 1:fdd22bb7aa52 71 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 72 q31_t * pDst,
emilmont 1:fdd22bb7aa52 73 uint32_t firstIndex,
emilmont 1:fdd22bb7aa52 74 uint32_t numPoints)
emilmont 1:fdd22bb7aa52 75 {
emilmont 1:fdd22bb7aa52 76 q31_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 77 q31_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 78 q31_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 79 q31_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 80 q31_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 81 q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
emilmont 1:fdd22bb7aa52 82 q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
emilmont 1:fdd22bb7aa52 83 q31_t x0, x1, x2, x3, c0;
emilmont 1:fdd22bb7aa52 84 uint32_t j, k, count, check, blkCnt;
emilmont 1:fdd22bb7aa52 85 int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
emilmont 1:fdd22bb7aa52 86 arm_status status; /* status of Partial convolution */
emilmont 1:fdd22bb7aa52 87
emilmont 1:fdd22bb7aa52 88
emilmont 1:fdd22bb7aa52 89 /* Check for range of output samples to be calculated */
emilmont 1:fdd22bb7aa52 90 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
emilmont 1:fdd22bb7aa52 91 {
emilmont 1:fdd22bb7aa52 92 /* Set status as ARM_MATH_ARGUMENT_ERROR */
emilmont 1:fdd22bb7aa52 93 status = ARM_MATH_ARGUMENT_ERROR;
emilmont 1:fdd22bb7aa52 94 }
emilmont 1:fdd22bb7aa52 95 else
emilmont 1:fdd22bb7aa52 96 {
emilmont 1:fdd22bb7aa52 97
emilmont 1:fdd22bb7aa52 98 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 99 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 100 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 101 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 102 {
emilmont 1:fdd22bb7aa52 103 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 104 pIn1 = pSrcA;
emilmont 1:fdd22bb7aa52 105
emilmont 1:fdd22bb7aa52 106 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 107 pIn2 = pSrcB;
emilmont 1:fdd22bb7aa52 108 }
emilmont 1:fdd22bb7aa52 109 else
emilmont 1:fdd22bb7aa52 110 {
emilmont 1:fdd22bb7aa52 111 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 112 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 113
emilmont 1:fdd22bb7aa52 114 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 115 pIn2 = pSrcA;
emilmont 1:fdd22bb7aa52 116
emilmont 1:fdd22bb7aa52 117 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 118 j = srcBLen;
emilmont 1:fdd22bb7aa52 119 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 120 srcALen = j;
emilmont 1:fdd22bb7aa52 121 }
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 /* Conditions to check which loopCounter holds
emilmont 1:fdd22bb7aa52 124 * the first and last indices of the output samples to be calculated. */
emilmont 1:fdd22bb7aa52 125 check = firstIndex + numPoints;
mbed_official 5:3762170b6d4d 126 blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
mbed_official 5:3762170b6d4d 127 blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
emilmont 1:fdd22bb7aa52 128 blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
emilmont 1:fdd22bb7aa52 129 blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
emilmont 1:fdd22bb7aa52 130 (int32_t) numPoints) : 0;
emilmont 1:fdd22bb7aa52 131 blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
emilmont 1:fdd22bb7aa52 132 (int32_t) firstIndex);
emilmont 1:fdd22bb7aa52 133 blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
emilmont 1:fdd22bb7aa52 136 /* The function is internally
emilmont 1:fdd22bb7aa52 137 * divided into three stages according to the number of multiplications that has to be
emilmont 1:fdd22bb7aa52 138 * taken place between inputA samples and inputB samples. In the first stage of the
emilmont 1:fdd22bb7aa52 139 * algorithm, the multiplications increase by one for every iteration.
emilmont 1:fdd22bb7aa52 140 * In the second stage of the algorithm, srcBLen number of multiplications are done.
emilmont 1:fdd22bb7aa52 141 * In the third stage of the algorithm, the multiplications decrease by one
emilmont 1:fdd22bb7aa52 142 * for every iteration. */
emilmont 1:fdd22bb7aa52 143
emilmont 1:fdd22bb7aa52 144 /* Set the output pointer to point to the firstIndex
emilmont 1:fdd22bb7aa52 145 * of the output sample to be calculated. */
emilmont 1:fdd22bb7aa52 146 pOut = pDst + firstIndex;
emilmont 1:fdd22bb7aa52 147
emilmont 1:fdd22bb7aa52 148 /* --------------------------
emilmont 1:fdd22bb7aa52 149 * Initializations of stage1
emilmont 1:fdd22bb7aa52 150 * -------------------------*/
emilmont 1:fdd22bb7aa52 151
emilmont 1:fdd22bb7aa52 152 /* sum = x[0] * y[0]
emilmont 1:fdd22bb7aa52 153 * sum = x[0] * y[1] + x[1] * y[0]
emilmont 1:fdd22bb7aa52 154 * ....
emilmont 1:fdd22bb7aa52 155 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
emilmont 1:fdd22bb7aa52 156 */
emilmont 1:fdd22bb7aa52 157
emilmont 1:fdd22bb7aa52 158 /* In this stage the MAC operations are increased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 159 The count variable holds the number of MAC operations performed.
emilmont 1:fdd22bb7aa52 160 Since the partial convolution starts from firstIndex
emilmont 1:fdd22bb7aa52 161 Number of Macs to be performed is firstIndex + 1 */
emilmont 1:fdd22bb7aa52 162 count = 1u + firstIndex;
emilmont 1:fdd22bb7aa52 163
emilmont 1:fdd22bb7aa52 164 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 165 px = pIn1;
emilmont 1:fdd22bb7aa52 166
emilmont 1:fdd22bb7aa52 167 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 168 pSrc2 = pIn2 + firstIndex;
emilmont 1:fdd22bb7aa52 169 py = pSrc2;
emilmont 1:fdd22bb7aa52 170
emilmont 1:fdd22bb7aa52 171 /* ------------------------
emilmont 1:fdd22bb7aa52 172 * Stage1 process
emilmont 1:fdd22bb7aa52 173 * ----------------------*/
emilmont 1:fdd22bb7aa52 174
emilmont 1:fdd22bb7aa52 175 /* The first loop starts here */
emilmont 1:fdd22bb7aa52 176 while(blockSize1 > 0)
emilmont 1:fdd22bb7aa52 177 {
emilmont 1:fdd22bb7aa52 178 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 179 sum = 0;
emilmont 1:fdd22bb7aa52 180
emilmont 1:fdd22bb7aa52 181 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 182 k = count >> 2u;
emilmont 1:fdd22bb7aa52 183
emilmont 1:fdd22bb7aa52 184 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 185 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 186 while(k > 0u)
emilmont 1:fdd22bb7aa52 187 {
emilmont 1:fdd22bb7aa52 188 /* x[0] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 189 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 190 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 191
emilmont 1:fdd22bb7aa52 192 /* x[1] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 193 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 194 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 195
emilmont 1:fdd22bb7aa52 196 /* x[2] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 197 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 198 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 199
emilmont 1:fdd22bb7aa52 200 /* x[3] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 201 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 202 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 203
emilmont 1:fdd22bb7aa52 204 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 205 k--;
emilmont 1:fdd22bb7aa52 206 }
emilmont 1:fdd22bb7aa52 207
emilmont 1:fdd22bb7aa52 208 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 209 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 210 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 211
emilmont 1:fdd22bb7aa52 212 while(k > 0u)
emilmont 1:fdd22bb7aa52 213 {
emilmont 1:fdd22bb7aa52 214 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 215 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 216 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 217
emilmont 1:fdd22bb7aa52 218 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 219 k--;
emilmont 1:fdd22bb7aa52 220 }
emilmont 1:fdd22bb7aa52 221
emilmont 1:fdd22bb7aa52 222 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 223 *pOut++ = sum << 1;
emilmont 1:fdd22bb7aa52 224
emilmont 1:fdd22bb7aa52 225 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 226 py = ++pSrc2;
emilmont 1:fdd22bb7aa52 227 px = pIn1;
emilmont 1:fdd22bb7aa52 228
emilmont 1:fdd22bb7aa52 229 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 230 count++;
emilmont 1:fdd22bb7aa52 231
emilmont 1:fdd22bb7aa52 232 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 233 blockSize1--;
emilmont 1:fdd22bb7aa52 234 }
emilmont 1:fdd22bb7aa52 235
emilmont 1:fdd22bb7aa52 236 /* --------------------------
emilmont 1:fdd22bb7aa52 237 * Initializations of stage2
emilmont 1:fdd22bb7aa52 238 * ------------------------*/
emilmont 1:fdd22bb7aa52 239
emilmont 1:fdd22bb7aa52 240 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
emilmont 1:fdd22bb7aa52 241 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
emilmont 1:fdd22bb7aa52 242 * ....
emilmont 1:fdd22bb7aa52 243 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
emilmont 1:fdd22bb7aa52 244 */
emilmont 1:fdd22bb7aa52 245
emilmont 1:fdd22bb7aa52 246 /* Working pointer of inputA */
mbed_official 5:3762170b6d4d 247 if((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
mbed_official 5:3762170b6d4d 248 {
mbed_official 5:3762170b6d4d 249 px = pIn1 + firstIndex - srcBLen + 1;
mbed_official 5:3762170b6d4d 250 }
mbed_official 5:3762170b6d4d 251 else
mbed_official 5:3762170b6d4d 252 {
mbed_official 5:3762170b6d4d 253 px = pIn1;
mbed_official 5:3762170b6d4d 254 }
emilmont 1:fdd22bb7aa52 255
emilmont 1:fdd22bb7aa52 256 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 257 pSrc2 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 258 py = pSrc2;
emilmont 1:fdd22bb7aa52 259
emilmont 1:fdd22bb7aa52 260 /* count is index by which the pointer pIn1 to be incremented */
emilmont 1:fdd22bb7aa52 261 count = 0u;
emilmont 1:fdd22bb7aa52 262
emilmont 1:fdd22bb7aa52 263 /* -------------------
emilmont 1:fdd22bb7aa52 264 * Stage2 process
emilmont 1:fdd22bb7aa52 265 * ------------------*/
emilmont 1:fdd22bb7aa52 266
emilmont 1:fdd22bb7aa52 267 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emilmont 1:fdd22bb7aa52 268 * So, to loop unroll over blockSize2,
emilmont 1:fdd22bb7aa52 269 * srcBLen should be greater than or equal to 4 */
emilmont 1:fdd22bb7aa52 270 if(srcBLen >= 4u)
emilmont 1:fdd22bb7aa52 271 {
emilmont 1:fdd22bb7aa52 272 /* Loop unroll over blockSize2 */
emilmont 1:fdd22bb7aa52 273 blkCnt = ((uint32_t) blockSize2 >> 2u);
emilmont 1:fdd22bb7aa52 274
emilmont 1:fdd22bb7aa52 275 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 276 {
emilmont 1:fdd22bb7aa52 277 /* Set all accumulators to zero */
emilmont 1:fdd22bb7aa52 278 acc0 = 0;
emilmont 1:fdd22bb7aa52 279 acc1 = 0;
emilmont 1:fdd22bb7aa52 280 acc2 = 0;
emilmont 1:fdd22bb7aa52 281 acc3 = 0;
emilmont 1:fdd22bb7aa52 282
emilmont 1:fdd22bb7aa52 283 /* read x[0], x[1], x[2] samples */
emilmont 1:fdd22bb7aa52 284 x0 = *(px++);
emilmont 1:fdd22bb7aa52 285 x1 = *(px++);
emilmont 1:fdd22bb7aa52 286 x2 = *(px++);
emilmont 1:fdd22bb7aa52 287
emilmont 1:fdd22bb7aa52 288 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 289 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 290
emilmont 1:fdd22bb7aa52 291 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 292 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 293 do
emilmont 1:fdd22bb7aa52 294 {
emilmont 1:fdd22bb7aa52 295 /* Read y[srcBLen - 1] sample */
emilmont 1:fdd22bb7aa52 296 c0 = *(py--);
emilmont 1:fdd22bb7aa52 297
emilmont 1:fdd22bb7aa52 298 /* Read x[3] sample */
emilmont 1:fdd22bb7aa52 299 x3 = *(px++);
emilmont 1:fdd22bb7aa52 300
emilmont 1:fdd22bb7aa52 301 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 302 /* acc0 += x[0] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 303 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 304
emilmont 1:fdd22bb7aa52 305 /* acc1 += x[1] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 306 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 307
emilmont 1:fdd22bb7aa52 308 /* acc2 += x[2] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 309 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 310
emilmont 1:fdd22bb7aa52 311 /* acc3 += x[3] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 312 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 313
emilmont 1:fdd22bb7aa52 314 /* Read y[srcBLen - 2] sample */
emilmont 1:fdd22bb7aa52 315 c0 = *(py--);
emilmont 1:fdd22bb7aa52 316
emilmont 1:fdd22bb7aa52 317 /* Read x[4] sample */
emilmont 1:fdd22bb7aa52 318 x0 = *(px++);
emilmont 1:fdd22bb7aa52 319
emilmont 1:fdd22bb7aa52 320 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 321 /* acc0 += x[1] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 322 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 323 /* acc1 += x[2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 324 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 325 /* acc2 += x[3] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 326 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 327 /* acc3 += x[4] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 328 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 329
emilmont 1:fdd22bb7aa52 330 /* Read y[srcBLen - 3] sample */
emilmont 1:fdd22bb7aa52 331 c0 = *(py--);
emilmont 1:fdd22bb7aa52 332
emilmont 1:fdd22bb7aa52 333 /* Read x[5] sample */
emilmont 1:fdd22bb7aa52 334 x1 = *(px++);
emilmont 1:fdd22bb7aa52 335
emilmont 1:fdd22bb7aa52 336 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 337 /* acc0 += x[2] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 338 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 339 /* acc1 += x[3] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 340 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 341 /* acc2 += x[4] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 342 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 343 /* acc3 += x[5] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 344 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 345
emilmont 1:fdd22bb7aa52 346 /* Read y[srcBLen - 4] sample */
emilmont 1:fdd22bb7aa52 347 c0 = *(py--);
emilmont 1:fdd22bb7aa52 348
emilmont 1:fdd22bb7aa52 349 /* Read x[6] sample */
emilmont 1:fdd22bb7aa52 350 x2 = *(px++);
emilmont 1:fdd22bb7aa52 351
emilmont 1:fdd22bb7aa52 352 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 353 /* acc0 += x[3] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 354 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 355 /* acc1 += x[4] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 356 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 357 /* acc2 += x[5] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 358 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 359 /* acc3 += x[6] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 360 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 361
emilmont 1:fdd22bb7aa52 362
emilmont 1:fdd22bb7aa52 363 } while(--k);
emilmont 1:fdd22bb7aa52 364
emilmont 1:fdd22bb7aa52 365 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 366 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 367 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 368
emilmont 1:fdd22bb7aa52 369 while(k > 0u)
emilmont 1:fdd22bb7aa52 370 {
emilmont 1:fdd22bb7aa52 371 /* Read y[srcBLen - 5] sample */
emilmont 1:fdd22bb7aa52 372 c0 = *(py--);
emilmont 1:fdd22bb7aa52 373
emilmont 1:fdd22bb7aa52 374 /* Read x[7] sample */
emilmont 1:fdd22bb7aa52 375 x3 = *(px++);
emilmont 1:fdd22bb7aa52 376
emilmont 1:fdd22bb7aa52 377 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 378 /* acc0 += x[4] * y[srcBLen - 5] */
emilmont 1:fdd22bb7aa52 379 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 380 /* acc1 += x[5] * y[srcBLen - 5] */
emilmont 1:fdd22bb7aa52 381 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 382 /* acc2 += x[6] * y[srcBLen - 5] */
emilmont 1:fdd22bb7aa52 383 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 384 /* acc3 += x[7] * y[srcBLen - 5] */
emilmont 1:fdd22bb7aa52 385 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
emilmont 1:fdd22bb7aa52 386
emilmont 1:fdd22bb7aa52 387 /* Reuse the present samples for the next MAC */
emilmont 1:fdd22bb7aa52 388 x0 = x1;
emilmont 1:fdd22bb7aa52 389 x1 = x2;
emilmont 1:fdd22bb7aa52 390 x2 = x3;
emilmont 1:fdd22bb7aa52 391
emilmont 1:fdd22bb7aa52 392 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 393 k--;
emilmont 1:fdd22bb7aa52 394 }
emilmont 1:fdd22bb7aa52 395
emilmont 1:fdd22bb7aa52 396 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 397 *pOut++ = (q31_t) (acc0 << 1);
emilmont 1:fdd22bb7aa52 398 *pOut++ = (q31_t) (acc1 << 1);
emilmont 1:fdd22bb7aa52 399 *pOut++ = (q31_t) (acc2 << 1);
emilmont 1:fdd22bb7aa52 400 *pOut++ = (q31_t) (acc3 << 1);
emilmont 1:fdd22bb7aa52 401
emilmont 1:fdd22bb7aa52 402 /* Increment the pointer pIn1 index, count by 4 */
emilmont 1:fdd22bb7aa52 403 count += 4u;
emilmont 1:fdd22bb7aa52 404
emilmont 1:fdd22bb7aa52 405 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 406 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 407 py = pSrc2;
emilmont 1:fdd22bb7aa52 408
emilmont 1:fdd22bb7aa52 409 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 410 blkCnt--;
emilmont 1:fdd22bb7aa52 411 }
emilmont 1:fdd22bb7aa52 412
emilmont 1:fdd22bb7aa52 413 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 414 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 415 blkCnt = (uint32_t) blockSize2 % 0x4u;
emilmont 1:fdd22bb7aa52 416
emilmont 1:fdd22bb7aa52 417 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 418 {
emilmont 1:fdd22bb7aa52 419 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 420 sum = 0;
emilmont 1:fdd22bb7aa52 421
emilmont 1:fdd22bb7aa52 422 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 423 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 424
emilmont 1:fdd22bb7aa52 425 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 426 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 427 while(k > 0u)
emilmont 1:fdd22bb7aa52 428 {
emilmont 1:fdd22bb7aa52 429 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 430 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 431 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 432 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 433 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 434 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 435 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 436 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 437 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 438
emilmont 1:fdd22bb7aa52 439 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 440 k--;
emilmont 1:fdd22bb7aa52 441 }
emilmont 1:fdd22bb7aa52 442
emilmont 1:fdd22bb7aa52 443 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 444 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 445 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 446
emilmont 1:fdd22bb7aa52 447 while(k > 0u)
emilmont 1:fdd22bb7aa52 448 {
emilmont 1:fdd22bb7aa52 449 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 450 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 451 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 452
emilmont 1:fdd22bb7aa52 453 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 454 k--;
emilmont 1:fdd22bb7aa52 455 }
emilmont 1:fdd22bb7aa52 456
emilmont 1:fdd22bb7aa52 457 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 458 *pOut++ = sum << 1;
emilmont 1:fdd22bb7aa52 459
emilmont 1:fdd22bb7aa52 460 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 461 count++;
emilmont 1:fdd22bb7aa52 462
emilmont 1:fdd22bb7aa52 463 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 464 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 465 py = pSrc2;
emilmont 1:fdd22bb7aa52 466
emilmont 1:fdd22bb7aa52 467 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 468 blkCnt--;
emilmont 1:fdd22bb7aa52 469 }
emilmont 1:fdd22bb7aa52 470 }
emilmont 1:fdd22bb7aa52 471 else
emilmont 1:fdd22bb7aa52 472 {
emilmont 1:fdd22bb7aa52 473 /* If the srcBLen is not a multiple of 4,
emilmont 1:fdd22bb7aa52 474 * the blockSize2 loop cannot be unrolled by 4 */
emilmont 1:fdd22bb7aa52 475 blkCnt = (uint32_t) blockSize2;
emilmont 1:fdd22bb7aa52 476
emilmont 1:fdd22bb7aa52 477 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 478 {
emilmont 1:fdd22bb7aa52 479 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 480 sum = 0;
emilmont 1:fdd22bb7aa52 481
emilmont 1:fdd22bb7aa52 482 /* srcBLen number of MACS should be performed */
emilmont 1:fdd22bb7aa52 483 k = srcBLen;
emilmont 1:fdd22bb7aa52 484
emilmont 1:fdd22bb7aa52 485 while(k > 0u)
emilmont 1:fdd22bb7aa52 486 {
emilmont 1:fdd22bb7aa52 487 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 488 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 489 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 490
emilmont 1:fdd22bb7aa52 491 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 492 k--;
emilmont 1:fdd22bb7aa52 493 }
emilmont 1:fdd22bb7aa52 494
emilmont 1:fdd22bb7aa52 495 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 496 *pOut++ = sum << 1;
emilmont 1:fdd22bb7aa52 497
emilmont 1:fdd22bb7aa52 498 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 499 count++;
emilmont 1:fdd22bb7aa52 500
emilmont 1:fdd22bb7aa52 501 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 502 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 503 py = pSrc2;
emilmont 1:fdd22bb7aa52 504
emilmont 1:fdd22bb7aa52 505 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 506 blkCnt--;
emilmont 1:fdd22bb7aa52 507 }
emilmont 1:fdd22bb7aa52 508 }
emilmont 1:fdd22bb7aa52 509
emilmont 1:fdd22bb7aa52 510
emilmont 1:fdd22bb7aa52 511 /* --------------------------
emilmont 1:fdd22bb7aa52 512 * Initializations of stage3
emilmont 1:fdd22bb7aa52 513 * -------------------------*/
emilmont 1:fdd22bb7aa52 514
emilmont 1:fdd22bb7aa52 515 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
emilmont 1:fdd22bb7aa52 516 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
emilmont 1:fdd22bb7aa52 517 * ....
emilmont 1:fdd22bb7aa52 518 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
emilmont 1:fdd22bb7aa52 519 * sum += x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 520 */
emilmont 1:fdd22bb7aa52 521
emilmont 1:fdd22bb7aa52 522 /* In this stage the MAC operations are decreased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 523 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 524 count = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 525
emilmont 1:fdd22bb7aa52 526 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 527 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 528 px = pSrc1;
emilmont 1:fdd22bb7aa52 529
emilmont 1:fdd22bb7aa52 530 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 531 pSrc2 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 532 py = pSrc2;
emilmont 1:fdd22bb7aa52 533
emilmont 1:fdd22bb7aa52 534 /* -------------------
emilmont 1:fdd22bb7aa52 535 * Stage3 process
emilmont 1:fdd22bb7aa52 536 * ------------------*/
emilmont 1:fdd22bb7aa52 537
emilmont 1:fdd22bb7aa52 538 while(blockSize3 > 0)
emilmont 1:fdd22bb7aa52 539 {
emilmont 1:fdd22bb7aa52 540 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 541 sum = 0;
emilmont 1:fdd22bb7aa52 542
emilmont 1:fdd22bb7aa52 543 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 544 k = count >> 2u;
emilmont 1:fdd22bb7aa52 545
emilmont 1:fdd22bb7aa52 546 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 547 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 548 while(k > 0u)
emilmont 1:fdd22bb7aa52 549 {
emilmont 1:fdd22bb7aa52 550 /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 551 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 552 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 553
emilmont 1:fdd22bb7aa52 554 /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 555 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 556 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 557
emilmont 1:fdd22bb7aa52 558 /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 559 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 560 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 561
emilmont 1:fdd22bb7aa52 562 /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 563 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 564 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 565
emilmont 1:fdd22bb7aa52 566 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 567 k--;
emilmont 1:fdd22bb7aa52 568 }
emilmont 1:fdd22bb7aa52 569
emilmont 1:fdd22bb7aa52 570 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 571 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 572 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 573
emilmont 1:fdd22bb7aa52 574 while(k > 0u)
emilmont 1:fdd22bb7aa52 575 {
emilmont 1:fdd22bb7aa52 576 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 577 /* sum += x[srcALen-1] * y[srcBLen-1] */
emilmont 1:fdd22bb7aa52 578 sum = (q31_t) ((((q63_t) sum << 32) +
emilmont 1:fdd22bb7aa52 579 ((q63_t) * px++ * (*py--))) >> 32);
emilmont 1:fdd22bb7aa52 580
emilmont 1:fdd22bb7aa52 581 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 582 k--;
emilmont 1:fdd22bb7aa52 583 }
emilmont 1:fdd22bb7aa52 584
emilmont 1:fdd22bb7aa52 585 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 586 *pOut++ = sum << 1;
emilmont 1:fdd22bb7aa52 587
emilmont 1:fdd22bb7aa52 588 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 589 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 590 py = pSrc2;
emilmont 1:fdd22bb7aa52 591
emilmont 1:fdd22bb7aa52 592 /* Decrement the MAC count */
emilmont 1:fdd22bb7aa52 593 count--;
emilmont 1:fdd22bb7aa52 594
emilmont 1:fdd22bb7aa52 595 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 596 blockSize3--;
emilmont 1:fdd22bb7aa52 597
emilmont 1:fdd22bb7aa52 598 }
emilmont 1:fdd22bb7aa52 599
emilmont 1:fdd22bb7aa52 600 /* set status as ARM_MATH_SUCCESS */
emilmont 1:fdd22bb7aa52 601 status = ARM_MATH_SUCCESS;
emilmont 1:fdd22bb7aa52 602 }
emilmont 1:fdd22bb7aa52 603
emilmont 1:fdd22bb7aa52 604 /* Return to application */
emilmont 1:fdd22bb7aa52 605 return (status);
emilmont 1:fdd22bb7aa52 606
emilmont 1:fdd22bb7aa52 607 }
emilmont 1:fdd22bb7aa52 608
emilmont 1:fdd22bb7aa52 609 /**
emilmont 1:fdd22bb7aa52 610 * @} end of PartialConv group
emilmont 1:fdd22bb7aa52 611 */