mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

drivers/SPI.cpp

Committer:
AnnaBridge
Date:
2018-02-16
Revision:
181:57724642e740
Parent:
180:96ed750bd169
Child:
184:08ed48f1de7f

File content as of revision 181:57724642e740:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "drivers/SPI.h"
#include "platform/mbed_critical.h"

#if DEVICE_SPI_ASYNCH
#include "platform/mbed_sleep.h"
#endif

#if DEVICE_SPI

namespace mbed {

#if DEVICE_SPI_ASYNCH && TRANSACTION_QUEUE_SIZE_SPI
CircularBuffer<Transaction<SPI>, TRANSACTION_QUEUE_SIZE_SPI> SPI::_transaction_buffer;
#endif

SPI::SPI(PinName mosi, PinName miso, PinName sclk, PinName ssel) :
        _spi(),
#if DEVICE_SPI_ASYNCH
        _irq(this),
        _usage(DMA_USAGE_NEVER),
        _deep_sleep_locked(false),
#endif
        _bits(8),
        _mode(0),
        _hz(1000000),
        _write_fill(SPI_FILL_CHAR) {
    // No lock needed in the constructor

    spi_init(&_spi, mosi, miso, sclk, ssel);
    _acquire();
}

void SPI::format(int bits, int mode) {
    lock();
    _bits = bits;
    _mode = mode;
    // If changing format while you are the owner than just
    // update format, but if owner is changed than even frequency should be
    // updated which is done by acquire.
    if (_owner == this) {
        spi_format(&_spi, _bits, _mode, 0);
    } else {
        _acquire();
    }
    unlock();
}

void SPI::frequency(int hz) {
    lock();
    _hz = hz;
    // If changing format while you are the owner than just
    // update frequency, but if owner is changed than even frequency should be
    // updated which is done by acquire.
    if (_owner == this) {
        spi_frequency(&_spi, _hz);
    } else {
        _acquire();
    }
    unlock();
}

SPI* SPI::_owner = NULL;
SingletonPtr<PlatformMutex> SPI::_mutex;

// ignore the fact there are multiple physical spis, and always update if it wasnt us last
void SPI::aquire() {
    lock();
     if (_owner != this) {
        spi_format(&_spi, _bits, _mode, 0);
        spi_frequency(&_spi, _hz);
        _owner = this;
    }
    unlock();
}

// Note: Private function with no locking
void SPI::_acquire() {
     if (_owner != this) {
        spi_format(&_spi, _bits, _mode, 0);
        spi_frequency(&_spi, _hz);
        _owner = this;
    }
}

int SPI::write(int value) {
    lock();
    _acquire();
    int ret = spi_master_write(&_spi, value);
    unlock();
    return ret;
}

int SPI::write(const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length) {
    lock();
    _acquire();
    int ret = spi_master_block_write(&_spi, tx_buffer, tx_length, rx_buffer, rx_length, _write_fill);
    unlock();
    return ret;
}

void SPI::lock() {
    _mutex->lock();
}

void SPI::unlock() {
    _mutex->unlock();
}

void SPI::set_default_write_value(char data) {
    lock();
    _write_fill = data;
    unlock();
}

#if DEVICE_SPI_ASYNCH

int SPI::transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t& callback, int event)
{
    if (spi_active(&_spi)) {
        return queue_transfer(tx_buffer, tx_length, rx_buffer, rx_length, bit_width, callback, event);
    }
    start_transfer(tx_buffer, tx_length, rx_buffer, rx_length, bit_width, callback, event);
    return 0;
}

void SPI::abort_transfer()
{
    spi_abort_asynch(&_spi);
    unlock_deep_sleep();
#if TRANSACTION_QUEUE_SIZE_SPI
    dequeue_transaction();
#endif
}


void SPI::clear_transfer_buffer()
{
#if TRANSACTION_QUEUE_SIZE_SPI
    _transaction_buffer.reset();
#endif
}

void SPI::abort_all_transfers()
{
    clear_transfer_buffer();
    abort_transfer();
}

int SPI::set_dma_usage(DMAUsage usage)
{
    if (spi_active(&_spi)) {
        return -1;
    }
    _usage = usage;
    return  0;
}

int SPI::queue_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t& callback, int event)
{
#if TRANSACTION_QUEUE_SIZE_SPI
    transaction_t t;

    t.tx_buffer = const_cast<void *>(tx_buffer);
    t.tx_length = tx_length;
    t.rx_buffer = rx_buffer;
    t.rx_length = rx_length;
    t.event = event;
    t.callback = callback;
    t.width = bit_width;
    Transaction<SPI> transaction(this, t);
    if (_transaction_buffer.full()) {
        return -1; // the buffer is full
    } else {
        core_util_critical_section_enter();
        _transaction_buffer.push(transaction);
        if (!spi_active(&_spi)) {
            dequeue_transaction();
        }
        core_util_critical_section_exit();
        return 0;
    }
#else
    return -1;
#endif
}

void SPI::start_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t& callback, int event)
{
    lock_deep_sleep();
    _acquire();
    _callback = callback;
    _irq.callback(&SPI::irq_handler_asynch);
    spi_master_transfer(&_spi, tx_buffer, tx_length, rx_buffer, rx_length, bit_width, _irq.entry(), event , _usage);
}

void SPI::lock_deep_sleep()
{
    if (_deep_sleep_locked == false) {
        sleep_manager_lock_deep_sleep();
        _deep_sleep_locked = true;
    }
}

void SPI::unlock_deep_sleep()
{
    if (_deep_sleep_locked == true) {
        sleep_manager_unlock_deep_sleep();
        _deep_sleep_locked = false;
    }
}

#if TRANSACTION_QUEUE_SIZE_SPI

void SPI::start_transaction(transaction_t *data)
{
    start_transfer(data->tx_buffer, data->tx_length, data->rx_buffer, data->rx_length, data->width, data->callback, data->event);
}

void SPI::dequeue_transaction()
{
    Transaction<SPI> t;
    if (_transaction_buffer.pop(t)) {
        SPI* obj = t.get_object();
        transaction_t* data = t.get_transaction();
        obj->start_transaction(data);
    }
}

#endif

void SPI::irq_handler_asynch(void)
{
    int event = spi_irq_handler_asynch(&_spi);
    if (_callback && (event & SPI_EVENT_ALL)) {
        unlock_deep_sleep();
        _callback.call(event & SPI_EVENT_ALL);
    }
#if TRANSACTION_QUEUE_SIZE_SPI
    if (event & (SPI_EVENT_ALL | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE)) {
        // SPI peripheral is free (event happend), dequeue transaction
        dequeue_transaction();
    }
#endif
}

#endif

} // namespace mbed

#endif