mbed library sources. Supersedes mbed-src.
Dependents: Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more
targets/TARGET_ONSEMI/TARGET_NCS36510/rfAna.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
- Child:
- 150:02e0a0aed4ec
File content as of revision 149:156823d33999:
/** ****************************************************************************** * @file rfAna.c * @brief Implementation of rfAna hw module functions * @internal * @author ON Semiconductor * $Rev: 3445 $ * $Date: 2015-06-22 13:51:24 +0530 (Mon, 22 Jun 2015) $ ****************************************************************************** * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). * All rights reserved. This software and/or documentation is licensed by ON Semiconductor * under limited terms and conditions. The terms and conditions pertaining to the software * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and * if applicable the software license agreement. Do not use this software and/or * documentation unless you have carefully read and you agree to the limited terms and * conditions. By using this software and/or documentation, you agree to the limited * terms and conditions. * * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * @endinternal * * @ingroup rfAna * * @details * * <h1> Reference document(s) </h1> */ /************************************************************************************************* * * * Header files * * * *************************************************************************************************/ #include "memory_map.h" #include "rfAna.h" #include "clock.h" #ifdef REVA #include "test.h" #endif /************************************************************************************************* * * * Global variables * * * *************************************************************************************************/ /** Rf channel and tx power lookup tables (constant) * @details * * The rf channel table is used to program internal hardware register for different 15.4 rf channels. * It has 16 entries corresponding to 16 15.4 channels. * Entry 1 <-> Channel 11 * ... * Entry 16 <-> Channel 26 * * Each entry is compound of 4 items. * Item 0: Rx Frequency integer divide portion * Item 1: Rx Frequency fractional divide portion * Item 2: Tx Frequency integer divide portion * Item 3: Tx Frequency fractional divide portion * * The tx power table is used to program internal hardware register for different 15.4 tx power levels. * It has 43 entries corresponding to tx power levels from -32dBm to +10dBm. * Entry 1 <-> -32dB * Entry 2 <-> -31dB * ... * Entry 2 <-> 9dB * Entry 43 <-> +10dB * * Each entry is compound of 1 byte. */ // RR: Making high side injection changes to RevD #ifdef REVD /** This rf LUT is built for high side injection, using low side injection * would requiere to change this LUT. */ const uint32_t rfLut[16][4] = {{0x50,0x00D4A7,0x4B,0x00A000}, {0x50,0x017F52,0x4B,0x014001}, {0x51,0xFE29FB,0x4B,0x01E001}, {0x51,0xFED4A6,0x4C,0xFE7FFF}, {0x51,0xFF7F51,0x4C,0xFF1FFF}, {0x51,0x0029FC,0x4C,0xFFC000}, {0x51,0x00D4A7,0x4C,0x006000}, {0x51,0x017F52,0x4C,0x010001}, {0x52,0xFE29FB,0x4C,0x01A001}, {0x52,0xFED4A6,0x4D,0xFE3FFF}, {0x52,0xFF7F51,0x4D,0xFEDFFF}, {0x52,0x0029FC,0x4D,0xFF8000}, {0x52,0x00D4A7,0x4D,0x002000}, {0x52,0x017F52,0x4D,0x00C001}, {0x53,0xFE29FB,0x4D,0x016001}, {0x53,0xFED4A6,0x4E,0xFDFFFE} }; const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm 0,0,0,0,0,0,0,0,1,2, // -19dBm to -10dBm 3,4,5,6,7,8,9,10,11,12, // -9dBm to 0dBm 13,14,15,16,17,18,19,20,20,20 }; // +1dBm to +10 dBm #endif /* REVD */ #ifdef REVC /** This rf LUT is built for low side injection, using high side injection * would requiere to change this LUT. */ const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000}, {0x47,0xFFAC93,0x4B,0x014001}, {0x47,0x00432A,0x4B,0x01E001}, {0x47,0x00D9C1,0x4C,0xFE7FFF}, {0x47,0x017058,0x4C,0xFF1FFF}, {0x48,0xFE06EC,0x4C,0xFFC000}, {0x48,0xFE9D83,0x4C,0x006000}, {0x48,0xFF341A,0x4C,0x010001}, {0x48,0xFFCAB1,0x4C,0x01A001}, {0x48,0x006148,0x4D,0xFE3FFF}, {0x48,0x00F7DF,0x4D,0xFEDFFF}, {0x48,0x018E76,0x4D,0xFF8000}, {0x49,0xFE250A,0x4D,0x002000}, {0x49,0xFEBBA1,0x4D,0x00C001}, {0x49,0xFF5238,0x4D,0x016001}, {0x49,0xFFE8CF,0x4E,0xFDFFFE} }; const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB) 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm 17,19,20,20,20,20,20,20,20,20 }; // +1dBm to +10 dBm (clamp high at +3dB) #endif /* REVC */ #ifdef REVB /** This rf LUT is built for low side injection, using high side injection * would requiere to change this LUT. */ const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000}, {0x47,0xFFAC93,0x4B,0x014001}, {0x47,0x00432A,0x4B,0x01E001}, {0x47,0x00D9C1,0x4C,0xFE7FFF}, {0x47,0x017058,0x4C,0xFF1FFF}, {0x48,0xFE06EC,0x4C,0xFFC000}, {0x48,0xFE9D83,0x4C,0x006000}, {0x48,0xFF341A,0x4C,0x010001}, {0x48,0xFFCAB1,0x4C,0x01A001}, {0x48,0x006148,0x4D,0xFE3FFF}, {0x48,0x00F7DF,0x4D,0xFEDFFF}, {0x48,0x018E76,0x4D,0xFF8000}, {0x49,0xFE250A,0x4D,0x002000}, {0x49,0xFEBBA1,0x4D,0x00C001}, {0x49,0xFF5238,0x4D,0x016001}, {0x49,0xFFE8CF,0x4E,0xFDFFFE} }; const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB) 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm 17,19,20,20,20,20,20,20,20,20 }; // +1dBm to +10 dBm (clamp high at +3dB) #endif #ifdef REVA const uint32_t rfLut[16][4] = {{0x57,0xFF5D2F,0x51,0x018001}, {0x57,0x0007DA,0x52,0xFE1FFF}, {0x57,0x00B285,0x52,0xFEBFFF}, {0x57,0x015D30,0x52,0xFF6000}, {0x58,0xFE07D8,0x52,0x000000}, {0x58,0xFEB283,0x52,0x00A000}, {0x58,0xFF5D2F,0x52,0x014001}, {0x58,0x0007DA,0x52,0x01E001}, {0x58,0x00B285,0x53,0xFE7FFF}, {0x58,0x015D30,0x53,0xFF1FFF}, {0x59,0xFE07D8,0x53,0xFFC000}, {0x59,0xFEB283,0x53,0x006000}, {0x59,0xFF5D2F,0x53,0x010001}, {0x59,0x0007DA,0x53,0x01A001}, {0x59,0x00B285,0x53,0xFE3FFF}, {0x59,0x015D30,0x53,0xFEDFFF} }; const uint8_t txPowerLut[43] = {1,2,3, // -32dBm to -30dBm 4,5,5,5,5,5,5,5,5,5, // -29dBm to -20dBm (clamp at -28dB) 5,5,5,5,5,5,5,5,5,5, // -19dBm to -10dBm 5,5,5,5,5,5,5,5,5,5, // -9dBm to 0dBm 5,5,5,5,5,5,5,5,5,5 }; // +1dBm to +10 dBm #endif /************************************************************************************************* * * * Functions * * * *************************************************************************************************/ void fRfAnaInit() { // Enable rfana clock CLOCK_ENABLE(CLOCK_RFANA); #ifdef REVA // Force Pll lock (it shouldn't be needed for either silicon if the part is configured/trimmed properly) fTestForcePllLock(); // Bypass Pll regulator fTestBypassPllReg(); #endif // Set PLL timing RFANAREG->PLL_TIMING.BITS.PLL_RESET_TIME = 0x1E; // 30us RFANAREG->PLL_TIMING.BITS.PLL_LOCK_TIME = 0x2F; // 47us // Set other parameters RFANAREG->RX_CONTROL.BITS.LNA_GAIN_MODE = 0x1; // High Gain mode RFANAREG->RX_CONTROL.BITS.ADC_DITHER_MODE = 0x0; // Dither mode disabled } boolean fRfAnaIoctl (uint32_t request, void *argument) { uint8_t channel, txPower; // Enable rfana clock (in case fRfAnaIoctl is used before call of fRfAnaInit) CLOCK_ENABLE(CLOCK_RFANA); switch(request) { case SET_RF_CHANNEL: channel = *(uint8_t*)argument; // Set tx/rx integer/fractional divide portions RFANAREG->TX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][3]; RFANAREG->TX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][2]; RFANAREG->RX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][1]; RFANAREG->RX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][0]; // Set tx/rx vco trims #ifdef REVB /** REVB is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done * from trims stored in flash A, it has the drawback that it is not workable when flash A is not accessible.*/ if (channel < 19) { RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT1.WORD) >> ((channel - 11) * 4); RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT1.WORD) >> ((channel - 11) * 4); } else { RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT2.WORD) >> ((channel - 19) * 4); RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT2.WORD) >> ((channel - 19) * 4); } #endif /* REVB */ #ifdef REVC /** REVC is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done * from trims stored in dedicated registers available in digital.*/ if (channel < 19) { RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); } else { RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); } #endif /* REVC */ #ifdef REVD /** REVD is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done * from trims stored in dedicated registers available in digital.*/ if (channel < 19) { RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); } else { RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); } #endif /* REVD */ break; case SET_TX_POWER: txPower = *(uint8_t*)argument; // Set tx power register if ((txPower & 0x20) == 0) { RFANAREG->TX_POWER = (txPowerLut[txPower + 32] & 0xFF); } else { RFANAREG->TX_POWER = (txPowerLut[txPower - 32] & 0xFF); } break; default: return False; } return True; }