mbed library sources. Supersedes mbed-src. Fixed broken STM32F1xx RTC on rtc_api.c
Dependents: Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay
Fork of mbed-dev by
targets/TARGET_NXP/TARGET_LPC43XX/spi_api.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
- Parent:
- targets/hal/TARGET_NXP/TARGET_LPC43XX/spi_api.c@ 144:ef7eb2e8f9f7
- Child:
- 167:e84263d55307
File content as of revision 149:156823d33999:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Ported to NXP LPC43XX by Micromint USA <support@micromint.com> */ #include "mbed_assert.h" #include <math.h> #include "spi_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" // SCU mode for SPI pins #define SCU_PINIO_SPI SCU_PINIO_FAST static const PinMap PinMap_SPI_SCLK[] = { {P1_19, SPI_1, (SCU_PINIO_SPI | 1)}, {P3_0, SPI_0, (SCU_PINIO_SPI | 4)}, {P3_3, SPI_0, (SCU_PINIO_SPI | 2)}, {PF_0, SPI_0, (SCU_PINIO_SPI | 0)}, {PF_4, SPI_1, (SCU_PINIO_SPI | 0)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_MOSI[] = { {P0_1, SPI_1, (SCU_PINIO_SPI | 1)}, {P1_2, SPI_0, (SCU_PINIO_SPI | 5)}, {P1_4, SPI_1, (SCU_PINIO_SPI | 5)}, {P3_7, SPI_0, (SCU_PINIO_SPI | 5)}, {P3_8, SPI_0, (SCU_PINIO_SPI | 2)}, {P9_2, SPI_0, (SCU_PINIO_SPI | 7)}, {PF_3, SPI_0, (SCU_PINIO_SPI | 2)}, {PF_7, SPI_1, (SCU_PINIO_SPI | 2)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_MISO[] = { {P0_0, SPI_1, (SCU_PINIO_SPI | 1)}, {P1_1, SPI_0, (SCU_PINIO_SPI | 5)}, {P1_3, SPI_1, (SCU_PINIO_SPI | 5)}, {P3_6, SPI_0, (SCU_PINIO_SPI | 5)}, {P3_7, SPI_0, (SCU_PINIO_SPI | 2)}, {P9_1, SPI_0, (SCU_PINIO_SPI | 7)}, {PF_2, SPI_0, (SCU_PINIO_SPI | 2)}, {PF_6, SPI_1, (SCU_PINIO_SPI | 2)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_SSEL[] = { {P1_0, SPI_0, (SCU_PINIO_SPI | 5)}, {P1_5, SPI_1, (SCU_PINIO_SPI | 5)}, {P1_20, SPI_1, (SCU_PINIO_SPI | 2)}, {P3_6, SPI_0, (SCU_PINIO_SPI | 2)}, {P3_8, SPI_0, (SCU_PINIO_SPI | 5)}, {P9_0, SPI_0, (SCU_PINIO_SPI | 7)}, {PF_1, SPI_0, (SCU_PINIO_SPI | 2)}, {PF_5, SPI_1, (SCU_PINIO_SPI | 2)}, {NC, NC, 0} }; static inline int ssp_disable(spi_t *obj); static inline int ssp_enable(spi_t *obj); void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (LPC_SSP_T*)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)obj->spi != NC); // enable clocking switch ((int)obj->spi) { case SPI_0: LPC_CGU->BASE_CLK[CLK_BASE_SSP0] = (1 << 11) | (CLKIN_MAINPLL << 24); break; case SPI_1: LPC_CGU->BASE_CLK[CLK_BASE_SSP1] = (1 << 11) | (CLKIN_MAINPLL << 24); break; } // pin out the spi pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); if (ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } } void spi_free(spi_t *obj) {} void spi_format(spi_t *obj, int bits, int mode, int slave) { MBED_ASSERT(((bits >= 4) && (bits <= 16)) || ((mode >= 0) && (mode <= 3))); ssp_disable(obj); int polarity = (mode & 0x2) ? 1 : 0; int phase = (mode & 0x1) ? 1 : 0; // set it up int DSS = bits - 1; // DSS (data select size) int SPO = (polarity) ? 1 : 0; // SPO - clock out polarity int SPH = (phase) ? 1 : 0; // SPH - clock out phase int FRF = 0; // FRF (frame format) = SPI uint32_t tmp = obj->spi->CR0; tmp &= ~(0xFFFF); tmp |= DSS << 0 | FRF << 4 | SPO << 6 | SPH << 7; obj->spi->CR0 = tmp; tmp = obj->spi->CR1; tmp &= ~(0xD); tmp |= 0 << 0 // LBM - loop back mode - off | ((slave) ? 1 : 0) << 2 // MS - master slave mode, 1 = slave | 0 << 3; // SOD - slave output disable - na obj->spi->CR1 = tmp; ssp_enable(obj); } void spi_frequency(spi_t *obj, int hz) { ssp_disable(obj); uint32_t PCLK = SystemCoreClock; int prescaler; for (prescaler = 2; prescaler <= 254; prescaler += 2) { int prescale_hz = PCLK / prescaler; // calculate the divider int divider = floor(((float)prescale_hz / (float)hz) + 0.5f); // check we can support the divider if (divider < 256) { // prescaler obj->spi->CPSR = prescaler; // divider obj->spi->CR0 &= ~(0xFFFF << 8); obj->spi->CR0 |= (divider - 1) << 8; ssp_enable(obj); return; } } error("Couldn't setup requested SPI frequency"); } static inline int ssp_disable(spi_t *obj) { return obj->spi->CR1 &= ~(1 << 1); } static inline int ssp_enable(spi_t *obj) { return obj->spi->CR1 |= (1 << 1); } static inline int ssp_readable(spi_t *obj) { return obj->spi->SR & (1 << 2); } static inline int ssp_writeable(spi_t *obj) { return obj->spi->SR & (1 << 1); } static inline void ssp_write(spi_t *obj, int value) { while (!ssp_writeable(obj)); obj->spi->DR = value; } static inline int ssp_read(spi_t *obj) { while (!ssp_readable(obj)); return obj->spi->DR; } static inline int ssp_busy(spi_t *obj) { return (obj->spi->SR & (1 << 4)) ? (1) : (0); } int spi_master_write(spi_t *obj, int value) { ssp_write(obj, value); return ssp_read(obj); } int spi_slave_receive(spi_t *obj) { return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0); } int spi_slave_read(spi_t *obj) { return obj->spi->DR; } void spi_slave_write(spi_t *obj, int value) { while (ssp_writeable(obj) == 0) ; obj->spi->DR = value; } int spi_busy(spi_t *obj) { return ssp_busy(obj); }