虽然移植完毕,但是不work。需要细调……

Dependencies:   mbed

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU6050.cpp Source File

MPU6050.cpp

00001 // I2Cdev library collection - MPU6050 I2C device class
00002 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
00003 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
00004 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
00005 //
00006 // Changelog:
00007 //     ... - ongoing debug release
00008 
00009 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
00010 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
00011 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
00012 
00013 /* ============================================
00014 I2Cdev device library code is placed under the MIT license
00015 Copyright (c) 2012 Jeff Rowberg
00016 
00017 Permission is hereby granted, free of charge, to any person obtaining a copy
00018 of this software and associated documentation files (the "Software"), to deal
00019 in the Software without restriction, including without limitation the rights
00020 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00021 copies of the Software, and to permit persons to whom the Software is
00022 furnished to do so, subject to the following conditions:
00023 
00024 The above copyright notice and this permission notice shall be included in
00025 all copies or substantial portions of the Software.
00026 
00027 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00028 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00029 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00030 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00031 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00032 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
00033 THE SOFTWARE.
00034 ===============================================
00035 */
00036 
00037 #include "MPU6050.h"
00038 extern DigitalOut myled;
00039 #define pgm_read_byte(addr) (*(const unsigned char *)(addr))
00040 /** Default constructor, uses default I2C address.
00041  * @see MPU6050_DEFAULT_ADDRESS
00042  */
00043 MPU6050::MPU6050() {
00044     devAddr = MPU6050_DEFAULT_ADDRESS;
00045     //myled = 1;
00046 }
00047 
00048 /** Specific address constructor.
00049  * @param address I2C address
00050  * @see MPU6050_DEFAULT_ADDRESS
00051  * @see MPU6050_ADDRESS_AD0_LOW
00052  * @see MPU6050_ADDRESS_AD0_HIGH
00053  */
00054 MPU6050::MPU6050(uint8_t address) {
00055     devAddr = address;
00056 }
00057 
00058 /** Power on and prepare for general usage.
00059  * This will activate the device and take it out of sleep mode (which must be done
00060  * after start-up). This function also sets both the accelerometer and the gyroscope
00061  * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
00062  * the clock source to use the X Gyro for reference, which is slightly better than
00063  * the default internal clock source.
00064  */
00065 void MPU6050::initialize() {
00066     //I2Cdev i2cdev;
00067     I2Cdev::init();
00068     setClockSource(MPU6050_CLOCK_PLL_XGYRO);
00069     setFullScaleGyroRange(MPU6050_GYRO_FS_250);
00070     setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
00071     setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
00072 }
00073 
00074 /** Verify the I2C connection.
00075  * Make sure the device is connected and responds as expected.
00076  * @return True if connection is valid, false otherwise
00077  */
00078 bool MPU6050::testConnection() {
00079     return getDeviceID() == 0x34;
00080 }
00081 
00082 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
00083 
00084 /** Get the auxiliary I2C supply voltage level.
00085  * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
00086  * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
00087  * the MPU-6000, which does not have a VLOGIC pin.
00088  * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
00089  */
00090 uint8_t MPU6050::getAuxVDDIOLevel() {
00091     I2Cdev::readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
00092     return buffer[0];
00093 }
00094 /** Set the auxiliary I2C supply voltage level.
00095  * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
00096  * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
00097  * the MPU-6000, which does not have a VLOGIC pin.
00098  * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
00099  */
00100 void MPU6050::setAuxVDDIOLevel(uint8_t level) {
00101     I2Cdev::writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
00102 }
00103 
00104 // SMPLRT_DIV register
00105 
00106 /** Get gyroscope output rate divider.
00107  * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
00108  * Motion detection, and Free Fall detection are all based on the Sample Rate.
00109  * The Sample Rate is generated by dividing the gyroscope output rate by
00110  * SMPLRT_DIV:
00111  *
00112  * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
00113  *
00114  * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
00115  * 7), and 1kHz when the DLPF is enabled (see Register 26).
00116  *
00117  * Note: The accelerometer output rate is 1kHz. This means that for a Sample
00118  * Rate greater than 1kHz, the same accelerometer sample may be output to the
00119  * FIFO, DMP, and sensor registers more than once.
00120  *
00121  * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
00122  * of the MPU-6000/MPU-6050 Product Specification document.
00123  *
00124  * @return Current sample rate
00125  * @see MPU6050_RA_SMPLRT_DIV
00126  */
00127 uint8_t MPU6050::getRate() {
00128     I2Cdev::readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
00129     return buffer[0];
00130 }
00131 /** Set gyroscope sample rate divider.
00132  * @param rate New sample rate divider
00133  * @see getRate()
00134  * @see MPU6050_RA_SMPLRT_DIV
00135  */
00136 void MPU6050::setRate(uint8_t rate) {
00137     I2Cdev::writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
00138 }
00139 
00140 // CONFIG register
00141 
00142 /** Get external FSYNC configuration.
00143  * Configures the external Frame Synchronization (FSYNC) pin sampling. An
00144  * external signal connected to the FSYNC pin can be sampled by configuring
00145  * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
00146  * strobes may be captured. The latched FSYNC signal will be sampled at the
00147  * Sampling Rate, as defined in register 25. After sampling, the latch will
00148  * reset to the current FSYNC signal state.
00149  *
00150  * The sampled value will be reported in place of the least significant bit in
00151  * a sensor data register determined by the value of EXT_SYNC_SET according to
00152  * the following table.
00153  *
00154  * <pre>
00155  * EXT_SYNC_SET | FSYNC Bit Location
00156  * -------------+-------------------
00157  * 0            | Input disabled
00158  * 1            | TEMP_OUT_L[0]
00159  * 2            | GYRO_XOUT_L[0]
00160  * 3            | GYRO_YOUT_L[0]
00161  * 4            | GYRO_ZOUT_L[0]
00162  * 5            | ACCEL_XOUT_L[0]
00163  * 6            | ACCEL_YOUT_L[0]
00164  * 7            | ACCEL_ZOUT_L[0]
00165  * </pre>
00166  *
00167  * @return FSYNC configuration value
00168  */
00169 uint8_t MPU6050::getExternalFrameSync() {
00170     I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
00171     return buffer[0];
00172 }
00173 /** Set external FSYNC configuration.
00174  * @see getExternalFrameSync()
00175  * @see MPU6050_RA_CONFIG
00176  * @param sync New FSYNC configuration value
00177  */
00178 void MPU6050::setExternalFrameSync(uint8_t sync) {
00179     I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
00180 }
00181 /** Get digital low-pass filter configuration.
00182  * The DLPF_CFG parameter sets the digital low pass filter configuration. It
00183  * also determines the internal sampling rate used by the device as shown in
00184  * the table below.
00185  *
00186  * Note: The accelerometer output rate is 1kHz. This means that for a Sample
00187  * Rate greater than 1kHz, the same accelerometer sample may be output to the
00188  * FIFO, DMP, and sensor registers more than once.
00189  *
00190  * <pre>
00191  *          |   ACCELEROMETER    |           GYROSCOPE
00192  * DLPF_CFG | Bandwidth | Delay  | Bandwidth | Delay  | Sample Rate
00193  * ---------+-----------+--------+-----------+--------+-------------
00194  * 0        | 260Hz     | 0ms    | 256Hz     | 0.98ms | 8kHz
00195  * 1        | 184Hz     | 2.0ms  | 188Hz     | 1.9ms  | 1kHz
00196  * 2        | 94Hz      | 3.0ms  | 98Hz      | 2.8ms  | 1kHz
00197  * 3        | 44Hz      | 4.9ms  | 42Hz      | 4.8ms  | 1kHz
00198  * 4        | 21Hz      | 8.5ms  | 20Hz      | 8.3ms  | 1kHz
00199  * 5        | 10Hz      | 13.8ms | 10Hz      | 13.4ms | 1kHz
00200  * 6        | 5Hz       | 19.0ms | 5Hz       | 18.6ms | 1kHz
00201  * 7        |   -- Reserved --   |   -- Reserved --   | Reserved
00202  * </pre>
00203  *
00204  * @return DLFP configuration
00205  * @see MPU6050_RA_CONFIG
00206  * @see MPU6050_CFG_DLPF_CFG_BIT
00207  * @see MPU6050_CFG_DLPF_CFG_LENGTH
00208  */
00209 uint8_t MPU6050::getDLPFMode() {
00210     I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
00211     return buffer[0];
00212 }
00213 /** Set digital low-pass filter configuration.
00214  * @param mode New DLFP configuration setting
00215  * @see getDLPFBandwidth()
00216  * @see MPU6050_DLPF_BW_256
00217  * @see MPU6050_RA_CONFIG
00218  * @see MPU6050_CFG_DLPF_CFG_BIT
00219  * @see MPU6050_CFG_DLPF_CFG_LENGTH
00220  */
00221 void MPU6050::setDLPFMode(uint8_t mode) {
00222     I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
00223 }
00224 
00225 // GYRO_CONFIG register
00226 
00227 /** Get full-scale gyroscope range.
00228  * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
00229  * as described in the table below.
00230  *
00231  * <pre>
00232  * 0 = +/- 250 degrees/sec
00233  * 1 = +/- 500 degrees/sec
00234  * 2 = +/- 1000 degrees/sec
00235  * 3 = +/- 2000 degrees/sec
00236  * </pre>
00237  *
00238  * @return Current full-scale gyroscope range setting
00239  * @see MPU6050_GYRO_FS_250
00240  * @see MPU6050_RA_GYRO_CONFIG
00241  * @see MPU6050_GCONFIG_FS_SEL_BIT
00242  * @see MPU6050_GCONFIG_FS_SEL_LENGTH
00243  */
00244 uint8_t MPU6050::getFullScaleGyroRange() {
00245     I2Cdev::readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
00246     return buffer[0];
00247 }
00248 /** Set full-scale gyroscope range.
00249  * @param range New full-scale gyroscope range value
00250  * @see getFullScaleRange()
00251  * @see MPU6050_GYRO_FS_250
00252  * @see MPU6050_RA_GYRO_CONFIG
00253  * @see MPU6050_GCONFIG_FS_SEL_BIT
00254  * @see MPU6050_GCONFIG_FS_SEL_LENGTH
00255  */
00256 void MPU6050::setFullScaleGyroRange(uint8_t range) {
00257     I2Cdev::writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
00258 }
00259 
00260 // ACCEL_CONFIG register
00261 
00262 /** Get self-test enabled setting for accelerometer X axis.
00263  * @return Self-test enabled value
00264  * @see MPU6050_RA_ACCEL_CONFIG
00265  */
00266 bool MPU6050::getAccelXSelfTest() {
00267     I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
00268     return buffer[0];
00269 }
00270 /** Get self-test enabled setting for accelerometer X axis.
00271  * @param enabled Self-test enabled value
00272  * @see MPU6050_RA_ACCEL_CONFIG
00273  */
00274 void MPU6050::setAccelXSelfTest(bool enabled) {
00275     I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
00276 }
00277 /** Get self-test enabled value for accelerometer Y axis.
00278  * @return Self-test enabled value
00279  * @see MPU6050_RA_ACCEL_CONFIG
00280  */
00281 bool MPU6050::getAccelYSelfTest() {
00282     I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
00283     return buffer[0];
00284 }
00285 /** Get self-test enabled value for accelerometer Y axis.
00286  * @param enabled Self-test enabled value
00287  * @see MPU6050_RA_ACCEL_CONFIG
00288  */
00289 void MPU6050::setAccelYSelfTest(bool enabled) {
00290     I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
00291 }
00292 /** Get self-test enabled value for accelerometer Z axis.
00293  * @return Self-test enabled value
00294  * @see MPU6050_RA_ACCEL_CONFIG
00295  */
00296 bool MPU6050::getAccelZSelfTest() {
00297     I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
00298     return buffer[0];
00299 }
00300 /** Set self-test enabled value for accelerometer Z axis.
00301  * @param enabled Self-test enabled value
00302  * @see MPU6050_RA_ACCEL_CONFIG
00303  */
00304 void MPU6050::setAccelZSelfTest(bool enabled) {
00305     I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
00306 }
00307 /** Get full-scale accelerometer range.
00308  * The FS_SEL parameter allows setting the full-scale range of the accelerometer
00309  * sensors, as described in the table below.
00310  *
00311  * <pre>
00312  * 0 = +/- 2g
00313  * 1 = +/- 4g
00314  * 2 = +/- 8g
00315  * 3 = +/- 16g
00316  * </pre>
00317  *
00318  * @return Current full-scale accelerometer range setting
00319  * @see MPU6050_ACCEL_FS_2
00320  * @see MPU6050_RA_ACCEL_CONFIG
00321  * @see MPU6050_ACONFIG_AFS_SEL_BIT
00322  * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
00323  */
00324 uint8_t MPU6050::getFullScaleAccelRange() {
00325     I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
00326     return buffer[0];
00327 }
00328 /** Set full-scale accelerometer range.
00329  * @param range New full-scale accelerometer range setting
00330  * @see getFullScaleAccelRange()
00331  */
00332 void MPU6050::setFullScaleAccelRange(uint8_t range) {
00333     I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
00334 }
00335 /** Get the high-pass filter configuration.
00336  * The DHPF is a filter module in the path leading to motion detectors (Free
00337  * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
00338  * available to the data registers (see Figure in Section 8 of the MPU-6000/
00339  * MPU-6050 Product Specification document).
00340  *
00341  * The high pass filter has three modes:
00342  *
00343  * <pre>
00344  *    Reset: The filter output settles to zero within one sample. This
00345  *           effectively disables the high pass filter. This mode may be toggled
00346  *           to quickly settle the filter.
00347  *
00348  *    On:    The high pass filter will pass signals above the cut off frequency.
00349  *
00350  *    Hold:  When triggered, the filter holds the present sample. The filter
00351  *           output will be the difference between the input sample and the held
00352  *           sample.
00353  * </pre>
00354  *
00355  * <pre>
00356  * ACCEL_HPF | Filter Mode | Cut-off Frequency
00357  * ----------+-------------+------------------
00358  * 0         | Reset       | None
00359  * 1         | On          | 5Hz
00360  * 2         | On          | 2.5Hz
00361  * 3         | On          | 1.25Hz
00362  * 4         | On          | 0.63Hz
00363  * 7         | Hold        | None
00364  * </pre>
00365  *
00366  * @return Current high-pass filter configuration
00367  * @see MPU6050_DHPF_RESET
00368  * @see MPU6050_RA_ACCEL_CONFIG
00369  */
00370 uint8_t MPU6050::getDHPFMode() {
00371     I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
00372     return buffer[0];
00373 }
00374 /** Set the high-pass filter configuration.
00375  * @param bandwidth New high-pass filter configuration
00376  * @see setDHPFMode()
00377  * @see MPU6050_DHPF_RESET
00378  * @see MPU6050_RA_ACCEL_CONFIG
00379  */
00380 void MPU6050::setDHPFMode(uint8_t bandwidth) {
00381     I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
00382 }
00383 
00384 // FF_THR register
00385 
00386 /** Get free-fall event acceleration threshold.
00387  * This register configures the detection threshold for Free Fall event
00388  * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
00389  * absolute value of the accelerometer measurements for the three axes are each
00390  * less than the detection threshold. This condition increments the Free Fall
00391  * duration counter (Register 30). The Free Fall interrupt is triggered when the
00392  * Free Fall duration counter reaches the time specified in FF_DUR.
00393  *
00394  * For more details on the Free Fall detection interrupt, see Section 8.2 of the
00395  * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
00396  * 58 of this document.
00397  *
00398  * @return Current free-fall acceleration threshold value (LSB = 2mg)
00399  * @see MPU6050_RA_FF_THR
00400  */
00401 uint8_t MPU6050::getFreefallDetectionThreshold() {
00402     I2Cdev::readByte(devAddr, MPU6050_RA_FF_THR, buffer);
00403     return buffer[0];
00404 }
00405 /** Get free-fall event acceleration threshold.
00406  * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
00407  * @see getFreefallDetectionThreshold()
00408  * @see MPU6050_RA_FF_THR
00409  */
00410 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) {
00411     I2Cdev::writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
00412 }
00413 
00414 // FF_DUR register
00415 
00416 /** Get free-fall event duration threshold.
00417  * This register configures the duration counter threshold for Free Fall event
00418  * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
00419  * of 1 LSB = 1 ms.
00420  *
00421  * The Free Fall duration counter increments while the absolute value of the
00422  * accelerometer measurements are each less than the detection threshold
00423  * (Register 29). The Free Fall interrupt is triggered when the Free Fall
00424  * duration counter reaches the time specified in this register.
00425  *
00426  * For more details on the Free Fall detection interrupt, see Section 8.2 of
00427  * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
00428  * and 58 of this document.
00429  *
00430  * @return Current free-fall duration threshold value (LSB = 1ms)
00431  * @see MPU6050_RA_FF_DUR
00432  */
00433 uint8_t MPU6050::getFreefallDetectionDuration() {
00434     I2Cdev::readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
00435     return buffer[0];
00436 }
00437 /** Get free-fall event duration threshold.
00438  * @param duration New free-fall duration threshold value (LSB = 1ms)
00439  * @see getFreefallDetectionDuration()
00440  * @see MPU6050_RA_FF_DUR
00441  */
00442 void MPU6050::setFreefallDetectionDuration(uint8_t duration) {
00443     I2Cdev::writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
00444 }
00445 
00446 // MOT_THR register
00447 
00448 /** Get motion detection event acceleration threshold.
00449  * This register configures the detection threshold for Motion interrupt
00450  * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
00451  * absolute value of any of the accelerometer measurements exceeds this Motion
00452  * detection threshold. This condition increments the Motion detection duration
00453  * counter (Register 32). The Motion detection interrupt is triggered when the
00454  * Motion Detection counter reaches the time count specified in MOT_DUR
00455  * (Register 32).
00456  *
00457  * The Motion interrupt will indicate the axis and polarity of detected motion
00458  * in MOT_DETECT_STATUS (Register 97).
00459  *
00460  * For more details on the Motion detection interrupt, see Section 8.3 of the
00461  * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
00462  * 58 of this document.
00463  *
00464  * @return Current motion detection acceleration threshold value (LSB = 2mg)
00465  * @see MPU6050_RA_MOT_THR
00466  */
00467 uint8_t MPU6050::getMotionDetectionThreshold() {
00468     I2Cdev::readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
00469     return buffer[0];
00470 }
00471 /** Set free-fall event acceleration threshold.
00472  * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
00473  * @see getMotionDetectionThreshold()
00474  * @see MPU6050_RA_MOT_THR
00475  */
00476 void MPU6050::setMotionDetectionThreshold(uint8_t threshold) {
00477     I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
00478 }
00479 
00480 // MOT_DUR register
00481 
00482 /** Get motion detection event duration threshold.
00483  * This register configures the duration counter threshold for Motion interrupt
00484  * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
00485  * of 1LSB = 1ms. The Motion detection duration counter increments when the
00486  * absolute value of any of the accelerometer measurements exceeds the Motion
00487  * detection threshold (Register 31). The Motion detection interrupt is
00488  * triggered when the Motion detection counter reaches the time count specified
00489  * in this register.
00490  *
00491  * For more details on the Motion detection interrupt, see Section 8.3 of the
00492  * MPU-6000/MPU-6050 Product Specification document.
00493  *
00494  * @return Current motion detection duration threshold value (LSB = 1ms)
00495  * @see MPU6050_RA_MOT_DUR
00496  */
00497 uint8_t MPU6050::getMotionDetectionDuration() {
00498     I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
00499     return buffer[0];
00500 }
00501 /** Set motion detection event duration threshold.
00502  * @param duration New motion detection duration threshold value (LSB = 1ms)
00503  * @see getMotionDetectionDuration()
00504  * @see MPU6050_RA_MOT_DUR
00505  */
00506 void MPU6050::setMotionDetectionDuration(uint8_t duration) {
00507     I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
00508 }
00509 
00510 // ZRMOT_THR register
00511 
00512 /** Get zero motion detection event acceleration threshold.
00513  * This register configures the detection threshold for Zero Motion interrupt
00514  * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
00515  * the absolute value of the accelerometer measurements for the 3 axes are each
00516  * less than the detection threshold. This condition increments the Zero Motion
00517  * duration counter (Register 34). The Zero Motion interrupt is triggered when
00518  * the Zero Motion duration counter reaches the time count specified in
00519  * ZRMOT_DUR (Register 34).
00520  *
00521  * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
00522  * interrupt both when Zero Motion is first detected and when Zero Motion is no
00523  * longer detected.
00524  *
00525  * When a zero motion event is detected, a Zero Motion Status will be indicated
00526  * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
00527  * condition is detected, the status bit is set to 1. When a zero-motion-to-
00528  * motion condition is detected, the status bit is set to 0.
00529  *
00530  * For more details on the Zero Motion detection interrupt, see Section 8.4 of
00531  * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
00532  * and 58 of this document.
00533  *
00534  * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
00535  * @see MPU6050_RA_ZRMOT_THR
00536  */
00537 uint8_t MPU6050::getZeroMotionDetectionThreshold() {
00538     I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
00539     return buffer[0];
00540 }
00541 /** Set zero motion detection event acceleration threshold.
00542  * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
00543  * @see getZeroMotionDetectionThreshold()
00544  * @see MPU6050_RA_ZRMOT_THR
00545  */
00546 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) {
00547     I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
00548 }
00549 
00550 // ZRMOT_DUR register
00551 
00552 /** Get zero motion detection event duration threshold.
00553  * This register configures the duration counter threshold for Zero Motion
00554  * interrupt generation. The duration counter ticks at 16 Hz, therefore
00555  * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
00556  * increments while the absolute value of the accelerometer measurements are
00557  * each less than the detection threshold (Register 33). The Zero Motion
00558  * interrupt is triggered when the Zero Motion duration counter reaches the time
00559  * count specified in this register.
00560  *
00561  * For more details on the Zero Motion detection interrupt, see Section 8.4 of
00562  * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
00563  * and 58 of this document.
00564  *
00565  * @return Current zero motion detection duration threshold value (LSB = 64ms)
00566  * @see MPU6050_RA_ZRMOT_DUR
00567  */
00568 uint8_t MPU6050::getZeroMotionDetectionDuration() {
00569     I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
00570     return buffer[0];
00571 }
00572 /** Set zero motion detection event duration threshold.
00573  * @param duration New zero motion detection duration threshold value (LSB = 1ms)
00574  * @see getZeroMotionDetectionDuration()
00575  * @see MPU6050_RA_ZRMOT_DUR
00576  */
00577 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) {
00578     I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
00579 }
00580 
00581 // FIFO_EN register
00582 
00583 /** Get temperature FIFO enabled value.
00584  * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
00585  * 66) to be written into the FIFO buffer.
00586  * @return Current temperature FIFO enabled value
00587  * @see MPU6050_RA_FIFO_EN
00588  */
00589 bool MPU6050::getTempFIFOEnabled() {
00590     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
00591     return buffer[0];
00592 }
00593 /** Set temperature FIFO enabled value.
00594  * @param enabled New temperature FIFO enabled value
00595  * @see getTempFIFOEnabled()
00596  * @see MPU6050_RA_FIFO_EN
00597  */
00598 void MPU6050::setTempFIFOEnabled(bool enabled) {
00599     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
00600 }
00601 /** Get gyroscope X-axis FIFO enabled value.
00602  * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
00603  * 68) to be written into the FIFO buffer.
00604  * @return Current gyroscope X-axis FIFO enabled value
00605  * @see MPU6050_RA_FIFO_EN
00606  */
00607 bool MPU6050::getXGyroFIFOEnabled() {
00608     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
00609     return buffer[0];
00610 }
00611 /** Set gyroscope X-axis FIFO enabled value.
00612  * @param enabled New gyroscope X-axis FIFO enabled value
00613  * @see getXGyroFIFOEnabled()
00614  * @see MPU6050_RA_FIFO_EN
00615  */
00616 void MPU6050::setXGyroFIFOEnabled(bool enabled) {
00617     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
00618 }
00619 /** Get gyroscope Y-axis FIFO enabled value.
00620  * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
00621  * 70) to be written into the FIFO buffer.
00622  * @return Current gyroscope Y-axis FIFO enabled value
00623  * @see MPU6050_RA_FIFO_EN
00624  */
00625 bool MPU6050::getYGyroFIFOEnabled() {
00626     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
00627     return buffer[0];
00628 }
00629 /** Set gyroscope Y-axis FIFO enabled value.
00630  * @param enabled New gyroscope Y-axis FIFO enabled value
00631  * @see getYGyroFIFOEnabled()
00632  * @see MPU6050_RA_FIFO_EN
00633  */
00634 void MPU6050::setYGyroFIFOEnabled(bool enabled) {
00635     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
00636 }
00637 /** Get gyroscope Z-axis FIFO enabled value.
00638  * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
00639  * 72) to be written into the FIFO buffer.
00640  * @return Current gyroscope Z-axis FIFO enabled value
00641  * @see MPU6050_RA_FIFO_EN
00642  */
00643 bool MPU6050::getZGyroFIFOEnabled() {
00644     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
00645     return buffer[0];
00646 }
00647 /** Set gyroscope Z-axis FIFO enabled value.
00648  * @param enabled New gyroscope Z-axis FIFO enabled value
00649  * @see getZGyroFIFOEnabled()
00650  * @see MPU6050_RA_FIFO_EN
00651  */
00652 void MPU6050::setZGyroFIFOEnabled(bool enabled) {
00653     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
00654 }
00655 /** Get accelerometer FIFO enabled value.
00656  * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
00657  * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
00658  * written into the FIFO buffer.
00659  * @return Current accelerometer FIFO enabled value
00660  * @see MPU6050_RA_FIFO_EN
00661  */
00662 bool MPU6050::getAccelFIFOEnabled() {
00663     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
00664     return buffer[0];
00665 }
00666 /** Set accelerometer FIFO enabled value.
00667  * @param enabled New accelerometer FIFO enabled value
00668  * @see getAccelFIFOEnabled()
00669  * @see MPU6050_RA_FIFO_EN
00670  */
00671 void MPU6050::setAccelFIFOEnabled(bool enabled) {
00672     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
00673 }
00674 /** Get Slave 2 FIFO enabled value.
00675  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00676  * associated with Slave 2 to be written into the FIFO buffer.
00677  * @return Current Slave 2 FIFO enabled value
00678  * @see MPU6050_RA_FIFO_EN
00679  */
00680 bool MPU6050::getSlave2FIFOEnabled() {
00681     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
00682     return buffer[0];
00683 }
00684 /** Set Slave 2 FIFO enabled value.
00685  * @param enabled New Slave 2 FIFO enabled value
00686  * @see getSlave2FIFOEnabled()
00687  * @see MPU6050_RA_FIFO_EN
00688  */
00689 void MPU6050::setSlave2FIFOEnabled(bool enabled) {
00690     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
00691 }
00692 /** Get Slave 1 FIFO enabled value.
00693  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00694  * associated with Slave 1 to be written into the FIFO buffer.
00695  * @return Current Slave 1 FIFO enabled value
00696  * @see MPU6050_RA_FIFO_EN
00697  */
00698 bool MPU6050::getSlave1FIFOEnabled() {
00699     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
00700     return buffer[0];
00701 }
00702 /** Set Slave 1 FIFO enabled value.
00703  * @param enabled New Slave 1 FIFO enabled value
00704  * @see getSlave1FIFOEnabled()
00705  * @see MPU6050_RA_FIFO_EN
00706  */
00707 void MPU6050::setSlave1FIFOEnabled(bool enabled) {
00708     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
00709 }
00710 /** Get Slave 0 FIFO enabled value.
00711  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00712  * associated with Slave 0 to be written into the FIFO buffer.
00713  * @return Current Slave 0 FIFO enabled value
00714  * @see MPU6050_RA_FIFO_EN
00715  */
00716 bool MPU6050::getSlave0FIFOEnabled() {
00717     I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
00718     return buffer[0];
00719 }
00720 /** Set Slave 0 FIFO enabled value.
00721  * @param enabled New Slave 0 FIFO enabled value
00722  * @see getSlave0FIFOEnabled()
00723  * @see MPU6050_RA_FIFO_EN
00724  */
00725 void MPU6050::setSlave0FIFOEnabled(bool enabled) {
00726     I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
00727 }
00728 
00729 // I2C_MST_CTRL register
00730 
00731 /** Get multi-master enabled value.
00732  * Multi-master capability allows multiple I2C masters to operate on the same
00733  * bus. In circuits where multi-master capability is required, set MULT_MST_EN
00734  * to 1. This will increase current drawn by approximately 30uA.
00735  *
00736  * In circuits where multi-master capability is required, the state of the I2C
00737  * bus must always be monitored by each separate I2C Master. Before an I2C
00738  * Master can assume arbitration of the bus, it must first confirm that no other
00739  * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
00740  * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
00741  * detect when the bus is available.
00742  *
00743  * @return Current multi-master enabled value
00744  * @see MPU6050_RA_I2C_MST_CTRL
00745  */
00746 bool MPU6050::getMultiMasterEnabled() {
00747     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
00748     return buffer[0];
00749 }
00750 /** Set multi-master enabled value.
00751  * @param enabled New multi-master enabled value
00752  * @see getMultiMasterEnabled()
00753  * @see MPU6050_RA_I2C_MST_CTRL
00754  */
00755 void MPU6050::setMultiMasterEnabled(bool enabled) {
00756     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
00757 }
00758 /** Get wait-for-external-sensor-data enabled value.
00759  * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
00760  * delayed until External Sensor data from the Slave Devices are loaded into the
00761  * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
00762  * data (i.e. from gyro and accel) and external sensor data have been loaded to
00763  * their respective data registers (i.e. the data is synced) when the Data Ready
00764  * interrupt is triggered.
00765  *
00766  * @return Current wait-for-external-sensor-data enabled value
00767  * @see MPU6050_RA_I2C_MST_CTRL
00768  */
00769 bool MPU6050::getWaitForExternalSensorEnabled() {
00770     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
00771     return buffer[0];
00772 }
00773 /** Set wait-for-external-sensor-data enabled value.
00774  * @param enabled New wait-for-external-sensor-data enabled value
00775  * @see getWaitForExternalSensorEnabled()
00776  * @see MPU6050_RA_I2C_MST_CTRL
00777  */
00778 void MPU6050::setWaitForExternalSensorEnabled(bool enabled) {
00779     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
00780 }
00781 /** Get Slave 3 FIFO enabled value.
00782  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00783  * associated with Slave 3 to be written into the FIFO buffer.
00784  * @return Current Slave 3 FIFO enabled value
00785  * @see MPU6050_RA_MST_CTRL
00786  */
00787 bool MPU6050::getSlave3FIFOEnabled() {
00788     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
00789     return buffer[0];
00790 }
00791 /** Set Slave 3 FIFO enabled value.
00792  * @param enabled New Slave 3 FIFO enabled value
00793  * @see getSlave3FIFOEnabled()
00794  * @see MPU6050_RA_MST_CTRL
00795  */
00796 void MPU6050::setSlave3FIFOEnabled(bool enabled) {
00797     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
00798 }
00799 /** Get slave read/write transition enabled value.
00800  * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
00801  * read to the next slave read. If the bit equals 0, there will be a restart
00802  * between reads. If the bit equals 1, there will be a stop followed by a start
00803  * of the following read. When a write transaction follows a read transaction,
00804  * the stop followed by a start of the successive write will be always used.
00805  *
00806  * @return Current slave read/write transition enabled value
00807  * @see MPU6050_RA_I2C_MST_CTRL
00808  */
00809 bool MPU6050::getSlaveReadWriteTransitionEnabled() {
00810     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
00811     return buffer[0];
00812 }
00813 /** Set slave read/write transition enabled value.
00814  * @param enabled New slave read/write transition enabled value
00815  * @see getSlaveReadWriteTransitionEnabled()
00816  * @see MPU6050_RA_I2C_MST_CTRL
00817  */
00818 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) {
00819     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
00820 }
00821 /** Get I2C master clock speed.
00822  * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
00823  * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
00824  * the following table:
00825  *
00826  * <pre>
00827  * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
00828  * ------------+------------------------+-------------------
00829  * 0           | 348kHz                 | 23
00830  * 1           | 333kHz                 | 24
00831  * 2           | 320kHz                 | 25
00832  * 3           | 308kHz                 | 26
00833  * 4           | 296kHz                 | 27
00834  * 5           | 286kHz                 | 28
00835  * 6           | 276kHz                 | 29
00836  * 7           | 267kHz                 | 30
00837  * 8           | 258kHz                 | 31
00838  * 9           | 500kHz                 | 16
00839  * 10          | 471kHz                 | 17
00840  * 11          | 444kHz                 | 18
00841  * 12          | 421kHz                 | 19
00842  * 13          | 400kHz                 | 20
00843  * 14          | 381kHz                 | 21
00844  * 15          | 364kHz                 | 22
00845  * </pre>
00846  *
00847  * @return Current I2C master clock speed
00848  * @see MPU6050_RA_I2C_MST_CTRL
00849  */
00850 uint8_t MPU6050::getMasterClockSpeed() {
00851     I2Cdev::readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
00852     return buffer[0];
00853 }
00854 /** Set I2C master clock speed.
00855  * @reparam speed Current I2C master clock speed
00856  * @see MPU6050_RA_I2C_MST_CTRL
00857  */
00858 void MPU6050::setMasterClockSpeed(uint8_t speed) {
00859     I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
00860 }
00861 
00862 // I2C_SLV* registers (Slave 0-3)
00863 
00864 /** Get the I2C address of the specified slave (0-3).
00865  * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
00866  * operation, and if it is cleared, then it's a write operation. The remaining
00867  * bits (6-0) are the 7-bit device address of the slave device.
00868  *
00869  * In read mode, the result of the read is placed in the lowest available 
00870  * EXT_SENS_DATA register. For further information regarding the allocation of
00871  * read results, please refer to the EXT_SENS_DATA register description
00872  * (Registers 73 - 96).
00873  *
00874  * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
00875  * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
00876  *
00877  * I2C data transactions are performed at the Sample Rate, as defined in
00878  * Register 25. The user is responsible for ensuring that I2C data transactions
00879  * to and from each enabled Slave can be completed within a single period of the
00880  * Sample Rate.
00881  *
00882  * The I2C slave access rate can be reduced relative to the Sample Rate. This
00883  * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
00884  * slave's access rate is reduced relative to the Sample Rate is determined by
00885  * I2C_MST_DELAY_CTRL (Register 103).
00886  *
00887  * The processing order for the slaves is fixed. The sequence followed for
00888  * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
00889  * particular Slave is disabled it will be skipped.
00890  *
00891  * Each slave can either be accessed at the sample rate or at a reduced sample
00892  * rate. In a case where some slaves are accessed at the Sample Rate and some
00893  * slaves are accessed at the reduced rate, the sequence of accessing the slaves
00894  * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
00895  * be skipped if their access rate dictates that they should not be accessed
00896  * during that particular cycle. For further information regarding the reduced
00897  * access rate, please refer to Register 52. Whether a slave is accessed at the
00898  * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
00899  * Register 103.
00900  *
00901  * @param num Slave number (0-3)
00902  * @return Current address for specified slave
00903  * @see MPU6050_RA_I2C_SLV0_ADDR
00904  */
00905 uint8_t MPU6050::getSlaveAddress(uint8_t num) {
00906     if (num > 3) return 0;
00907     I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
00908     return buffer[0];
00909 }
00910 /** Set the I2C address of the specified slave (0-3).
00911  * @param num Slave number (0-3)
00912  * @param address New address for specified slave
00913  * @see getSlaveAddress()
00914  * @see MPU6050_RA_I2C_SLV0_ADDR
00915  */
00916 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) {
00917     if (num > 3) return;
00918     I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
00919 }
00920 /** Get the active internal register for the specified slave (0-3).
00921  * Read/write operations for this slave will be done to whatever internal
00922  * register address is stored in this MPU register.
00923  *
00924  * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
00925  * characteristics, and so it has its own functions.
00926  *
00927  * @param num Slave number (0-3)
00928  * @return Current active register for specified slave
00929  * @see MPU6050_RA_I2C_SLV0_REG
00930  */
00931 uint8_t MPU6050::getSlaveRegister(uint8_t num) {
00932     if (num > 3) return 0;
00933     I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
00934     return buffer[0];
00935 }
00936 /** Set the active internal register for the specified slave (0-3).
00937  * @param num Slave number (0-3)
00938  * @param reg New active register for specified slave
00939  * @see getSlaveRegister()
00940  * @see MPU6050_RA_I2C_SLV0_REG
00941  */
00942 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) {
00943     if (num > 3) return;
00944     I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
00945 }
00946 /** Get the enabled value for the specified slave (0-3).
00947  * When set to 1, this bit enables Slave 0 for data transfer operations. When
00948  * cleared to 0, this bit disables Slave 0 from data transfer operations.
00949  * @param num Slave number (0-3)
00950  * @return Current enabled value for specified slave
00951  * @see MPU6050_RA_I2C_SLV0_CTRL
00952  */
00953 bool MPU6050::getSlaveEnabled(uint8_t num) {
00954     if (num > 3) return 0;
00955     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
00956     return buffer[0];
00957 }
00958 /** Set the enabled value for the specified slave (0-3).
00959  * @param num Slave number (0-3)
00960  * @param enabled New enabled value for specified slave
00961  * @see getSlaveEnabled()
00962  * @see MPU6050_RA_I2C_SLV0_CTRL
00963  */
00964 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) {
00965     if (num > 3) return;
00966     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
00967 }
00968 /** Get word pair byte-swapping enabled for the specified slave (0-3).
00969  * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
00970  * the high and low bytes of a word pair are swapped. Please refer to
00971  * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
00972  * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
00973  * registers in the order they were transferred.
00974  *
00975  * @param num Slave number (0-3)
00976  * @return Current word pair byte-swapping enabled value for specified slave
00977  * @see MPU6050_RA_I2C_SLV0_CTRL
00978  */
00979 bool MPU6050::getSlaveWordByteSwap(uint8_t num) {
00980     if (num > 3) return 0;
00981     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
00982     return buffer[0];
00983 }
00984 /** Set word pair byte-swapping enabled for the specified slave (0-3).
00985  * @param num Slave number (0-3)
00986  * @param enabled New word pair byte-swapping enabled value for specified slave
00987  * @see getSlaveWordByteSwap()
00988  * @see MPU6050_RA_I2C_SLV0_CTRL
00989  */
00990 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) {
00991     if (num > 3) return;
00992     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
00993 }
00994 /** Get write mode for the specified slave (0-3).
00995  * When set to 1, the transaction will read or write data only. When cleared to
00996  * 0, the transaction will write a register address prior to reading or writing
00997  * data. This should equal 0 when specifying the register address within the
00998  * Slave device to/from which the ensuing data transaction will take place.
00999  *
01000  * @param num Slave number (0-3)
01001  * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
01002  * @see MPU6050_RA_I2C_SLV0_CTRL
01003  */
01004 bool MPU6050::getSlaveWriteMode(uint8_t num) {
01005     if (num > 3) return 0;
01006     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
01007     return buffer[0];
01008 }
01009 /** Set write mode for the specified slave (0-3).
01010  * @param num Slave number (0-3)
01011  * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
01012  * @see getSlaveWriteMode()
01013  * @see MPU6050_RA_I2C_SLV0_CTRL
01014  */
01015 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) {
01016     if (num > 3) return;
01017     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
01018 }
01019 /** Get word pair grouping order offset for the specified slave (0-3).
01020  * This sets specifies the grouping order of word pairs received from registers.
01021  * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
01022  * then odd register addresses) are paired to form a word. When set to 1, bytes
01023  * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
01024  * register addresses) are paired to form a word.
01025  *
01026  * @param num Slave number (0-3)
01027  * @return Current word pair grouping order offset for specified slave
01028  * @see MPU6050_RA_I2C_SLV0_CTRL
01029  */
01030 bool MPU6050::getSlaveWordGroupOffset(uint8_t num) {
01031     if (num > 3) return 0;
01032     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
01033     return buffer[0];
01034 }
01035 /** Set word pair grouping order offset for the specified slave (0-3).
01036  * @param num Slave number (0-3)
01037  * @param enabled New word pair grouping order offset for specified slave
01038  * @see getSlaveWordGroupOffset()
01039  * @see MPU6050_RA_I2C_SLV0_CTRL
01040  */
01041 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) {
01042     if (num > 3) return;
01043     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
01044 }
01045 /** Get number of bytes to read for the specified slave (0-3).
01046  * Specifies the number of bytes transferred to and from Slave 0. Clearing this
01047  * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
01048  * @param num Slave number (0-3)
01049  * @return Number of bytes to read for specified slave
01050  * @see MPU6050_RA_I2C_SLV0_CTRL
01051  */
01052 uint8_t MPU6050::getSlaveDataLength(uint8_t num) {
01053     if (num > 3) return 0;
01054     I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
01055     return buffer[0];
01056 }
01057 /** Set number of bytes to read for the specified slave (0-3).
01058  * @param num Slave number (0-3)
01059  * @param length Number of bytes to read for specified slave
01060  * @see getSlaveDataLength()
01061  * @see MPU6050_RA_I2C_SLV0_CTRL
01062  */
01063 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) {
01064     if (num > 3) return;
01065     I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
01066 }
01067 
01068 // I2C_SLV* registers (Slave 4)
01069 
01070 /** Get the I2C address of Slave 4.
01071  * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
01072  * operation, and if it is cleared, then it's a write operation. The remaining
01073  * bits (6-0) are the 7-bit device address of the slave device.
01074  *
01075  * @return Current address for Slave 4
01076  * @see getSlaveAddress()
01077  * @see MPU6050_RA_I2C_SLV4_ADDR
01078  */
01079 uint8_t MPU6050::getSlave4Address() {
01080     I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
01081     return buffer[0];
01082 }
01083 /** Set the I2C address of Slave 4.
01084  * @param address New address for Slave 4
01085  * @see getSlave4Address()
01086  * @see MPU6050_RA_I2C_SLV4_ADDR
01087  */
01088 void MPU6050::setSlave4Address(uint8_t address) {
01089     I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
01090 }
01091 /** Get the active internal register for the Slave 4.
01092  * Read/write operations for this slave will be done to whatever internal
01093  * register address is stored in this MPU register.
01094  *
01095  * @return Current active register for Slave 4
01096  * @see MPU6050_RA_I2C_SLV4_REG
01097  */
01098 uint8_t MPU6050::getSlave4Register() {
01099     I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
01100     return buffer[0];
01101 }
01102 /** Set the active internal register for Slave 4.
01103  * @param reg New active register for Slave 4
01104  * @see getSlave4Register()
01105  * @see MPU6050_RA_I2C_SLV4_REG
01106  */
01107 void MPU6050::setSlave4Register(uint8_t reg) {
01108     I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
01109 }
01110 /** Set new byte to write to Slave 4.
01111  * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
01112  * is set 1 (set to read), this register has no effect.
01113  * @param data New byte to write to Slave 4
01114  * @see MPU6050_RA_I2C_SLV4_DO
01115  */
01116 void MPU6050::setSlave4OutputByte(uint8_t data) {
01117     I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
01118 }
01119 /** Get the enabled value for the Slave 4.
01120  * When set to 1, this bit enables Slave 4 for data transfer operations. When
01121  * cleared to 0, this bit disables Slave 4 from data transfer operations.
01122  * @return Current enabled value for Slave 4
01123  * @see MPU6050_RA_I2C_SLV4_CTRL
01124  */
01125 bool MPU6050::getSlave4Enabled() {
01126     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
01127     return buffer[0];
01128 }
01129 /** Set the enabled value for Slave 4.
01130  * @param enabled New enabled value for Slave 4
01131  * @see getSlave4Enabled()
01132  * @see MPU6050_RA_I2C_SLV4_CTRL
01133  */
01134 void MPU6050::setSlave4Enabled(bool enabled) {
01135     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
01136 }
01137 /** Get the enabled value for Slave 4 transaction interrupts.
01138  * When set to 1, this bit enables the generation of an interrupt signal upon
01139  * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
01140  * generation of an interrupt signal upon completion of a Slave 4 transaction.
01141  * The interrupt status can be observed in Register 54.
01142  *
01143  * @return Current enabled value for Slave 4 transaction interrupts.
01144  * @see MPU6050_RA_I2C_SLV4_CTRL
01145  */
01146 bool MPU6050::getSlave4InterruptEnabled() {
01147     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
01148     return buffer[0];
01149 }
01150 /** Set the enabled value for Slave 4 transaction interrupts.
01151  * @param enabled New enabled value for Slave 4 transaction interrupts.
01152  * @see getSlave4InterruptEnabled()
01153  * @see MPU6050_RA_I2C_SLV4_CTRL
01154  */
01155 void MPU6050::setSlave4InterruptEnabled(bool enabled) {
01156     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
01157 }
01158 /** Get write mode for Slave 4.
01159  * When set to 1, the transaction will read or write data only. When cleared to
01160  * 0, the transaction will write a register address prior to reading or writing
01161  * data. This should equal 0 when specifying the register address within the
01162  * Slave device to/from which the ensuing data transaction will take place.
01163  *
01164  * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
01165  * @see MPU6050_RA_I2C_SLV4_CTRL
01166  */
01167 bool MPU6050::getSlave4WriteMode() {
01168     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
01169     return buffer[0];
01170 }
01171 /** Set write mode for the Slave 4.
01172  * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
01173  * @see getSlave4WriteMode()
01174  * @see MPU6050_RA_I2C_SLV4_CTRL
01175  */
01176 void MPU6050::setSlave4WriteMode(bool mode) {
01177     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
01178 }
01179 /** Get Slave 4 master delay value.
01180  * This configures the reduced access rate of I2C slaves relative to the Sample
01181  * Rate. When a slave's access rate is decreased relative to the Sample Rate,
01182  * the slave is accessed every:
01183  *
01184  *     1 / (1 + I2C_MST_DLY) samples
01185  *
01186  * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
01187  * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
01188  * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
01189  * further information regarding the Sample Rate, please refer to register 25.
01190  *
01191  * @return Current Slave 4 master delay value
01192  * @see MPU6050_RA_I2C_SLV4_CTRL
01193  */
01194 uint8_t MPU6050::getSlave4MasterDelay() {
01195     I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
01196     return buffer[0];
01197 }
01198 /** Set Slave 4 master delay value.
01199  * @param delay New Slave 4 master delay value
01200  * @see getSlave4MasterDelay()
01201  * @see MPU6050_RA_I2C_SLV4_CTRL
01202  */
01203 void MPU6050::setSlave4MasterDelay(uint8_t delay) {
01204     I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
01205 }
01206 /** Get last available byte read from Slave 4.
01207  * This register stores the data read from Slave 4. This field is populated
01208  * after a read transaction.
01209  * @return Last available byte read from to Slave 4
01210  * @see MPU6050_RA_I2C_SLV4_DI
01211  */
01212 uint8_t MPU6050::getSlate4InputByte() {
01213     I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
01214     return buffer[0];
01215 }
01216 
01217 // I2C_MST_STATUS register
01218 
01219 /** Get FSYNC interrupt status.
01220  * This bit reflects the status of the FSYNC interrupt from an external device
01221  * into the MPU-60X0. This is used as a way to pass an external interrupt
01222  * through the MPU-60X0 to the host application processor. When set to 1, this
01223  * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
01224  * (Register 55).
01225  * @return FSYNC interrupt status
01226  * @see MPU6050_RA_I2C_MST_STATUS
01227  */
01228 bool MPU6050::getPassthroughStatus() {
01229     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
01230     return buffer[0];
01231 }
01232 /** Get Slave 4 transaction done status.
01233  * Automatically sets to 1 when a Slave 4 transaction has completed. This
01234  * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
01235  * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
01236  * I2C_SLV4_CTRL register (Register 52).
01237  * @return Slave 4 transaction done status
01238  * @see MPU6050_RA_I2C_MST_STATUS
01239  */
01240 bool MPU6050::getSlave4IsDone() {
01241     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
01242     return buffer[0];
01243 }
01244 /** Get master arbitration lost status.
01245  * This bit automatically sets to 1 when the I2C Master has lost arbitration of
01246  * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
01247  * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
01248  * @return Master arbitration lost status
01249  * @see MPU6050_RA_I2C_MST_STATUS
01250  */
01251 bool MPU6050::getLostArbitration() {
01252     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
01253     return buffer[0];
01254 }
01255 /** Get Slave 4 NACK status.
01256  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01257  * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
01258  * bit in the INT_ENABLE register (Register 56) is asserted.
01259  * @return Slave 4 NACK interrupt status
01260  * @see MPU6050_RA_I2C_MST_STATUS
01261  */
01262 bool MPU6050::getSlave4Nack() {
01263     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
01264     return buffer[0];
01265 }
01266 /** Get Slave 3 NACK status.
01267  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01268  * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
01269  * bit in the INT_ENABLE register (Register 56) is asserted.
01270  * @return Slave 3 NACK interrupt status
01271  * @see MPU6050_RA_I2C_MST_STATUS
01272  */
01273 bool MPU6050::getSlave3Nack() {
01274     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
01275     return buffer[0];
01276 }
01277 /** Get Slave 2 NACK status.
01278  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01279  * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
01280  * bit in the INT_ENABLE register (Register 56) is asserted.
01281  * @return Slave 2 NACK interrupt status
01282  * @see MPU6050_RA_I2C_MST_STATUS
01283  */
01284 bool MPU6050::getSlave2Nack() {
01285     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
01286     return buffer[0];
01287 }
01288 /** Get Slave 1 NACK status.
01289  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01290  * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
01291  * bit in the INT_ENABLE register (Register 56) is asserted.
01292  * @return Slave 1 NACK interrupt status
01293  * @see MPU6050_RA_I2C_MST_STATUS
01294  */
01295 bool MPU6050::getSlave1Nack() {
01296     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
01297     return buffer[0];
01298 }
01299 /** Get Slave 0 NACK status.
01300  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01301  * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
01302  * bit in the INT_ENABLE register (Register 56) is asserted.
01303  * @return Slave 0 NACK interrupt status
01304  * @see MPU6050_RA_I2C_MST_STATUS
01305  */
01306 bool MPU6050::getSlave0Nack() {
01307     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
01308     return buffer[0];
01309 }
01310 
01311 // INT_PIN_CFG register
01312 
01313 /** Get interrupt logic level mode.
01314  * Will be set 0 for active-high, 1 for active-low.
01315  * @return Current interrupt mode (0=active-high, 1=active-low)
01316  * @see MPU6050_RA_INT_PIN_CFG
01317  * @see MPU6050_INTCFG_INT_LEVEL_BIT
01318  */
01319 bool MPU6050::getInterruptMode() {
01320     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
01321     return buffer[0];
01322 }
01323 /** Set interrupt logic level mode.
01324  * @param mode New interrupt mode (0=active-high, 1=active-low)
01325  * @see getInterruptMode()
01326  * @see MPU6050_RA_INT_PIN_CFG
01327  * @see MPU6050_INTCFG_INT_LEVEL_BIT
01328  */
01329 void MPU6050::setInterruptMode(bool mode) {
01330    I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
01331 }
01332 /** Get interrupt drive mode.
01333  * Will be set 0 for push-pull, 1 for open-drain.
01334  * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
01335  * @see MPU6050_RA_INT_PIN_CFG
01336  * @see MPU6050_INTCFG_INT_OPEN_BIT
01337  */
01338 bool MPU6050::getInterruptDrive() {
01339     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
01340     return buffer[0];
01341 }
01342 /** Set interrupt drive mode.
01343  * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
01344  * @see getInterruptDrive()
01345  * @see MPU6050_RA_INT_PIN_CFG
01346  * @see MPU6050_INTCFG_INT_OPEN_BIT
01347  */
01348 void MPU6050::setInterruptDrive(bool drive) {
01349     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
01350 }
01351 /** Get interrupt latch mode.
01352  * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
01353  * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
01354  * @see MPU6050_RA_INT_PIN_CFG
01355  * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
01356  */
01357 bool MPU6050::getInterruptLatch() {
01358     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
01359     return buffer[0];
01360 }
01361 /** Set interrupt latch mode.
01362  * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
01363  * @see getInterruptLatch()
01364  * @see MPU6050_RA_INT_PIN_CFG
01365  * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
01366  */
01367 void MPU6050::setInterruptLatch(bool latch) {
01368     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
01369 }
01370 /** Get interrupt latch clear mode.
01371  * Will be set 0 for status-read-only, 1 for any-register-read.
01372  * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
01373  * @see MPU6050_RA_INT_PIN_CFG
01374  * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
01375  */
01376 bool MPU6050::getInterruptLatchClear() {
01377     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
01378     return buffer[0];
01379 }
01380 /** Set interrupt latch clear mode.
01381  * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
01382  * @see getInterruptLatchClear()
01383  * @see MPU6050_RA_INT_PIN_CFG
01384  * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
01385  */
01386 void MPU6050::setInterruptLatchClear(bool clear) {
01387     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
01388 }
01389 /** Get FSYNC interrupt logic level mode.
01390  * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
01391  * @see getFSyncInterruptMode()
01392  * @see MPU6050_RA_INT_PIN_CFG
01393  * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
01394  */
01395 bool MPU6050::getFSyncInterruptLevel() {
01396     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
01397     return buffer[0];
01398 }
01399 /** Set FSYNC interrupt logic level mode.
01400  * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
01401  * @see getFSyncInterruptMode()
01402  * @see MPU6050_RA_INT_PIN_CFG
01403  * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
01404  */
01405 void MPU6050::setFSyncInterruptLevel(bool level) {
01406     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
01407 }
01408 /** Get FSYNC pin interrupt enabled setting.
01409  * Will be set 0 for disabled, 1 for enabled.
01410  * @return Current interrupt enabled setting
01411  * @see MPU6050_RA_INT_PIN_CFG
01412  * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
01413  */
01414 bool MPU6050::getFSyncInterruptEnabled() {
01415     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
01416     return buffer[0];
01417 }
01418 /** Set FSYNC pin interrupt enabled setting.
01419  * @param enabled New FSYNC pin interrupt enabled setting
01420  * @see getFSyncInterruptEnabled()
01421  * @see MPU6050_RA_INT_PIN_CFG
01422  * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
01423  */
01424 void MPU6050::setFSyncInterruptEnabled(bool enabled) {
01425     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
01426 }
01427 /** Get I2C bypass enabled status.
01428  * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
01429  * 0, the host application processor will be able to directly access the
01430  * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
01431  * application processor will not be able to directly access the auxiliary I2C
01432  * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
01433  * bit[5]).
01434  * @return Current I2C bypass enabled status
01435  * @see MPU6050_RA_INT_PIN_CFG
01436  * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
01437  */
01438 bool MPU6050::getI2CBypassEnabled() {
01439     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
01440     return buffer[0];
01441 }
01442 /** Set I2C bypass enabled status.
01443  * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
01444  * 0, the host application processor will be able to directly access the
01445  * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
01446  * application processor will not be able to directly access the auxiliary I2C
01447  * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
01448  * bit[5]).
01449  * @param enabled New I2C bypass enabled status
01450  * @see MPU6050_RA_INT_PIN_CFG
01451  * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
01452  */
01453 void MPU6050::setI2CBypassEnabled(bool enabled) {
01454     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
01455 }
01456 /** Get reference clock output enabled status.
01457  * When this bit is equal to 1, a reference clock output is provided at the
01458  * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
01459  * further information regarding CLKOUT, please refer to the MPU-60X0 Product
01460  * Specification document.
01461  * @return Current reference clock output enabled status
01462  * @see MPU6050_RA_INT_PIN_CFG
01463  * @see MPU6050_INTCFG_CLKOUT_EN_BIT
01464  */
01465 bool MPU6050::getClockOutputEnabled() {
01466     I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
01467     return buffer[0];
01468 }
01469 /** Set reference clock output enabled status.
01470  * When this bit is equal to 1, a reference clock output is provided at the
01471  * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
01472  * further information regarding CLKOUT, please refer to the MPU-60X0 Product
01473  * Specification document.
01474  * @param enabled New reference clock output enabled status
01475  * @see MPU6050_RA_INT_PIN_CFG
01476  * @see MPU6050_INTCFG_CLKOUT_EN_BIT
01477  */
01478 void MPU6050::setClockOutputEnabled(bool enabled) {
01479     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
01480 }
01481 
01482 // INT_ENABLE register
01483 
01484 /** Get full interrupt enabled status.
01485  * Full register byte for all interrupts, for quick reading. Each bit will be
01486  * set 0 for disabled, 1 for enabled.
01487  * @return Current interrupt enabled status
01488  * @see MPU6050_RA_INT_ENABLE
01489  * @see MPU6050_INTERRUPT_FF_BIT
01490  **/
01491 uint8_t MPU6050::getIntEnabled() {
01492     I2Cdev::readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
01493     return buffer[0];
01494 }
01495 /** Set full interrupt enabled status.
01496  * Full register byte for all interrupts, for quick reading. Each bit should be
01497  * set 0 for disabled, 1 for enabled.
01498  * @param enabled New interrupt enabled status
01499  * @see getIntFreefallEnabled()
01500  * @see MPU6050_RA_INT_ENABLE
01501  * @see MPU6050_INTERRUPT_FF_BIT
01502  **/
01503 void MPU6050::setIntEnabled(uint8_t enabled) {
01504     I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
01505 }
01506 /** Get Free Fall interrupt enabled status.
01507  * Will be set 0 for disabled, 1 for enabled.
01508  * @return Current interrupt enabled status
01509  * @see MPU6050_RA_INT_ENABLE
01510  * @see MPU6050_INTERRUPT_FF_BIT
01511  **/
01512 bool MPU6050::getIntFreefallEnabled() {
01513     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
01514     return buffer[0];
01515 }
01516 /** Set Free Fall interrupt enabled status.
01517  * @param enabled New interrupt enabled status
01518  * @see getIntFreefallEnabled()
01519  * @see MPU6050_RA_INT_ENABLE
01520  * @see MPU6050_INTERRUPT_FF_BIT
01521  **/
01522 void MPU6050::setIntFreefallEnabled(bool enabled) {
01523     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
01524 }
01525 /** Get Motion Detection interrupt enabled status.
01526  * Will be set 0 for disabled, 1 for enabled.
01527  * @return Current interrupt enabled status
01528  * @see MPU6050_RA_INT_ENABLE
01529  * @see MPU6050_INTERRUPT_MOT_BIT
01530  **/
01531 bool MPU6050::getIntMotionEnabled() {
01532     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
01533     return buffer[0];
01534 }
01535 /** Set Motion Detection interrupt enabled status.
01536  * @param enabled New interrupt enabled status
01537  * @see getIntMotionEnabled()
01538  * @see MPU6050_RA_INT_ENABLE
01539  * @see MPU6050_INTERRUPT_MOT_BIT
01540  **/
01541 void MPU6050::setIntMotionEnabled(bool enabled) {
01542     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
01543 }
01544 /** Get Zero Motion Detection interrupt enabled status.
01545  * Will be set 0 for disabled, 1 for enabled.
01546  * @return Current interrupt enabled status
01547  * @see MPU6050_RA_INT_ENABLE
01548  * @see MPU6050_INTERRUPT_ZMOT_BIT
01549  **/
01550 bool MPU6050::getIntZeroMotionEnabled() {
01551     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
01552     return buffer[0];
01553 }
01554 /** Set Zero Motion Detection interrupt enabled status.
01555  * @param enabled New interrupt enabled status
01556  * @see getIntZeroMotionEnabled()
01557  * @see MPU6050_RA_INT_ENABLE
01558  * @see MPU6050_INTERRUPT_ZMOT_BIT
01559  **/
01560 void MPU6050::setIntZeroMotionEnabled(bool enabled) {
01561     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
01562 }
01563 /** Get FIFO Buffer Overflow interrupt enabled status.
01564  * Will be set 0 for disabled, 1 for enabled.
01565  * @return Current interrupt enabled status
01566  * @see MPU6050_RA_INT_ENABLE
01567  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01568  **/
01569 bool MPU6050::getIntFIFOBufferOverflowEnabled() {
01570     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
01571     return buffer[0];
01572 }
01573 /** Set FIFO Buffer Overflow interrupt enabled status.
01574  * @param enabled New interrupt enabled status
01575  * @see getIntFIFOBufferOverflowEnabled()
01576  * @see MPU6050_RA_INT_ENABLE
01577  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01578  **/
01579 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) {
01580     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
01581 }
01582 /** Get I2C Master interrupt enabled status.
01583  * This enables any of the I2C Master interrupt sources to generate an
01584  * interrupt. Will be set 0 for disabled, 1 for enabled.
01585  * @return Current interrupt enabled status
01586  * @see MPU6050_RA_INT_ENABLE
01587  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01588  **/
01589 bool MPU6050::getIntI2CMasterEnabled() {
01590     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
01591     return buffer[0];
01592 }
01593 /** Set I2C Master interrupt enabled status.
01594  * @param enabled New interrupt enabled status
01595  * @see getIntI2CMasterEnabled()
01596  * @see MPU6050_RA_INT_ENABLE
01597  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01598  **/
01599 void MPU6050::setIntI2CMasterEnabled(bool enabled) {
01600     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
01601 }
01602 /** Get Data Ready interrupt enabled setting.
01603  * This event occurs each time a write operation to all of the sensor registers
01604  * has been completed. Will be set 0 for disabled, 1 for enabled.
01605  * @return Current interrupt enabled status
01606  * @see MPU6050_RA_INT_ENABLE
01607  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01608  */
01609 bool MPU6050::getIntDataReadyEnabled() {
01610     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
01611     return buffer[0];
01612 }
01613 /** Set Data Ready interrupt enabled status.
01614  * @param enabled New interrupt enabled status
01615  * @see getIntDataReadyEnabled()
01616  * @see MPU6050_RA_INT_CFG
01617  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01618  */
01619 void MPU6050::setIntDataReadyEnabled(bool enabled) {
01620     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
01621 }
01622 
01623 // INT_STATUS register
01624 
01625 /** Get full set of interrupt status bits.
01626  * These bits clear to 0 after the register has been read. Very useful
01627  * for getting multiple INT statuses, since each single bit read clears
01628  * all of them because it has to read the whole byte.
01629  * @return Current interrupt status
01630  * @see MPU6050_RA_INT_STATUS
01631  */
01632 uint8_t MPU6050::getIntStatus() {
01633     I2Cdev::readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
01634     return buffer[0];
01635 }
01636 /** Get Free Fall interrupt status.
01637  * This bit automatically sets to 1 when a Free Fall interrupt has been
01638  * generated. The bit clears to 0 after the register has been read.
01639  * @return Current interrupt status
01640  * @see MPU6050_RA_INT_STATUS
01641  * @see MPU6050_INTERRUPT_FF_BIT
01642  */
01643 bool MPU6050::getIntFreefallStatus() {
01644     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
01645     return buffer[0];
01646 }
01647 /** Get Motion Detection interrupt status.
01648  * This bit automatically sets to 1 when a Motion Detection interrupt has been
01649  * generated. The bit clears to 0 after the register has been read.
01650  * @return Current interrupt status
01651  * @see MPU6050_RA_INT_STATUS
01652  * @see MPU6050_INTERRUPT_MOT_BIT
01653  */
01654 bool MPU6050::getIntMotionStatus() {
01655     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
01656     return buffer[0];
01657 }
01658 /** Get Zero Motion Detection interrupt status.
01659  * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
01660  * been generated. The bit clears to 0 after the register has been read.
01661  * @return Current interrupt status
01662  * @see MPU6050_RA_INT_STATUS
01663  * @see MPU6050_INTERRUPT_ZMOT_BIT
01664  */
01665 bool MPU6050::getIntZeroMotionStatus() {
01666     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
01667     return buffer[0];
01668 }
01669 /** Get FIFO Buffer Overflow interrupt status.
01670  * This bit automatically sets to 1 when a Free Fall interrupt has been
01671  * generated. The bit clears to 0 after the register has been read.
01672  * @return Current interrupt status
01673  * @see MPU6050_RA_INT_STATUS
01674  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01675  */
01676 bool MPU6050::getIntFIFOBufferOverflowStatus() {
01677     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
01678     return buffer[0];
01679 }
01680 /** Get I2C Master interrupt status.
01681  * This bit automatically sets to 1 when an I2C Master interrupt has been
01682  * generated. For a list of I2C Master interrupts, please refer to Register 54.
01683  * The bit clears to 0 after the register has been read.
01684  * @return Current interrupt status
01685  * @see MPU6050_RA_INT_STATUS
01686  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01687  */
01688 bool MPU6050::getIntI2CMasterStatus() {
01689     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
01690     return buffer[0];
01691 }
01692 /** Get Data Ready interrupt status.
01693  * This bit automatically sets to 1 when a Data Ready interrupt has been
01694  * generated. The bit clears to 0 after the register has been read.
01695  * @return Current interrupt status
01696  * @see MPU6050_RA_INT_STATUS
01697  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01698  */
01699 bool MPU6050::getIntDataReadyStatus() {
01700     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
01701     return buffer[0];
01702 }
01703 
01704 // ACCEL_*OUT_* registers
01705 
01706 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
01707  * FUNCTION NOT FULLY IMPLEMENTED YET.
01708  * @param ax 16-bit signed integer container for accelerometer X-axis value
01709  * @param ay 16-bit signed integer container for accelerometer Y-axis value
01710  * @param az 16-bit signed integer container for accelerometer Z-axis value
01711  * @param gx 16-bit signed integer container for gyroscope X-axis value
01712  * @param gy 16-bit signed integer container for gyroscope Y-axis value
01713  * @param gz 16-bit signed integer container for gyroscope Z-axis value
01714  * @param mx 16-bit signed integer container for magnetometer X-axis value
01715  * @param my 16-bit signed integer container for magnetometer Y-axis value
01716  * @param mz 16-bit signed integer container for magnetometer Z-axis value
01717  * @see getMotion6()
01718  * @see getAcceleration()
01719  * @see getRotation()
01720  * @see MPU6050_RA_ACCEL_XOUT_H
01721  */
01722 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) {
01723     getMotion6(ax, ay, az, gx, gy, gz);
01724     // TODO: magnetometer integration
01725 }
01726 /** Get raw 6-axis motion sensor readings (accel/gyro).
01727  * Retrieves all currently available motion sensor values.
01728  * @param ax 16-bit signed integer container for accelerometer X-axis value
01729  * @param ay 16-bit signed integer container for accelerometer Y-axis value
01730  * @param az 16-bit signed integer container for accelerometer Z-axis value
01731  * @param gx 16-bit signed integer container for gyroscope X-axis value
01732  * @param gy 16-bit signed integer container for gyroscope Y-axis value
01733  * @param gz 16-bit signed integer container for gyroscope Z-axis value
01734  * @see getAcceleration()
01735  * @see getRotation()
01736  * @see MPU6050_RA_ACCEL_XOUT_H
01737  */
01738 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) {
01739     I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
01740     *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
01741     *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
01742     *az = (((int16_t)buffer[4]) << 8) | buffer[5];
01743     *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
01744     *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
01745     *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
01746 }
01747 /** Get 3-axis accelerometer readings.
01748  * These registers store the most recent accelerometer measurements.
01749  * Accelerometer measurements are written to these registers at the Sample Rate
01750  * as defined in Register 25.
01751  *
01752  * The accelerometer measurement registers, along with the temperature
01753  * measurement registers, gyroscope measurement registers, and external sensor
01754  * data registers, are composed of two sets of registers: an internal register
01755  * set and a user-facing read register set.
01756  *
01757  * The data within the accelerometer sensors' internal register set is always
01758  * updated at the Sample Rate. Meanwhile, the user-facing read register set
01759  * duplicates the internal register set's data values whenever the serial
01760  * interface is idle. This guarantees that a burst read of sensor registers will
01761  * read measurements from the same sampling instant. Note that if burst reads
01762  * are not used, the user is responsible for ensuring a set of single byte reads
01763  * correspond to a single sampling instant by checking the Data Ready interrupt.
01764  *
01765  * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
01766  * (Register 28). For each full scale setting, the accelerometers' sensitivity
01767  * per LSB in ACCEL_xOUT is shown in the table below:
01768  *
01769  * <pre>
01770  * AFS_SEL | Full Scale Range | LSB Sensitivity
01771  * --------+------------------+----------------
01772  * 0       | +/- 2g           | 8192 LSB/mg
01773  * 1       | +/- 4g           | 4096 LSB/mg
01774  * 2       | +/- 8g           | 2048 LSB/mg
01775  * 3       | +/- 16g          | 1024 LSB/mg
01776  * </pre>
01777  *
01778  * @param x 16-bit signed integer container for X-axis acceleration
01779  * @param y 16-bit signed integer container for Y-axis acceleration
01780  * @param z 16-bit signed integer container for Z-axis acceleration
01781  * @see MPU6050_RA_GYRO_XOUT_H
01782  */
01783 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
01784     I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
01785     *x = (((int16_t)buffer[0]) << 8) | buffer[1];
01786     *y = (((int16_t)buffer[2]) << 8) | buffer[3];
01787     *z = (((int16_t)buffer[4]) << 8) | buffer[5];
01788 }
01789 /** Get X-axis accelerometer reading.
01790  * @return X-axis acceleration measurement in 16-bit 2's complement format
01791  * @see getMotion6()
01792  * @see MPU6050_RA_ACCEL_XOUT_H
01793  */
01794 int16_t MPU6050::getAccelerationX() {
01795     I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
01796     return (((int16_t)buffer[0]) << 8) | buffer[1];
01797 }
01798 /** Get Y-axis accelerometer reading.
01799  * @return Y-axis acceleration measurement in 16-bit 2's complement format
01800  * @see getMotion6()
01801  * @see MPU6050_RA_ACCEL_YOUT_H
01802  */
01803 int16_t MPU6050::getAccelerationY() {
01804     I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
01805     return (((int16_t)buffer[0]) << 8) | buffer[1];
01806 }
01807 /** Get Z-axis accelerometer reading.
01808  * @return Z-axis acceleration measurement in 16-bit 2's complement format
01809  * @see getMotion6()
01810  * @see MPU6050_RA_ACCEL_ZOUT_H
01811  */
01812 int16_t MPU6050::getAccelerationZ() {
01813     I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
01814     return (((int16_t)buffer[0]) << 8) | buffer[1];
01815 }
01816 
01817 // TEMP_OUT_* registers
01818 
01819 /** Get current internal temperature.
01820  * @return Temperature reading in 16-bit 2's complement format
01821  * @see MPU6050_RA_TEMP_OUT_H
01822  */
01823 int16_t MPU6050::getTemperature() {
01824     I2Cdev::readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
01825     return (((int16_t)buffer[0]) << 8) | buffer[1];
01826 }
01827 
01828 // GYRO_*OUT_* registers
01829 
01830 /** Get 3-axis gyroscope readings.
01831  * These gyroscope measurement registers, along with the accelerometer
01832  * measurement registers, temperature measurement registers, and external sensor
01833  * data registers, are composed of two sets of registers: an internal register
01834  * set and a user-facing read register set.
01835  * The data within the gyroscope sensors' internal register set is always
01836  * updated at the Sample Rate. Meanwhile, the user-facing read register set
01837  * duplicates the internal register set's data values whenever the serial
01838  * interface is idle. This guarantees that a burst read of sensor registers will
01839  * read measurements from the same sampling instant. Note that if burst reads
01840  * are not used, the user is responsible for ensuring a set of single byte reads
01841  * correspond to a single sampling instant by checking the Data Ready interrupt.
01842  *
01843  * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
01844  * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
01845  * LSB in GYRO_xOUT is shown in the table below:
01846  *
01847  * <pre>
01848  * FS_SEL | Full Scale Range   | LSB Sensitivity
01849  * -------+--------------------+----------------
01850  * 0      | +/- 250 degrees/s  | 131 LSB/deg/s
01851  * 1      | +/- 500 degrees/s  | 65.5 LSB/deg/s
01852  * 2      | +/- 1000 degrees/s | 32.8 LSB/deg/s
01853  * 3      | +/- 2000 degrees/s | 16.4 LSB/deg/s
01854  * </pre>
01855  *
01856  * @param x 16-bit signed integer container for X-axis rotation
01857  * @param y 16-bit signed integer container for Y-axis rotation
01858  * @param z 16-bit signed integer container for Z-axis rotation
01859  * @see getMotion6()
01860  * @see MPU6050_RA_GYRO_XOUT_H
01861  */
01862 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) {
01863     I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
01864     *x = (((int16_t)buffer[0]) << 8) | buffer[1];
01865     *y = (((int16_t)buffer[2]) << 8) | buffer[3];
01866     *z = (((int16_t)buffer[4]) << 8) | buffer[5];
01867 }
01868 /** Get X-axis gyroscope reading.
01869  * @return X-axis rotation measurement in 16-bit 2's complement format
01870  * @see getMotion6()
01871  * @see MPU6050_RA_GYRO_XOUT_H
01872  */
01873 int16_t MPU6050::getRotationX() {
01874     I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
01875     return (((int16_t)buffer[0]) << 8) | buffer[1];
01876 }
01877 /** Get Y-axis gyroscope reading.
01878  * @return Y-axis rotation measurement in 16-bit 2's complement format
01879  * @see getMotion6()
01880  * @see MPU6050_RA_GYRO_YOUT_H
01881  */
01882 int16_t MPU6050::getRotationY() {
01883     I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
01884     return (((int16_t)buffer[0]) << 8) | buffer[1];
01885 }
01886 /** Get Z-axis gyroscope reading.
01887  * @return Z-axis rotation measurement in 16-bit 2's complement format
01888  * @see getMotion6()
01889  * @see MPU6050_RA_GYRO_ZOUT_H
01890  */
01891 int16_t MPU6050::getRotationZ() {
01892     I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
01893     return (((int16_t)buffer[0]) << 8) | buffer[1];
01894 }
01895 
01896 // EXT_SENS_DATA_* registers
01897 
01898 /** Read single byte from external sensor data register.
01899  * These registers store data read from external sensors by the Slave 0, 1, 2,
01900  * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
01901  * I2C_SLV4_DI (Register 53).
01902  *
01903  * External sensor data is written to these registers at the Sample Rate as
01904  * defined in Register 25. This access rate can be reduced by using the Slave
01905  * Delay Enable registers (Register 103).
01906  *
01907  * External sensor data registers, along with the gyroscope measurement
01908  * registers, accelerometer measurement registers, and temperature measurement
01909  * registers, are composed of two sets of registers: an internal register set
01910  * and a user-facing read register set.
01911  *
01912  * The data within the external sensors' internal register set is always updated
01913  * at the Sample Rate (or the reduced access rate) whenever the serial interface
01914  * is idle. This guarantees that a burst read of sensor registers will read
01915  * measurements from the same sampling instant. Note that if burst reads are not
01916  * used, the user is responsible for ensuring a set of single byte reads
01917  * correspond to a single sampling instant by checking the Data Ready interrupt.
01918  *
01919  * Data is placed in these external sensor data registers according to
01920  * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
01921  * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
01922  * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
01923  * defined in Register 25) or delayed rate (if specified in Register 52 and
01924  * 103). During each Sample cycle, slave reads are performed in order of Slave
01925  * number. If all slaves are enabled with more than zero bytes to be read, the
01926  * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
01927  *
01928  * Each enabled slave will have EXT_SENS_DATA registers associated with it by
01929  * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
01930  * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
01931  * change the higher numbered slaves' associated registers. Furthermore, if
01932  * fewer total bytes are being read from the external sensors as a result of
01933  * such a change, then the data remaining in the registers which no longer have
01934  * an associated slave device (i.e. high numbered registers) will remain in
01935  * these previously allocated registers unless reset.
01936  *
01937  * If the sum of the read lengths of all SLVx transactions exceed the number of
01938  * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
01939  * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
01940  * the slaves cannot be greater than 24 or some bytes will be lost.
01941  *
01942  * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
01943  * information regarding the characteristics of Slave 4, please refer to
01944  * Registers 49 to 53.
01945  *
01946  * EXAMPLE:
01947  * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
01948  * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
01949  * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
01950  * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
01951  * will be associated with Slave 1. If Slave 2 is enabled as well, registers
01952  * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
01953  *
01954  * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
01955  * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
01956  * instead.
01957  *
01958  * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
01959  * If a slave is disabled at any time, the space initially allocated to the
01960  * slave in the EXT_SENS_DATA register, will remain associated with that slave.
01961  * This is to avoid dynamic adjustment of the register allocation.
01962  *
01963  * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
01964  * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
01965  *
01966  * This above is also true if one of the slaves gets NACKed and stops
01967  * functioning.
01968  *
01969  * @param position Starting position (0-23)
01970  * @return Byte read from register
01971  */
01972 uint8_t MPU6050::getExternalSensorByte(int position) {
01973     I2Cdev::readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
01974     return buffer[0];
01975 }
01976 /** Read word (2 bytes) from external sensor data registers.
01977  * @param position Starting position (0-21)
01978  * @return Word read from register
01979  * @see getExternalSensorByte()
01980  */
01981 uint16_t MPU6050::getExternalSensorWord(int position) {
01982     I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
01983     return (((uint16_t)buffer[0]) << 8) | buffer[1];
01984 }
01985 /** Read double word (4 bytes) from external sensor data registers.
01986  * @param position Starting position (0-20)
01987  * @return Double word read from registers
01988  * @see getExternalSensorByte()
01989  */
01990 uint32_t MPU6050::getExternalSensorDWord(int position) {
01991     I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
01992     return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
01993 }
01994 
01995 // MOT_DETECT_STATUS register
01996 
01997 /** Get X-axis negative motion detection interrupt status.
01998  * @return Motion detection status
01999  * @see MPU6050_RA_MOT_DETECT_STATUS
02000  * @see MPU6050_MOTION_MOT_XNEG_BIT
02001  */
02002 bool MPU6050::getXNegMotionDetected() {
02003     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
02004     return buffer[0];
02005 }
02006 /** Get X-axis positive motion detection interrupt status.
02007  * @return Motion detection status
02008  * @see MPU6050_RA_MOT_DETECT_STATUS
02009  * @see MPU6050_MOTION_MOT_XPOS_BIT
02010  */
02011 bool MPU6050::getXPosMotionDetected() {
02012     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
02013     return buffer[0];
02014 }
02015 /** Get Y-axis negative motion detection interrupt status.
02016  * @return Motion detection status
02017  * @see MPU6050_RA_MOT_DETECT_STATUS
02018  * @see MPU6050_MOTION_MOT_YNEG_BIT
02019  */
02020 bool MPU6050::getYNegMotionDetected() {
02021     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
02022     return buffer[0];
02023 }
02024 /** Get Y-axis positive motion detection interrupt status.
02025  * @return Motion detection status
02026  * @see MPU6050_RA_MOT_DETECT_STATUS
02027  * @see MPU6050_MOTION_MOT_YPOS_BIT
02028  */
02029 bool MPU6050::getYPosMotionDetected() {
02030     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
02031     return buffer[0];
02032 }
02033 /** Get Z-axis negative motion detection interrupt status.
02034  * @return Motion detection status
02035  * @see MPU6050_RA_MOT_DETECT_STATUS
02036  * @see MPU6050_MOTION_MOT_ZNEG_BIT
02037  */
02038 bool MPU6050::getZNegMotionDetected() {
02039     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
02040     return buffer[0];
02041 }
02042 /** Get Z-axis positive motion detection interrupt status.
02043  * @return Motion detection status
02044  * @see MPU6050_RA_MOT_DETECT_STATUS
02045  * @see MPU6050_MOTION_MOT_ZPOS_BIT
02046  */
02047 bool MPU6050::getZPosMotionDetected() {
02048     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
02049     return buffer[0];
02050 }
02051 /** Get zero motion detection interrupt status.
02052  * @return Motion detection status
02053  * @see MPU6050_RA_MOT_DETECT_STATUS
02054  * @see MPU6050_MOTION_MOT_ZRMOT_BIT
02055  */
02056 bool MPU6050::getZeroMotionDetected() {
02057     I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
02058     return buffer[0];
02059 }
02060 
02061 // I2C_SLV*_DO register
02062 
02063 /** Write byte to Data Output container for specified slave.
02064  * This register holds the output data written into Slave when Slave is set to
02065  * write mode. For further information regarding Slave control, please
02066  * refer to Registers 37 to 39 and immediately following.
02067  * @param num Slave number (0-3)
02068  * @param data Byte to write
02069  * @see MPU6050_RA_I2C_SLV0_DO
02070  */
02071 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) {
02072     if (num > 3) return;
02073     I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
02074 }
02075 
02076 // I2C_MST_DELAY_CTRL register
02077 
02078 /** Get external data shadow delay enabled status.
02079  * This register is used to specify the timing of external sensor data
02080  * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
02081  * sensor data is delayed until all data has been received.
02082  * @return Current external data shadow delay enabled status.
02083  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02084  * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
02085  */
02086 bool MPU6050::getExternalShadowDelayEnabled() {
02087     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
02088     return buffer[0];
02089 }
02090 /** Set external data shadow delay enabled status.
02091  * @param enabled New external data shadow delay enabled status.
02092  * @see getExternalShadowDelayEnabled()
02093  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02094  * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
02095  */
02096 void MPU6050::setExternalShadowDelayEnabled(bool enabled) {
02097     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
02098 }
02099 /** Get slave delay enabled status.
02100  * When a particular slave delay is enabled, the rate of access for the that
02101  * slave device is reduced. When a slave's access rate is decreased relative to
02102  * the Sample Rate, the slave is accessed every:
02103  *
02104  *     1 / (1 + I2C_MST_DLY) Samples
02105  *
02106  * This base Sample Rate in turn is determined by SMPLRT_DIV (register  * 25)
02107  * and DLPF_CFG (register 26).
02108  *
02109  * For further information regarding I2C_MST_DLY, please refer to register 52.
02110  * For further information regarding the Sample Rate, please refer to register 25.
02111  *
02112  * @param num Slave number (0-4)
02113  * @return Current slave delay enabled status.
02114  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02115  * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
02116  */
02117 bool MPU6050::getSlaveDelayEnabled(uint8_t num) {
02118     // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
02119     if (num > 4) return 0;
02120     I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
02121     return buffer[0];
02122 }
02123 /** Set slave delay enabled status.
02124  * @param num Slave number (0-4)
02125  * @param enabled New slave delay enabled status.
02126  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02127  * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
02128  */
02129 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) {
02130     I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
02131 }
02132 
02133 // SIGNAL_PATH_RESET register
02134 
02135 /** Reset gyroscope signal path.
02136  * The reset will revert the signal path analog to digital converters and
02137  * filters to their power up configurations.
02138  * @see MPU6050_RA_SIGNAL_PATH_RESET
02139  * @see MPU6050_PATHRESET_GYRO_RESET_BIT
02140  */
02141 void MPU6050::resetGyroscopePath() {
02142     I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
02143 }
02144 /** Reset accelerometer signal path.
02145  * The reset will revert the signal path analog to digital converters and
02146  * filters to their power up configurations.
02147  * @see MPU6050_RA_SIGNAL_PATH_RESET
02148  * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
02149  */
02150 void MPU6050::resetAccelerometerPath() {
02151     I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
02152 }
02153 /** Reset temperature sensor signal path.
02154  * The reset will revert the signal path analog to digital converters and
02155  * filters to their power up configurations.
02156  * @see MPU6050_RA_SIGNAL_PATH_RESET
02157  * @see MPU6050_PATHRESET_TEMP_RESET_BIT
02158  */
02159 void MPU6050::resetTemperaturePath() {
02160     I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
02161 }
02162 
02163 // MOT_DETECT_CTRL register
02164 
02165 /** Get accelerometer power-on delay.
02166  * The accelerometer data path provides samples to the sensor registers, Motion
02167  * detection, Zero Motion detection, and Free Fall detection modules. The
02168  * signal path contains filters which must be flushed on wake-up with new
02169  * samples before the detection modules begin operations. The default wake-up
02170  * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
02171  * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
02172  * any value above zero unless instructed otherwise by InvenSense. Please refer
02173  * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
02174  * further information regarding the detection modules.
02175  * @return Current accelerometer power-on delay
02176  * @see MPU6050_RA_MOT_DETECT_CTRL
02177  * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
02178  */
02179 uint8_t MPU6050::getAccelerometerPowerOnDelay() {
02180     I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
02181     return buffer[0];
02182 }
02183 /** Set accelerometer power-on delay.
02184  * @param delay New accelerometer power-on delay (0-3)
02185  * @see getAccelerometerPowerOnDelay()
02186  * @see MPU6050_RA_MOT_DETECT_CTRL
02187  * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
02188  */
02189 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) {
02190     I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
02191 }
02192 /** Get Free Fall detection counter decrement configuration.
02193  * Detection is registered by the Free Fall detection module after accelerometer
02194  * measurements meet their respective threshold conditions over a specified
02195  * number of samples. When the threshold conditions are met, the corresponding
02196  * detection counter increments by 1. The user may control the rate at which the
02197  * detection counter decrements when the threshold condition is not met by
02198  * configuring FF_COUNT. The decrement rate can be set according to the
02199  * following table:
02200  *
02201  * <pre>
02202  * FF_COUNT | Counter Decrement
02203  * ---------+------------------
02204  * 0        | Reset
02205  * 1        | 1
02206  * 2        | 2
02207  * 3        | 4
02208  * </pre>
02209  *
02210  * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
02211  * reset the counter to 0. For further information on Free Fall detection,
02212  * please refer to Registers 29 to 32.
02213  *
02214  * @return Current decrement configuration
02215  * @see MPU6050_RA_MOT_DETECT_CTRL
02216  * @see MPU6050_DETECT_FF_COUNT_BIT
02217  */
02218 uint8_t MPU6050::getFreefallDetectionCounterDecrement() {
02219     I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
02220     return buffer[0];
02221 }
02222 /** Set Free Fall detection counter decrement configuration.
02223  * @param decrement New decrement configuration value
02224  * @see getFreefallDetectionCounterDecrement()
02225  * @see MPU6050_RA_MOT_DETECT_CTRL
02226  * @see MPU6050_DETECT_FF_COUNT_BIT
02227  */
02228 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) {
02229     I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
02230 }
02231 /** Get Motion detection counter decrement configuration.
02232  * Detection is registered by the Motion detection module after accelerometer
02233  * measurements meet their respective threshold conditions over a specified
02234  * number of samples. When the threshold conditions are met, the corresponding
02235  * detection counter increments by 1. The user may control the rate at which the
02236  * detection counter decrements when the threshold condition is not met by
02237  * configuring MOT_COUNT. The decrement rate can be set according to the
02238  * following table:
02239  *
02240  * <pre>
02241  * MOT_COUNT | Counter Decrement
02242  * ----------+------------------
02243  * 0         | Reset
02244  * 1         | 1
02245  * 2         | 2
02246  * 3         | 4
02247  * </pre>
02248  *
02249  * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
02250  * reset the counter to 0. For further information on Motion detection,
02251  * please refer to Registers 29 to 32.
02252  *
02253  */
02254 uint8_t MPU6050::getMotionDetectionCounterDecrement() {
02255     I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
02256     return buffer[0];
02257 }
02258 /** Set Motion detection counter decrement configuration.
02259  * @param decrement New decrement configuration value
02260  * @see getMotionDetectionCounterDecrement()
02261  * @see MPU6050_RA_MOT_DETECT_CTRL
02262  * @see MPU6050_DETECT_MOT_COUNT_BIT
02263  */
02264 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) {
02265     I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
02266 }
02267 
02268 // USER_CTRL register
02269 
02270 /** Get FIFO enabled status.
02271  * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
02272  * cannot be written to or read from while disabled. The FIFO buffer's state
02273  * does not change unless the MPU-60X0 is power cycled.
02274  * @return Current FIFO enabled status
02275  * @see MPU6050_RA_USER_CTRL
02276  * @see MPU6050_USERCTRL_FIFO_EN_BIT
02277  */
02278 bool MPU6050::getFIFOEnabled() {
02279     I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
02280     return buffer[0];
02281 }
02282 /** Set FIFO enabled status.
02283  * @param enabled New FIFO enabled status
02284  * @see getFIFOEnabled()
02285  * @see MPU6050_RA_USER_CTRL
02286  * @see MPU6050_USERCTRL_FIFO_EN_BIT
02287  */
02288 void MPU6050::setFIFOEnabled(bool enabled) {
02289     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
02290 }
02291 /** Get I2C Master Mode enabled status.
02292  * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
02293  * external sensor slave devices on the auxiliary I2C bus. When this bit is
02294  * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
02295  * driven by the primary I2C bus (SDA and SCL). This is a precondition to
02296  * enabling Bypass Mode. For further information regarding Bypass Mode, please
02297  * refer to Register 55.
02298  * @return Current I2C Master Mode enabled status
02299  * @see MPU6050_RA_USER_CTRL
02300  * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
02301  */
02302 bool MPU6050::getI2CMasterModeEnabled() {
02303     I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
02304     return buffer[0];
02305 }
02306 /** Set I2C Master Mode enabled status.
02307  * @param enabled New I2C Master Mode enabled status
02308  * @see getI2CMasterModeEnabled()
02309  * @see MPU6050_RA_USER_CTRL
02310  * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
02311  */
02312 void MPU6050::setI2CMasterModeEnabled(bool enabled) {
02313     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
02314 }
02315 /** Switch from I2C to SPI mode (MPU-6000 only)
02316  * If this is set, the primary SPI interface will be enabled in place of the
02317  * disabled primary I2C interface.
02318  */
02319 void MPU6050::switchSPIEnabled(bool enabled) {
02320     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
02321 }
02322 /** Reset the FIFO.
02323  * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
02324  * bit automatically clears to 0 after the reset has been triggered.
02325  * @see MPU6050_RA_USER_CTRL
02326  * @see MPU6050_USERCTRL_FIFO_RESET_BIT
02327  */
02328 void MPU6050::resetFIFO() {
02329     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
02330 }
02331 /** Reset the I2C Master.
02332  * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
02333  * This bit automatically clears to 0 after the reset has been triggered.
02334  * @see MPU6050_RA_USER_CTRL
02335  * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
02336  */
02337 void MPU6050::resetI2CMaster() {
02338     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
02339 }
02340 /** Reset all sensor registers and signal paths.
02341  * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
02342  * accelerometers, and temperature sensor). This operation will also clear the
02343  * sensor registers. This bit automatically clears to 0 after the reset has been
02344  * triggered.
02345  *
02346  * When resetting only the signal path (and not the sensor registers), please
02347  * use Register 104, SIGNAL_PATH_RESET.
02348  *
02349  * @see MPU6050_RA_USER_CTRL
02350  * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
02351  */
02352 void MPU6050::resetSensors() {
02353     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
02354 }
02355 
02356 // PWR_MGMT_1 register
02357 
02358 /** Trigger a full device reset.
02359  * A small delay of ~50ms may be desirable after triggering a reset.
02360  * @see MPU6050_RA_PWR_MGMT_1
02361  * @see MPU6050_PWR1_DEVICE_RESET_BIT
02362  */
02363 void MPU6050::reset() {
02364     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
02365 }
02366 /** Get sleep mode status.
02367  * Setting the SLEEP bit in the register puts the device into very low power
02368  * sleep mode. In this mode, only the serial interface and internal registers
02369  * remain active, allowing for a very low standby current. Clearing this bit
02370  * puts the device back into normal mode. To save power, the individual standby
02371  * selections for each of the gyros should be used if any gyro axis is not used
02372  * by the application.
02373  * @return Current sleep mode enabled status
02374  * @see MPU6050_RA_PWR_MGMT_1
02375  * @see MPU6050_PWR1_SLEEP_BIT
02376  */
02377 bool MPU6050::getSleepEnabled() {
02378     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
02379     return buffer[0];
02380 }
02381 /** Set sleep mode status.
02382  * @param enabled New sleep mode enabled status
02383  * @see getSleepEnabled()
02384  * @see MPU6050_RA_PWR_MGMT_1
02385  * @see MPU6050_PWR1_SLEEP_BIT
02386  */
02387 void MPU6050::setSleepEnabled(bool enabled) {
02388     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
02389 }
02390 /** Get wake cycle enabled status.
02391  * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
02392  * between sleep mode and waking up to take a single sample of data from active
02393  * sensors at a rate determined by LP_WAKE_CTRL (register 108).
02394  * @return Current sleep mode enabled status
02395  * @see MPU6050_RA_PWR_MGMT_1
02396  * @see MPU6050_PWR1_CYCLE_BIT
02397  */
02398 bool MPU6050::getWakeCycleEnabled() {
02399     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
02400     return buffer[0];
02401 }
02402 /** Set wake cycle enabled status.
02403  * @param enabled New sleep mode enabled status
02404  * @see getWakeCycleEnabled()
02405  * @see MPU6050_RA_PWR_MGMT_1
02406  * @see MPU6050_PWR1_CYCLE_BIT
02407  */
02408 void MPU6050::setWakeCycleEnabled(bool enabled) {
02409     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
02410 }
02411 /** Get temperature sensor enabled status.
02412  * Control the usage of the internal temperature sensor.
02413  *
02414  * Note: this register stores the *disabled* value, but for consistency with the
02415  * rest of the code, the function is named and used with standard true/false
02416  * values to indicate whether the sensor is enabled or disabled, respectively.
02417  *
02418  * @return Current temperature sensor enabled status
02419  * @see MPU6050_RA_PWR_MGMT_1
02420  * @see MPU6050_PWR1_TEMP_DIS_BIT
02421  */
02422 bool MPU6050::getTempSensorEnabled() {
02423     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
02424     return buffer[0] == 0; // 1 is actually disabled here
02425 }
02426 /** Set temperature sensor enabled status.
02427  * Note: this register stores the *disabled* value, but for consistency with the
02428  * rest of the code, the function is named and used with standard true/false
02429  * values to indicate whether the sensor is enabled or disabled, respectively.
02430  *
02431  * @param enabled New temperature sensor enabled status
02432  * @see getTempSensorEnabled()
02433  * @see MPU6050_RA_PWR_MGMT_1
02434  * @see MPU6050_PWR1_TEMP_DIS_BIT
02435  */
02436 void MPU6050::setTempSensorEnabled(bool enabled) {
02437     // 1 is actually disabled here
02438     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
02439 }
02440 /** Get clock source setting.
02441  * @return Current clock source setting
02442  * @see MPU6050_RA_PWR_MGMT_1
02443  * @see MPU6050_PWR1_CLKSEL_BIT
02444  * @see MPU6050_PWR1_CLKSEL_LENGTH
02445  */
02446 uint8_t MPU6050::getClockSource() {
02447     I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
02448     return buffer[0];
02449 }
02450 /** Set clock source setting.
02451  * An internal 8MHz oscillator, gyroscope based clock, or external sources can
02452  * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
02453  * or an external source is chosen as the clock source, the MPU-60X0 can operate
02454  * in low power modes with the gyroscopes disabled.
02455  *
02456  * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
02457  * However, it is highly recommended that the device be configured to use one of
02458  * the gyroscopes (or an external clock source) as the clock reference for
02459  * improved stability. The clock source can be selected according to the following table:
02460  *
02461  * <pre>
02462  * CLK_SEL | Clock Source
02463  * --------+--------------------------------------
02464  * 0       | Internal oscillator
02465  * 1       | PLL with X Gyro reference
02466  * 2       | PLL with Y Gyro reference
02467  * 3       | PLL with Z Gyro reference
02468  * 4       | PLL with external 32.768kHz reference
02469  * 5       | PLL with external 19.2MHz reference
02470  * 6       | Reserved
02471  * 7       | Stops the clock and keeps the timing generator in reset
02472  * </pre>
02473  *
02474  * @param source New clock source setting
02475  * @see getClockSource()
02476  * @see MPU6050_RA_PWR_MGMT_1
02477  * @see MPU6050_PWR1_CLKSEL_BIT
02478  * @see MPU6050_PWR1_CLKSEL_LENGTH
02479  */
02480 void MPU6050::setClockSource(uint8_t source) {
02481     I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
02482 }
02483 
02484 // PWR_MGMT_2 register
02485 
02486 /** Get wake frequency in Accel-Only Low Power Mode.
02487  * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
02488  * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
02489  * the device will power off all devices except for the primary I2C interface,
02490  * waking only the accelerometer at fixed intervals to take a single
02491  * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
02492  * as shown below:
02493  *
02494  * <pre>
02495  * LP_WAKE_CTRL | Wake-up Frequency
02496  * -------------+------------------
02497  * 0            | 1.25 Hz
02498  * 1            | 2.5 Hz
02499  * 2            | 5 Hz
02500  * 3            | 10 Hz
02501  * <pre>
02502  *
02503  * For further information regarding the MPU-60X0's power modes, please refer to
02504  * Register 107.
02505  *
02506  * @return Current wake frequency
02507  * @see MPU6050_RA_PWR_MGMT_2
02508  */
02509 uint8_t MPU6050::getWakeFrequency() {
02510     I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
02511     return buffer[0];
02512 }
02513 /** Set wake frequency in Accel-Only Low Power Mode.
02514  * @param frequency New wake frequency
02515  * @see MPU6050_RA_PWR_MGMT_2
02516  */
02517 void MPU6050::setWakeFrequency(uint8_t frequency) {
02518     I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
02519 }
02520 
02521 /** Get X-axis accelerometer standby enabled status.
02522  * If enabled, the X-axis will not gather or report data (or use power).
02523  * @return Current X-axis standby enabled status
02524  * @see MPU6050_RA_PWR_MGMT_2
02525  * @see MPU6050_PWR2_STBY_XA_BIT
02526  */
02527 bool MPU6050::getStandbyXAccelEnabled() {
02528     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
02529     return buffer[0];
02530 }
02531 /** Set X-axis accelerometer standby enabled status.
02532  * @param New X-axis standby enabled status
02533  * @see getStandbyXAccelEnabled()
02534  * @see MPU6050_RA_PWR_MGMT_2
02535  * @see MPU6050_PWR2_STBY_XA_BIT
02536  */
02537 void MPU6050::setStandbyXAccelEnabled(bool enabled) {
02538     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
02539 }
02540 /** Get Y-axis accelerometer standby enabled status.
02541  * If enabled, the Y-axis will not gather or report data (or use power).
02542  * @return Current Y-axis standby enabled status
02543  * @see MPU6050_RA_PWR_MGMT_2
02544  * @see MPU6050_PWR2_STBY_YA_BIT
02545  */
02546 bool MPU6050::getStandbyYAccelEnabled() {
02547     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
02548     return buffer[0];
02549 }
02550 /** Set Y-axis accelerometer standby enabled status.
02551  * @param New Y-axis standby enabled status
02552  * @see getStandbyYAccelEnabled()
02553  * @see MPU6050_RA_PWR_MGMT_2
02554  * @see MPU6050_PWR2_STBY_YA_BIT
02555  */
02556 void MPU6050::setStandbyYAccelEnabled(bool enabled) {
02557     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
02558 }
02559 /** Get Z-axis accelerometer standby enabled status.
02560  * If enabled, the Z-axis will not gather or report data (or use power).
02561  * @return Current Z-axis standby enabled status
02562  * @see MPU6050_RA_PWR_MGMT_2
02563  * @see MPU6050_PWR2_STBY_ZA_BIT
02564  */
02565 bool MPU6050::getStandbyZAccelEnabled() {
02566     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
02567     return buffer[0];
02568 }
02569 /** Set Z-axis accelerometer standby enabled status.
02570  * @param New Z-axis standby enabled status
02571  * @see getStandbyZAccelEnabled()
02572  * @see MPU6050_RA_PWR_MGMT_2
02573  * @see MPU6050_PWR2_STBY_ZA_BIT
02574  */
02575 void MPU6050::setStandbyZAccelEnabled(bool enabled) {
02576     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
02577 }
02578 /** Get X-axis gyroscope standby enabled status.
02579  * If enabled, the X-axis will not gather or report data (or use power).
02580  * @return Current X-axis standby enabled status
02581  * @see MPU6050_RA_PWR_MGMT_2
02582  * @see MPU6050_PWR2_STBY_XG_BIT
02583  */
02584 bool MPU6050::getStandbyXGyroEnabled() {
02585     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
02586     return buffer[0];
02587 }
02588 /** Set X-axis gyroscope standby enabled status.
02589  * @param New X-axis standby enabled status
02590  * @see getStandbyXGyroEnabled()
02591  * @see MPU6050_RA_PWR_MGMT_2
02592  * @see MPU6050_PWR2_STBY_XG_BIT
02593  */
02594 void MPU6050::setStandbyXGyroEnabled(bool enabled) {
02595     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
02596 }
02597 /** Get Y-axis gyroscope standby enabled status.
02598  * If enabled, the Y-axis will not gather or report data (or use power).
02599  * @return Current Y-axis standby enabled status
02600  * @see MPU6050_RA_PWR_MGMT_2
02601  * @see MPU6050_PWR2_STBY_YG_BIT
02602  */
02603 bool MPU6050::getStandbyYGyroEnabled() {
02604     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
02605     return buffer[0];
02606 }
02607 /** Set Y-axis gyroscope standby enabled status.
02608  * @param New Y-axis standby enabled status
02609  * @see getStandbyYGyroEnabled()
02610  * @see MPU6050_RA_PWR_MGMT_2
02611  * @see MPU6050_PWR2_STBY_YG_BIT
02612  */
02613 void MPU6050::setStandbyYGyroEnabled(bool enabled) {
02614     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
02615 }
02616 /** Get Z-axis gyroscope standby enabled status.
02617  * If enabled, the Z-axis will not gather or report data (or use power).
02618  * @return Current Z-axis standby enabled status
02619  * @see MPU6050_RA_PWR_MGMT_2
02620  * @see MPU6050_PWR2_STBY_ZG_BIT
02621  */
02622 bool MPU6050::getStandbyZGyroEnabled() {
02623     I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
02624     return buffer[0];
02625 }
02626 /** Set Z-axis gyroscope standby enabled status.
02627  * @param New Z-axis standby enabled status
02628  * @see getStandbyZGyroEnabled()
02629  * @see MPU6050_RA_PWR_MGMT_2
02630  * @see MPU6050_PWR2_STBY_ZG_BIT
02631  */
02632 void MPU6050::setStandbyZGyroEnabled(bool enabled) {
02633     I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
02634 }
02635 
02636 // FIFO_COUNT* registers
02637 
02638 /** Get current FIFO buffer size.
02639  * This value indicates the number of bytes stored in the FIFO buffer. This
02640  * number is in turn the number of bytes that can be read from the FIFO buffer
02641  * and it is directly proportional to the number of samples available given the
02642  * set of sensor data bound to be stored in the FIFO (register 35 and 36).
02643  * @return Current FIFO buffer size
02644  */
02645 uint16_t MPU6050::getFIFOCount() {
02646     I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
02647     return (((uint16_t)buffer[0]) << 8) | buffer[1];
02648 }
02649 
02650 // FIFO_R_W register
02651 
02652 /** Get byte from FIFO buffer.
02653  * This register is used to read and write data from the FIFO buffer. Data is
02654  * written to the FIFO in order of register number (from lowest to highest). If
02655  * all the FIFO enable flags (see below) are enabled and all External Sensor
02656  * Data registers (Registers 73 to 96) are associated with a Slave device, the
02657  * contents of registers 59 through 96 will be written in order at the Sample
02658  * Rate.
02659  *
02660  * The contents of the sensor data registers (Registers 59 to 96) are written
02661  * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
02662  * in FIFO_EN (Register 35). An additional flag for the sensor data registers
02663  * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
02664  *
02665  * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
02666  * automatically set to 1. This bit is located in INT_STATUS (Register 58).
02667  * When the FIFO buffer has overflowed, the oldest data will be lost and new
02668  * data will be written to the FIFO.
02669  *
02670  * If the FIFO buffer is empty, reading this register will return the last byte
02671  * that was previously read from the FIFO until new data is available. The user
02672  * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
02673  * empty.
02674  *
02675  * @return Byte from FIFO buffer
02676  */
02677 uint8_t MPU6050::getFIFOByte() {
02678     I2Cdev::readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
02679     return buffer[0];
02680 }
02681 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length) {
02682     I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
02683 }
02684 /** Write byte to FIFO buffer.
02685  * @see getFIFOByte()
02686  * @see MPU6050_RA_FIFO_R_W
02687  */
02688 void MPU6050::setFIFOByte(uint8_t data) {
02689     I2Cdev::writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
02690 }
02691 
02692 // WHO_AM_I register
02693 
02694 /** Get Device ID.
02695  * This register is used to verify the identity of the device (0b110100, 0x34).
02696  * @return Device ID (6 bits only! should be 0x34)
02697  * @see MPU6050_RA_WHO_AM_I
02698  * @see MPU6050_WHO_AM_I_BIT
02699  * @see MPU6050_WHO_AM_I_LENGTH
02700  */
02701 uint8_t MPU6050::getDeviceID() {
02702     I2Cdev::readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
02703     return buffer[0];
02704 }
02705 /** Set Device ID.
02706  * Write a new ID into the WHO_AM_I register (no idea why this should ever be
02707  * necessary though).
02708  * @param id New device ID to set.
02709  * @see getDeviceID()
02710  * @see MPU6050_RA_WHO_AM_I
02711  * @see MPU6050_WHO_AM_I_BIT
02712  * @see MPU6050_WHO_AM_I_LENGTH
02713  */
02714 void MPU6050::setDeviceID(uint8_t id) {
02715     I2Cdev::writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
02716 }
02717 
02718 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
02719 
02720 // XG_OFFS_TC register
02721 
02722 uint8_t MPU6050::getOTPBankValid() {
02723     I2Cdev::readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
02724     return buffer[0];
02725 }
02726 void MPU6050::setOTPBankValid(bool enabled) {
02727     I2Cdev::writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
02728 }
02729 int8_t MPU6050::getXGyroOffsetTC() {
02730     I2Cdev::readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
02731     return buffer[0];
02732 }
02733 void MPU6050::setXGyroOffsetTC(int8_t offset) {
02734     I2Cdev::writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
02735 }
02736 
02737 // YG_OFFS_TC register
02738 
02739 int8_t MPU6050::getYGyroOffsetTC() {
02740     I2Cdev::readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
02741     return buffer[0];
02742 }
02743 void MPU6050::setYGyroOffsetTC(int8_t offset) {
02744     I2Cdev::writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
02745 }
02746 
02747 // ZG_OFFS_TC register
02748 
02749 int8_t MPU6050::getZGyroOffsetTC() {
02750     I2Cdev::readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
02751     return buffer[0];
02752 }
02753 void MPU6050::setZGyroOffsetTC(int8_t offset) {
02754     I2Cdev::writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
02755 }
02756 
02757 // X_FINE_GAIN register
02758 
02759 int8_t MPU6050::getXFineGain() {
02760     I2Cdev::readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
02761     return buffer[0];
02762 }
02763 void MPU6050::setXFineGain(int8_t gain) {
02764     I2Cdev::writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
02765 }
02766 
02767 // Y_FINE_GAIN register
02768 
02769 int8_t MPU6050::getYFineGain() {
02770     I2Cdev::readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
02771     return buffer[0];
02772 }
02773 void MPU6050::setYFineGain(int8_t gain) {
02774     I2Cdev::writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
02775 }
02776 
02777 // Z_FINE_GAIN register
02778 
02779 int8_t MPU6050::getZFineGain() {
02780     I2Cdev::readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
02781     return buffer[0];
02782 }
02783 void MPU6050::setZFineGain(int8_t gain) {
02784     I2Cdev::writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
02785 }
02786 
02787 // XA_OFFS_* registers
02788 
02789 int16_t MPU6050::getXAccelOffset() {
02790     I2Cdev::readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
02791     return (((int16_t)buffer[0]) << 8) | buffer[1];
02792 }
02793 void MPU6050::setXAccelOffset(int16_t offset) {
02794     I2Cdev::writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
02795 }
02796 
02797 // YA_OFFS_* register
02798 
02799 int16_t MPU6050::getYAccelOffset() {
02800     I2Cdev::readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
02801     return (((int16_t)buffer[0]) << 8) | buffer[1];
02802 }
02803 void MPU6050::setYAccelOffset(int16_t offset) {
02804     I2Cdev::writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
02805 }
02806 
02807 // ZA_OFFS_* register
02808 
02809 int16_t MPU6050::getZAccelOffset() {
02810     I2Cdev::readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
02811     return (((int16_t)buffer[0]) << 8) | buffer[1];
02812 }
02813 void MPU6050::setZAccelOffset(int16_t offset) {
02814     I2Cdev::writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
02815 }
02816 
02817 // XG_OFFS_USR* registers
02818 
02819 int16_t MPU6050::getXGyroOffset() {
02820     I2Cdev::readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
02821     return (((int16_t)buffer[0]) << 8) | buffer[1];
02822 }
02823 void MPU6050::setXGyroOffset(int16_t offset) {
02824     I2Cdev::writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
02825 }
02826 
02827 // YG_OFFS_USR* register
02828 
02829 int16_t MPU6050::getYGyroOffset() {
02830     I2Cdev::readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
02831     return (((int16_t)buffer[0]) << 8) | buffer[1];
02832 }
02833 void MPU6050::setYGyroOffset(int16_t offset) {
02834     I2Cdev::writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
02835 }
02836 
02837 // ZG_OFFS_USR* register
02838 
02839 int16_t MPU6050::getZGyroOffset() {
02840     I2Cdev::readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
02841     return (((int16_t)buffer[0]) << 8) | buffer[1];
02842 }
02843 void MPU6050::setZGyroOffset(int16_t offset) {
02844     I2Cdev::writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
02845 }
02846 
02847 // INT_ENABLE register (DMP functions)
02848 
02849 bool MPU6050::getIntPLLReadyEnabled() {
02850     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
02851     return buffer[0];
02852 }
02853 void MPU6050::setIntPLLReadyEnabled(bool enabled) {
02854     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
02855 }
02856 bool MPU6050::getIntDMPEnabled() {
02857     I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
02858     return buffer[0];
02859 }
02860 void MPU6050::setIntDMPEnabled(bool enabled) {
02861     I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
02862 }
02863 
02864 // DMP_INT_STATUS
02865 
02866 bool MPU6050::getDMPInt5Status() {
02867     I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
02868     return buffer[0];
02869 }
02870 bool MPU6050::getDMPInt4Status() {
02871     I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
02872     return buffer[0];
02873 }
02874 bool MPU6050::getDMPInt3Status() {
02875     I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
02876     return buffer[0];
02877 }
02878 bool MPU6050::getDMPInt2Status() {
02879     I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
02880     return buffer[0];
02881 }
02882 bool MPU6050::getDMPInt1Status() {
02883     I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
02884     return buffer[0];
02885 }
02886 bool MPU6050::getDMPInt0Status() {
02887     I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
02888     return buffer[0];
02889 }
02890 
02891 // INT_STATUS register (DMP functions)
02892 
02893 bool MPU6050::getIntPLLReadyStatus() {
02894     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
02895     return buffer[0];
02896 }
02897 bool MPU6050::getIntDMPStatus() {
02898     I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
02899     return buffer[0];
02900 }
02901 
02902 // USER_CTRL register (DMP functions)
02903 
02904 bool MPU6050::getDMPEnabled() {
02905     I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
02906     return buffer[0];
02907 }
02908 void MPU6050::setDMPEnabled(bool enabled) {
02909     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
02910 }
02911 void MPU6050::resetDMP() {
02912     I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
02913 }
02914 
02915 // BANK_SEL register
02916 
02917 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) {
02918     bank &= 0x1F;
02919     if (userBank) bank |= 0x20;
02920     if (prefetchEnabled) bank |= 0x40;
02921     I2Cdev::writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
02922 }
02923 
02924 // MEM_START_ADDR register
02925 
02926 void MPU6050::setMemoryStartAddress(uint8_t address) {
02927     I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
02928 }
02929 
02930 // MEM_R_W register
02931 
02932 uint8_t MPU6050::readMemoryByte() {
02933     I2Cdev::readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
02934     return buffer[0];
02935 }
02936 void MPU6050::writeMemoryByte(uint8_t data) {
02937     I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
02938 }
02939 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address) {
02940     setMemoryBank(bank);
02941     setMemoryStartAddress(address);
02942     uint8_t chunkSize;
02943     for (uint16_t i = 0; i < dataSize;) {
02944         // determine correct chunk size according to bank position and data size
02945         chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
02946 
02947         // make sure we don't go past the data size
02948         if (i + chunkSize > dataSize) chunkSize = dataSize - i;
02949 
02950         // make sure this chunk doesn't go past the bank boundary (256 bytes)
02951         if (chunkSize > 256 - address) chunkSize = 256 - address;
02952 
02953         // read the chunk of data as specified
02954         I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
02955         
02956         // increase byte index by [chunkSize]
02957         i += chunkSize;
02958 
02959         // uint8_t automatically wraps to 0 at 256
02960         address += chunkSize;
02961 
02962         // if we aren't done, update bank (if necessary) and address
02963         if (i < dataSize) {
02964             if (address == 0) bank++;
02965             setMemoryBank(bank);
02966             setMemoryStartAddress(address);
02967         }
02968     }
02969 }
02970 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem) {
02971     setMemoryBank(bank);
02972     setMemoryStartAddress(address);
02973     uint8_t chunkSize;
02974     uint8_t *verifyBuffer;
02975     uint8_t *progBuffer;
02976     uint16_t i;
02977     uint8_t j;
02978     if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
02979     if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
02980     for (i = 0; i < dataSize;) {
02981         // determine correct chunk size according to bank position and data size
02982         chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
02983 
02984         // make sure we don't go past the data size
02985         if (i + chunkSize > dataSize) chunkSize = dataSize - i;
02986 
02987         // make sure this chunk doesn't go past the bank boundary (256 bytes)
02988         if (chunkSize > 256 - address) chunkSize = 256 - address;
02989         
02990         if (useProgMem) {
02991             // write the chunk of data as specified
02992             for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
02993         } else {
02994             // write the chunk of data as specified
02995             progBuffer = (uint8_t *)data + i;
02996         }
02997 
02998         I2Cdev::writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
02999 
03000         // verify data if needed
03001         if (verify && verifyBuffer) {
03002             setMemoryBank(bank);
03003             setMemoryStartAddress(address);
03004             I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
03005             if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
03006                 /*Serial.print("Block write verification error, bank ");
03007                 Serial.print(bank, DEC);
03008                 Serial.print(", address ");
03009                 Serial.print(address, DEC);
03010                 Serial.print("!\nExpected:");
03011                 for (j = 0; j < chunkSize; j++) {
03012                     Serial.print(" 0x");
03013                     if (progBuffer[j] < 16) Serial.print("0");
03014                     Serial.print(progBuffer[j], HEX);
03015                 }
03016                 Serial.print("\nReceived:");
03017                 for (uint8_t j = 0; j < chunkSize; j++) {
03018                     Serial.print(" 0x");
03019                     if (verifyBuffer[i + j] < 16) Serial.print("0");
03020                     Serial.print(verifyBuffer[i + j], HEX);
03021                 }
03022                 Serial.print("\n");*/
03023                 free(verifyBuffer);
03024                 if (useProgMem) free(progBuffer);
03025                 return false; // uh oh.
03026             }
03027         }
03028 
03029         // increase byte index by [chunkSize]
03030         i += chunkSize;
03031 
03032         // uint8_t automatically wraps to 0 at 256
03033         address += chunkSize;
03034 
03035         // if we aren't done, update bank (if necessary) and address
03036         if (i < dataSize) {
03037             if (address == 0) bank++;
03038             setMemoryBank(bank);
03039             setMemoryStartAddress(address);
03040         }
03041     }
03042     if (verify) free(verifyBuffer);
03043     if (useProgMem) free(progBuffer);
03044     return true;
03045 }
03046 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) {
03047     return writeMemoryBlock(data, dataSize, bank, address, verify, true);
03048 }
03049 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem) {
03050     uint8_t *progBuffer, success, special;
03051     uint16_t i, j;
03052     if (useProgMem) {
03053         progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
03054     }
03055 
03056     // config set data is a long string of blocks with the following structure:
03057     // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
03058     uint8_t bank, offset, length;
03059     for (i = 0; i < dataSize;) {
03060         if (useProgMem) {
03061             bank = pgm_read_byte(data + i++);
03062             offset = pgm_read_byte(data + i++);
03063             length = pgm_read_byte(data + i++);
03064         } else {
03065             bank = data[i++];
03066             offset = data[i++];
03067             length = data[i++];
03068         }
03069 
03070         // write data or perform special action
03071         if (length > 0) {
03072             // regular block of data to write
03073             /*Serial.print("Writing config block to bank ");
03074             Serial.print(bank);
03075             Serial.print(", offset ");
03076             Serial.print(offset);
03077             Serial.print(", length=");
03078             Serial.println(length);*/
03079             if (useProgMem) {
03080                 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
03081                 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
03082             } else {
03083                 progBuffer = (uint8_t *)data + i;
03084             }
03085             success = writeMemoryBlock(progBuffer, length, bank, offset, true);
03086             i += length;
03087         } else {
03088             // special instruction
03089             // NOTE: this kind of behavior (what and when to do certain things)
03090             // is totally undocumented. This code is in here based on observed
03091             // behavior only, and exactly why (or even whether) it has to be here
03092             // is anybody's guess for now.
03093             if (useProgMem) {
03094                 special = pgm_read_byte(data + i++);
03095             } else {
03096                 special = data[i++];
03097             }
03098             /*Serial.print("Special command code ");
03099             Serial.print(special, HEX);
03100             Serial.println(" found...");*/
03101             if (special == 0x01) {
03102                 // enable DMP-related interrupts
03103                 
03104                 //setIntZeroMotionEnabled(true);
03105                 //setIntFIFOBufferOverflowEnabled(true);
03106                 //setIntDMPEnabled(true);
03107                 I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32);  // single operation
03108 
03109                 success = true;
03110             } else {
03111                 // unknown special command
03112                 success = false;
03113             }
03114         }
03115         
03116         if (!success) {
03117             if (useProgMem) free(progBuffer);
03118             return false; // uh oh
03119         }
03120     }
03121     if (useProgMem) free(progBuffer);
03122     return true;
03123 }
03124 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize) {
03125     return writeDMPConfigurationSet(data, dataSize, true);
03126 }
03127 
03128 // DMP_CFG_1 register
03129 
03130 uint8_t MPU6050::getDMPConfig1() {
03131     I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
03132     return buffer[0];
03133 }
03134 void MPU6050::setDMPConfig1(uint8_t config) {
03135     I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
03136 }
03137 
03138 // DMP_CFG_2 register
03139 
03140 uint8_t MPU6050::getDMPConfig2() {
03141     I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
03142     return buffer[0];
03143 }
03144 void MPU6050::setDMPConfig2(uint8_t config) {
03145     I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
03146 }