fork of what I have been writing

Dependencies:   Crypto

Committer:
kubitz
Date:
Sun Mar 01 12:34:10 2020 +0000
Revision:
5:de6430aee646
Parent:
4:377264732a24
Child:
6:5f4a954cb8bc
debugged last task - CW1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
kubitz 5:de6430aee646 1
kubitz 0:19fd8c1944fb 2 #include "mbed.h"
kubitz 0:19fd8c1944fb 3 #include "SHA256.h"
kubitz 0:19fd8c1944fb 4
kubitz 0:19fd8c1944fb 5 Timer timer_nonce;
kubitz 0:19fd8c1944fb 6
kubitz 3:8443825642d1 7
kubitz 0:19fd8c1944fb 8 uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64,
kubitz 0:19fd8c1944fb 9 0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73,
kubitz 0:19fd8c1944fb 10 0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E,
kubitz 0:19fd8c1944fb 11 0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20,
kubitz 0:19fd8c1944fb 12 0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20,
kubitz 0:19fd8c1944fb 13 0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20,
kubitz 0:19fd8c1944fb 14 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
kubitz 0:19fd8c1944fb 15 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
kubitz 0:19fd8c1944fb 16 uint64_t* key = (uint64_t*)&sequence[48];
kubitz 0:19fd8c1944fb 17 uint64_t* nonce = (uint64_t*)&sequence[56];
kubitz 0:19fd8c1944fb 18 uint32_t successful_nonce = 0;
kubitz 0:19fd8c1944fb 19 uint32_t last_nonce_number = 0;
kubitz 5:de6430aee646 20
kubitz 0:19fd8c1944fb 21 uint8_t hash[32];
kubitz 0:19fd8c1944fb 22 uint32_t previous_time;
kubitz 0:19fd8c1944fb 23 //Photointerrupter input pins
kubitz 0:19fd8c1944fb 24 #define I1pin D3
kubitz 0:19fd8c1944fb 25 #define I2pin D6
kubitz 0:19fd8c1944fb 26 #define I3pin D5
kubitz 0:19fd8c1944fb 27
kubitz 0:19fd8c1944fb 28 //Incremental encoder input pins
kubitz 0:19fd8c1944fb 29 #define CHApin D12
kubitz 0:19fd8c1944fb 30 #define CHBpin D11
kubitz 0:19fd8c1944fb 31
kubitz 0:19fd8c1944fb 32 //Motor Drive output pins //Mask in output byte
kubitz 0:19fd8c1944fb 33 #define L1Lpin D1 //0x01
kubitz 0:19fd8c1944fb 34 #define L1Hpin A3 //0x02
kubitz 0:19fd8c1944fb 35 #define L2Lpin D0 //0x04
kubitz 0:19fd8c1944fb 36 #define L2Hpin A6 //0x08
kubitz 0:19fd8c1944fb 37 #define L3Lpin D10 //0x10
kubitz 0:19fd8c1944fb 38 #define L3Hpin D2 //0x20
kubitz 0:19fd8c1944fb 39
kubitz 0:19fd8c1944fb 40 #define PWMpin D9
kubitz 0:19fd8c1944fb 41
kubitz 0:19fd8c1944fb 42 //Motor current sense
kubitz 0:19fd8c1944fb 43 #define MCSPpin A1
kubitz 0:19fd8c1944fb 44 #define MCSNpin A0
kubitz 0:19fd8c1944fb 45
kubitz 0:19fd8c1944fb 46 //Test outputs
kubitz 0:19fd8c1944fb 47 #define TP0pin D4
kubitz 0:19fd8c1944fb 48 #define TP1pin D13
kubitz 0:19fd8c1944fb 49 #define TP2pin A2
kubitz 0:19fd8c1944fb 50
kubitz 0:19fd8c1944fb 51 //Mapping from sequential drive states to motor phase outputs
kubitz 0:19fd8c1944fb 52 /*
kubitz 0:19fd8c1944fb 53 State L1 L2 L3
kubitz 0:19fd8c1944fb 54 0 H - L
kubitz 0:19fd8c1944fb 55 1 - H L
kubitz 0:19fd8c1944fb 56 2 L H -
kubitz 0:19fd8c1944fb 57 3 L - H
kubitz 0:19fd8c1944fb 58 4 - L H
kubitz 0:19fd8c1944fb 59 5 H L -
kubitz 0:19fd8c1944fb 60 6 - - -
kubitz 0:19fd8c1944fb 61 7 - - -
kubitz 0:19fd8c1944fb 62 */
kubitz 0:19fd8c1944fb 63 //Drive state to output table
kubitz 0:19fd8c1944fb 64 const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
kubitz 0:19fd8c1944fb 65
kubitz 0:19fd8c1944fb 66 //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
kubitz 0:19fd8c1944fb 67 const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
kubitz 0:19fd8c1944fb 68 //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed
kubitz 0:19fd8c1944fb 69
kubitz 0:19fd8c1944fb 70 //Phase lead to make motor spin
kubitz 0:19fd8c1944fb 71 const int8_t lead = 2; //2 for forwards, -2 for backwards
kubitz 0:19fd8c1944fb 72
kubitz 0:19fd8c1944fb 73 //Status LED
kubitz 0:19fd8c1944fb 74 DigitalOut led1(LED1);
kubitz 0:19fd8c1944fb 75
kubitz 0:19fd8c1944fb 76 //Photointerrupter inputs
kubitz 0:19fd8c1944fb 77 InterruptIn I1(I1pin);
kubitz 0:19fd8c1944fb 78 InterruptIn I2(I2pin);
kubitz 0:19fd8c1944fb 79 InterruptIn I3(I3pin);
kubitz 0:19fd8c1944fb 80
kubitz 0:19fd8c1944fb 81 //Motor Drive outputs
kubitz 0:19fd8c1944fb 82 DigitalOut L1L(L1Lpin);
kubitz 0:19fd8c1944fb 83 DigitalOut L1H(L1Hpin);
kubitz 0:19fd8c1944fb 84 DigitalOut L2L(L2Lpin);
kubitz 0:19fd8c1944fb 85 DigitalOut L2H(L2Hpin);
kubitz 0:19fd8c1944fb 86 DigitalOut L3L(L3Lpin);
kubitz 0:19fd8c1944fb 87 DigitalOut L3H(L3Hpin);
kubitz 0:19fd8c1944fb 88
kubitz 0:19fd8c1944fb 89 DigitalOut TP1(TP1pin);
kubitz 0:19fd8c1944fb 90 PwmOut MotorPWM(PWMpin);
kubitz 0:19fd8c1944fb 91
kubitz 0:19fd8c1944fb 92 int8_t orState = 0; //Rotot offset at motor state 0
kubitz 0:19fd8c1944fb 93 int8_t intState = 0;
kubitz 0:19fd8c1944fb 94 int8_t intStateOld = 0;
kubitz 0:19fd8c1944fb 95
kubitz 0:19fd8c1944fb 96
kubitz 0:19fd8c1944fb 97 //Set a given drive state
kubitz 0:19fd8c1944fb 98 void motorOut(int8_t driveState){
kubitz 0:19fd8c1944fb 99
kubitz 0:19fd8c1944fb 100 //Lookup the output byte from the drive state.
kubitz 0:19fd8c1944fb 101 int8_t driveOut = driveTable[driveState & 0x07];
kubitz 0:19fd8c1944fb 102
kubitz 0:19fd8c1944fb 103 //Turn off first
kubitz 0:19fd8c1944fb 104 if (~driveOut & 0x01) L1L = 0;
kubitz 0:19fd8c1944fb 105 if (~driveOut & 0x02) L1H = 1;
kubitz 0:19fd8c1944fb 106 if (~driveOut & 0x04) L2L = 0;
kubitz 0:19fd8c1944fb 107 if (~driveOut & 0x08) L2H = 1;
kubitz 0:19fd8c1944fb 108 if (~driveOut & 0x10) L3L = 0;
kubitz 0:19fd8c1944fb 109 if (~driveOut & 0x20) L3H = 1;
kubitz 0:19fd8c1944fb 110
kubitz 0:19fd8c1944fb 111 //Then turn on
kubitz 0:19fd8c1944fb 112 if (driveOut & 0x01) L1L = 1;
kubitz 0:19fd8c1944fb 113 if (driveOut & 0x02) L1H = 0;
kubitz 0:19fd8c1944fb 114 if (driveOut & 0x04) L2L = 1;
kubitz 0:19fd8c1944fb 115 if (driveOut & 0x08) L2H = 0;
kubitz 0:19fd8c1944fb 116 if (driveOut & 0x10) L3L = 1;
kubitz 0:19fd8c1944fb 117 if (driveOut & 0x20) L3H = 0;
kubitz 0:19fd8c1944fb 118 }
kubitz 0:19fd8c1944fb 119
kubitz 0:19fd8c1944fb 120 //Convert photointerrupter inputs to a rotor state
kubitz 0:19fd8c1944fb 121 inline int8_t readRotorState(){
kubitz 0:19fd8c1944fb 122 return stateMap[I1 + 2*I2 + 4*I3];
kubitz 0:19fd8c1944fb 123 }
kubitz 0:19fd8c1944fb 124
kubitz 0:19fd8c1944fb 125 //Basic synchronisation routine
kubitz 0:19fd8c1944fb 126 int8_t motorHome() {
kubitz 0:19fd8c1944fb 127 //Put the motor in drive state 0 and wait for it to stabilise
kubitz 0:19fd8c1944fb 128 motorOut(0);
kubitz 0:19fd8c1944fb 129 wait(2.0);
kubitz 0:19fd8c1944fb 130
kubitz 0:19fd8c1944fb 131 //Get the rotor state
kubitz 0:19fd8c1944fb 132 return readRotorState();
kubitz 0:19fd8c1944fb 133 }
kubitz 0:19fd8c1944fb 134
kubitz 0:19fd8c1944fb 135 void move() {
kubitz 0:19fd8c1944fb 136 intState = readRotorState();
kubitz 0:19fd8c1944fb 137 motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive
kubitz 0:19fd8c1944fb 138 intStateOld = intState;
kubitz 0:19fd8c1944fb 139 }
kubitz 0:19fd8c1944fb 140
kubitz 0:19fd8c1944fb 141 //Main
kubitz 0:19fd8c1944fb 142 int main() {
kubitz 0:19fd8c1944fb 143
kubitz 0:19fd8c1944fb 144 const int32_t PWM_PRD = 2500;
kubitz 0:19fd8c1944fb 145 MotorPWM.period_us(PWM_PRD);
kubitz 0:19fd8c1944fb 146 MotorPWM.pulsewidth_us(PWM_PRD);
kubitz 0:19fd8c1944fb 147
kubitz 0:19fd8c1944fb 148 //Initialise the serial port
kubitz 0:19fd8c1944fb 149 Serial pc(SERIAL_TX, SERIAL_RX);
kubitz 0:19fd8c1944fb 150 pc.printf("Hello\n\r");
kubitz 0:19fd8c1944fb 151
kubitz 0:19fd8c1944fb 152 //Run the motor synchronisation
kubitz 0:19fd8c1944fb 153 orState = motorHome();
kubitz 0:19fd8c1944fb 154 pc.printf("Rotor origin: %x\n\r",orState);
kubitz 0:19fd8c1944fb 155
kubitz 0:19fd8c1944fb 156 I1.rise(&move);
kubitz 0:19fd8c1944fb 157 I1.fall(&move);
kubitz 0:19fd8c1944fb 158 I2.rise(&move);
kubitz 0:19fd8c1944fb 159 I2.fall(&move);
kubitz 0:19fd8c1944fb 160 I3.rise(&move);
kubitz 0:19fd8c1944fb 161 I3.fall(&move);
kubitz 0:19fd8c1944fb 162 timer_nonce.start();
kubitz 5:de6430aee646 163 pc.printf("time is %d\n\r", timer_nonce.read_ms());
kubitz 5:de6430aee646 164 pc.printf("time is %d\n\r", (timer_nonce.read_ms()-previous_time));
kubitz 5:de6430aee646 165 uint8_t hash[32];
kubitz 5:de6430aee646 166
kubitz 5:de6430aee646 167 while (1){
kubitz 5:de6430aee646 168
kubitz 5:de6430aee646 169 *nonce = *nonce + 1;
kubitz 5:de6430aee646 170
kubitz 0:19fd8c1944fb 171 SHA256::computeHash(hash, (uint8_t*)sequence, 64);
kubitz 5:de6430aee646 172
kubitz 0:19fd8c1944fb 173 if ((hash[0]==0)&&(hash[1]==0)){
kubitz 0:19fd8c1944fb 174 last_nonce_number = successful_nonce;
kubitz 0:19fd8c1944fb 175 successful_nonce++;
kubitz 5:de6430aee646 176 pc.printf("Successful Nonce -- hash: ");
kubitz 5:de6430aee646 177 for(int i = 0; i < 32; ++i)
kubitz 5:de6430aee646 178 pc.printf("%02x", hash[i]);
kubitz 5:de6430aee646 179 pc.printf("\n\r");
kubitz 0:19fd8c1944fb 180 }
kubitz 5:de6430aee646 181
kubitz 5:de6430aee646 182 if ((timer_nonce.read_ms()-previous_time) > 1000){
kubitz 5:de6430aee646 183 pc.printf("Computation Rate: %lu computation /sec\n\r" , (*nonce-last_nonce_number));
kubitz 0:19fd8c1944fb 184 last_nonce_number = *nonce;
kubitz 5:de6430aee646 185 previous_time = timer_nonce.read_ms();
kubitz 5:de6430aee646 186
kubitz 0:19fd8c1944fb 187 }
kubitz 0:19fd8c1944fb 188
kubitz 0:19fd8c1944fb 189 }
kubitz 0:19fd8c1944fb 190
kubitz 0:19fd8c1944fb 191 return 0;
kubitz 0:19fd8c1944fb 192
kubitz 0:19fd8c1944fb 193 }
kubitz 0:19fd8c1944fb 194