IOTON boards API using mbed SDK - http://ioton.cc/plataforma-ton
Dependents: ton_demo ton_template
BMX055.h
- Committer:
- krebyy
- Date:
- 2017-06-29
- Revision:
- 3:9c7195d31602
- Parent:
- 1:b3c3bf0b9101
File content as of revision 3:9c7195d31602:
/* IMU chipset BMX055 Library
* Copyright (c) 2016 Ioton Technology
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BMX055_H_
#define BMX055_H_
/* Includes ------------------------------------------------------------------*/
#include "mbed.h"
#ifndef M_PI
#define M_PI 3.1415927f
#endif
// Accelerometer registers
#define BMX055_ACC_WHOAMI 0x00 // should return 0xFA
//#define BMX055_ACC_Reserved 0x01
#define BMX055_ACC_D_X_LSB 0x02
#define BMX055_ACC_D_X_MSB 0x03
#define BMX055_ACC_D_Y_LSB 0x04
#define BMX055_ACC_D_Y_MSB 0x05
#define BMX055_ACC_D_Z_LSB 0x06
#define BMX055_ACC_D_Z_MSB 0x07
#define BMX055_ACC_D_TEMP 0x08
#define BMX055_ACC_INT_STATUS_0 0x09
#define BMX055_ACC_INT_STATUS_1 0x0A
#define BMX055_ACC_INT_STATUS_2 0x0B
#define BMX055_ACC_INT_STATUS_3 0x0C
//#define BMX055_ACC_Reserved 0x0D
#define BMX055_ACC_FIFO_STATUS 0x0E
#define BMX055_ACC_PMU_RANGE 0x0F
#define BMX055_ACC_PMU_BW 0x10
#define BMX055_ACC_PMU_LPW 0x11
#define BMX055_ACC_PMU_LOW_POWER 0x12
#define BMX055_ACC_D_HBW 0x13
#define BMX055_ACC_BGW_SOFTRESET 0x14
//#define BMX055_ACC_Reserved 0x15
#define BMX055_ACC_INT_EN_0 0x16
#define BMX055_ACC_INT_EN_1 0x17
#define BMX055_ACC_INT_EN_2 0x18
#define BMX055_ACC_INT_MAP_0 0x19
#define BMX055_ACC_INT_MAP_1 0x1A
#define BMX055_ACC_INT_MAP_2 0x1B
//#define BMX055_ACC_Reserved 0x1C
//#define BMX055_ACC_Reserved 0x1D
#define BMX055_ACC_INT_SRC 0x1E
//#define BMX055_ACC_Reserved 0x1F
#define BMX055_ACC_INT_OUT_CTRL 0x20
#define BMX055_ACC_INT_RST_LATCH 0x21
#define BMX055_ACC_INT_0 0x22
#define BMX055_ACC_INT_1 0x23
#define BMX055_ACC_INT_2 0x24
#define BMX055_ACC_INT_3 0x25
#define BMX055_ACC_INT_4 0x26
#define BMX055_ACC_INT_5 0x27
#define BMX055_ACC_INT_6 0x28
#define BMX055_ACC_INT_7 0x29
#define BMX055_ACC_INT_8 0x2A
#define BMX055_ACC_INT_9 0x2B
#define BMX055_ACC_INT_A 0x2C
#define BMX055_ACC_INT_B 0x2D
#define BMX055_ACC_INT_C 0x2E
#define BMX055_ACC_INT_D 0x2F
#define BMX055_ACC_FIFO_CONFIG_0 0x30
//#define BMX055_ACC_Reserved 0x31
#define BMX055_ACC_PMU_SELF_TEST 0x32
#define BMX055_ACC_TRIM_NVM_CTRL 0x33
#define BMX055_ACC_BGW_SPI3_WDT 0x34
//#define BMX055_ACC_Reserved 0x35
#define BMX055_ACC_OFC_CTRL 0x36
#define BMX055_ACC_OFC_SETTING 0x37
#define BMX055_ACC_OFC_OFFSET_X 0x38
#define BMX055_ACC_OFC_OFFSET_Y 0x39
#define BMX055_ACC_OFC_OFFSET_Z 0x3A
#define BMX055_ACC_TRIM_GPO 0x3B
#define BMX055_ACC_TRIM_GP1 0x3C
//#define BMX055_ACC_Reserved 0x3D
#define BMX055_ACC_FIFO_CONFIG_1 0x3E
#define BMX055_ACC_FIFO_DATA 0x3F
// BMX055 Gyroscope Registers
#define BMX055_GYRO_WHOAMI 0x00 // should return 0x0F
//#define BMX055_GYRO_Reserved 0x01
#define BMX055_GYRO_RATE_X_LSB 0x02
#define BMX055_GYRO_RATE_X_MSB 0x03
#define BMX055_GYRO_RATE_Y_LSB 0x04
#define BMX055_GYRO_RATE_Y_MSB 0x05
#define BMX055_GYRO_RATE_Z_LSB 0x06
#define BMX055_GYRO_RATE_Z_MSB 0x07
//#define BMX055_GYRO_Reserved 0x08
#define BMX055_GYRO_INT_STATUS_0 0x09
#define BMX055_GYRO_INT_STATUS_1 0x0A
#define BMX055_GYRO_INT_STATUS_2 0x0B
#define BMX055_GYRO_INT_STATUS_3 0x0C
//#define BMX055_GYRO_Reserved 0x0D
#define BMX055_GYRO_FIFO_STATUS 0x0E
#define BMX055_GYRO_RANGE 0x0F
#define BMX055_GYRO_BW 0x10
#define BMX055_GYRO_LPM1 0x11
#define BMX055_GYRO_LPM2 0x12
#define BMX055_GYRO_RATE_HBW 0x13
#define BMX055_GYRO_BGW_SOFTRESET 0x14
#define BMX055_GYRO_INT_EN_0 0x15
#define BMX055_GYRO_INT_EN_1 0x16
#define BMX055_GYRO_INT_MAP_0 0x17
#define BMX055_GYRO_INT_MAP_1 0x18
#define BMX055_GYRO_INT_MAP_2 0x19
#define BMX055_GYRO_INT_SRC_1 0x1A
#define BMX055_GYRO_INT_SRC_2 0x1B
#define BMX055_GYRO_INT_SRC_3 0x1C
//#define BMX055_GYRO_Reserved 0x1D
#define BMX055_GYRO_FIFO_EN 0x1E
//#define BMX055_GYRO_Reserved 0x1F
//#define BMX055_GYRO_Reserved 0x20
#define BMX055_GYRO_INT_RST_LATCH 0x21
#define BMX055_GYRO_HIGH_TH_X 0x22
#define BMX055_GYRO_HIGH_DUR_X 0x23
#define BMX055_GYRO_HIGH_TH_Y 0x24
#define BMX055_GYRO_HIGH_DUR_Y 0x25
#define BMX055_GYRO_HIGH_TH_Z 0x26
#define BMX055_GYRO_HIGH_DUR_Z 0x27
//#define BMX055_GYRO_Reserved 0x28
//#define BMX055_GYRO_Reserved 0x29
//#define BMX055_GYRO_Reserved 0x2A
#define BMX055_GYRO_SOC 0x31
#define BMX055_GYRO_A_FOC 0x32
#define BMX055_GYRO_TRIM_NVM_CTRL 0x33
#define BMX055_GYRO_BGW_SPI3_WDT 0x34
//#define BMX055_GYRO_Reserved 0x35
#define BMX055_GYRO_OFC1 0x36
#define BMX055_GYRO_OFC2 0x37
#define BMX055_GYRO_OFC3 0x38
#define BMX055_GYRO_OFC4 0x39
#define BMX055_GYRO_TRIM_GP0 0x3A
#define BMX055_GYRO_TRIM_GP1 0x3B
#define BMX055_GYRO_BIST 0x3C
#define BMX055_GYRO_FIFO_CONFIG_0 0x3D
#define BMX055_GYRO_FIFO_CONFIG_1 0x3E
// BMX055 magnetometer registers
#define BMX055_MAG_WHOAMI 0x40 // should return 0x32
#define BMX055_MAG_Reserved 0x41
#define BMX055_MAG_XOUT_LSB 0x42
#define BMX055_MAG_XOUT_MSB 0x43
#define BMX055_MAG_YOUT_LSB 0x44
#define BMX055_MAG_YOUT_MSB 0x45
#define BMX055_MAG_ZOUT_LSB 0x46
#define BMX055_MAG_ZOUT_MSB 0x47
#define BMX055_MAG_ROUT_LSB 0x48
#define BMX055_MAG_ROUT_MSB 0x49
#define BMX055_MAG_INT_STATUS 0x4A
#define BMX055_MAG_PWR_CNTL1 0x4B
#define BMX055_MAG_PWR_CNTL2 0x4C
#define BMX055_MAG_INT_EN_1 0x4D
#define BMX055_MAG_INT_EN_2 0x4E
#define BMX055_MAG_LOW_THS 0x4F
#define BMX055_MAG_HIGH_THS 0x50
#define BMX055_MAG_REP_XY 0x51
#define BMX055_MAG_REP_Z 0x52
/* Trim Extended Registers */
#define BMM050_DIG_X1 0x5D // needed for magnetic field calculation
#define BMM050_DIG_Y1 0x5E
#define BMM050_DIG_Z4_LSB 0x62
#define BMM050_DIG_Z4_MSB 0x63
#define BMM050_DIG_X2 0x64
#define BMM050_DIG_Y2 0x65
#define BMM050_DIG_Z2_LSB 0x68
#define BMM050_DIG_Z2_MSB 0x69
#define BMM050_DIG_Z1_LSB 0x6A
#define BMM050_DIG_Z1_MSB 0x6B
#define BMM050_DIG_XYZ1_LSB 0x6C
#define BMM050_DIG_XYZ1_MSB 0x6D
#define BMM050_DIG_Z3_LSB 0x6E
#define BMM050_DIG_Z3_MSB 0x6F
#define BMM050_DIG_XY2 0x70
#define BMM050_DIG_XY1 0x71
// Using SDO1 = SDO2 = CSB3 = GND as designed
// Seven-bit device addresses are ACC = 0x18, GYRO = 0x68, MAG = 0x10
#define BMX055_ACC_ADDRESS 0x18 << 1 // Address of BMX055 accelerometer
#define BMX055_GYRO_ADDRESS 0x68 << 1 // Address of BMX055 gyroscope
#define BMX055_MAG_ADDRESS 0x10 << 1 // Address of BMX055 magnetometer
// Set initial input parameters
// define BMX055 ACC full scale options
#define AFS_2G 0x03
#define AFS_4G 0x05
#define AFS_8G 0x08
#define AFS_16G 0x0C
enum ACCBW { // define BMX055 accelerometer bandwidths
ABW_8Hz, // 7.81 Hz, 64 ms update time
ABW_16Hz, // 15.63 Hz, 32 ms update time
ABW_31Hz, // 31.25 Hz, 16 ms update time
ABW_63Hz, // 62.5 Hz, 8 ms update time
ABW_125Hz, // 125 Hz, 4 ms update time
ABW_250Hz, // 250 Hz, 2 ms update time
ABW_500Hz, // 500 Hz, 1 ms update time
ABW_100Hz // 1000 Hz, 0.5 ms update time
};
enum Gscale {
GFS_2000DPS = 0,
GFS_1000DPS,
GFS_500DPS,
GFS_250DPS,
GFS_125DPS
};
enum GODRBW {
G_2000Hz523Hz = 0, // 2000 Hz ODR and unfiltered (bandwidth 523Hz)
G_2000Hz230Hz,
G_1000Hz116Hz,
G_400Hz47Hz,
G_200Hz23Hz,
G_100Hz12Hz,
G_200Hz64Hz,
G_100Hz32Hz // 100 Hz ODR and 32 Hz bandwidth
};
enum MODR {
MODR_10Hz = 0, // 10 Hz ODR
MODR_2Hz , // 2 Hz ODR
MODR_6Hz , // 6 Hz ODR
MODR_8Hz , // 8 Hz ODR
MODR_15Hz , // 15 Hz ODR
MODR_20Hz , // 20 Hz ODR
MODR_25Hz , // 25 Hz ODR
MODR_30Hz // 30 Hz ODR
};
enum Mmode {
lowPower = 0, // rms noise ~1.0 microTesla, 0.17 mA power
Regular , // rms noise ~0.6 microTesla, 0.5 mA power
enhancedRegular , // rms noise ~0.5 microTesla, 0.8 mA power
highAccuracy // rms noise ~0.3 microTesla, 4.9 mA power
};
// Set up I2C, (SDA,SCL)
I2C i2c2(PB_11, PB_10);
// Specify sensor full scale
uint8_t Ascale = AFS_2G;
uint8_t Gscale = GFS_125DPS;
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
// Parameters to hold BMX055 trim values
int8_t dig_x1;
int8_t dig_y1;
int8_t dig_x2;
int8_t dig_y2;
uint16_t dig_z1;
int16_t dig_z2;
int16_t dig_z3;
int16_t dig_z4;
uint8_t dig_xy1;
int8_t dig_xy2;
uint16_t dig_xyz1;
// BMX055 variables
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
int16_t magCount[3]; // Stores the 13/15-bit signed magnetometer sensor output
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag
float SelfTest[6]; // holds results of gyro and accelerometer self test
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = M_PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = M_PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
// Declination at Sao Paulo, Brazil is -21 degrees 7 minutes on 2016-03-27
#define LOCAL_DECLINATION -21.1f
float deltat = 0.0f; // integration interval for both filter schemes
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
class BMX055 {
private:
float pitch, yaw, roll;
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
char data_write[2];
data_write[0] = subAddress;
data_write[1] = data;
i2c2.write(address, data_write, 2, 0);
}
char readByte(uint8_t address, uint8_t subAddress)
{
char data[1]; // `data` will store the register data
char data_write[1];
data_write[0] = subAddress;
i2c2.write(address, data_write, 1, 1); // no stop
i2c2.read(address, data, 1, 0);
return data[0];
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
char data[14];
char data_write[1];
data_write[0] = subAddress;
i2c2.write(address, data_write, 1, 1); // no stop
i2c2.read(address, data, count, 0);
for(int ii = 0; ii < count; ii++)
{
dest[ii] = data[ii];
}
}
public:
BMX055()
{
//Set up I2C
i2c2.frequency(400000); // use fast (400 kHz) I2C
}
float getAres(void)
{
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (0011), 4 Gs (0101), 8 Gs (1000), and 16 Gs (1100).
// BMX055 ACC data is signed 12 bit
case AFS_2G:
aRes = 2.0/2048.0;
break;
case AFS_4G:
aRes = 4.0/2048.0;
break;
case AFS_8G:
aRes = 8.0/2048.0;
break;
case AFS_16G:
aRes = 16.0/2048.0;
break;
}
return aRes;
}
float getGres(void)
{
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 125 DPS (100), 250 DPS (011), 500 DPS (010), 1000 DPS (001), and 2000 DPS (000).
case GFS_125DPS:
gRes = 124.87/32768.0; // per data sheet, not exactly 125!?
break;
case GFS_250DPS:
gRes = 249.75/32768.0;
break;
case GFS_500DPS:
gRes = 499.5/32768.0;
break;
case GFS_1000DPS:
gRes = 999.0/32768.0;
break;
case GFS_2000DPS:
gRes = 1998.0/32768.0;
break;
}
return gRes;
}
float getPitch(void)
{
return pitch;
}
float getRoll(void)
{
return roll;
}
float getYaw(void)
{
return yaw;
}
void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
// Read the six raw data registers into data array
readBytes(BMX055_ACC_ADDRESS, BMX055_ACC_D_X_LSB, 6, &rawData[0]);
if((rawData[0] & 0x01) && (rawData[2] & 0x01) && (rawData[4] & 0x01))
{ // Check that all 3 axes have new data
// Turn the MSB and LSB into a signed 12-bit value
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]) >> 4;
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]) >> 4;
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]) >> 4;
}
}
void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
// Read the six raw data registers sequentially into data array
readBytes(BMX055_GYRO_ADDRESS, BMX055_GYRO_RATE_X_LSB, 6, &rawData[0]);
// Turn the MSB and LSB into a signed 16-bit value
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readMagData(int16_t * magData)
{
int16_t mdata_x = 0, mdata_y = 0, mdata_z = 0, temp = 0;
uint16_t data_r = 0;
uint8_t rawData[8]; // x/y/z hall magnetic field data, and Hall resistance data
readBytes(BMX055_MAG_ADDRESS, BMX055_MAG_XOUT_LSB, 8, &rawData[0]); // Read the eight raw data registers sequentially into data array
if(rawData[6] & 0x01) { // Check if data ready status bit is set
mdata_x = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]) >> 3; // 13-bit signed integer for x-axis field
mdata_y = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]) >> 3; // 13-bit signed integer for y-axis field
mdata_z = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]) >> 1; // 15-bit signed integer for z-axis field
data_r = (uint16_t) (((uint16_t)rawData[7] << 8) | rawData[6]) >> 2; // 14-bit unsigned integer for Hall resistance
// calculate temperature compensated 16-bit magnetic fields
temp = ((int16_t)(((uint16_t)((((int32_t)dig_xyz1) << 14)/(data_r != 0 ? data_r : dig_xyz1))) - ((uint16_t)0x4000)));
magData[0] = ((int16_t)((((int32_t)mdata_x) *
((((((((int32_t)dig_xy2) * ((((int32_t)temp) * ((int32_t)temp)) >> 7)) +
(((int32_t)temp) * ((int32_t)(((int16_t)dig_xy1) << 7)))) >> 9) +
((int32_t)0x100000)) * ((int32_t)(((int16_t)dig_x2) + ((int16_t)0xA0)))) >> 12)) >> 13)) +
(((int16_t)dig_x1) << 3);
temp = ((int16_t)(((uint16_t)((((int32_t)dig_xyz1) << 14)/(data_r != 0 ? data_r : dig_xyz1))) - ((uint16_t)0x4000)));
magData[1] = ((int16_t)((((int32_t)mdata_y) *
((((((((int32_t)dig_xy2) * ((((int32_t)temp) * ((int32_t)temp)) >> 7)) +
(((int32_t)temp) * ((int32_t)(((int16_t)dig_xy1) << 7)))) >> 9) +
((int32_t)0x100000)) * ((int32_t)(((int16_t)dig_y2) + ((int16_t)0xA0)))) >> 12)) >> 13)) +
(((int16_t)dig_y1) << 3);
magData[2] = (((((int32_t)(mdata_z - dig_z4)) << 15) - ((((int32_t)dig_z3) * ((int32_t)(((int16_t)data_r) -
((int16_t)dig_xyz1))))>>2))/(dig_z2 + ((int16_t)(((((int32_t)dig_z1) * ((((int16_t)data_r) << 1)))+(1<<15))>>16))));
}
}
float getTemperature()
{
uint8_t c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_D_TEMP); // Read the raw data register
int16_t tempCount = ((int16_t)((int16_t)c << 8)) >> 8 ; // Turn the byte into a signed 8-bit integer
return ((((float)tempCount) * 0.5f) + 23.0f); // temperature in degrees Centigrade
}
void fastcompaccelBMX055(float * dest1)
{
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x80); // set all accel offset compensation registers to zero
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_SETTING, 0x20); // set offset targets to 0, 0, and +1 g for x, y, z axes
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x20); // calculate x-axis offset
uint8_t c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
while(!(c & 0x10))
{ // check if fast calibration complete
c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
wait_ms(10);
}
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x40); // calculate y-axis offset
c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
while(!(c & 0x10))
{ // check if fast calibration complete
c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
wait_ms(10);
}
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x60); // calculate z-axis offset
c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
while(!(c & 0x10))
{ // check if fast calibration complete
c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
wait_ms(10);
}
int8_t compx = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_X);
int8_t compy = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_Y);
int8_t compz = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_Z);
dest1[0] = (float) compx/128.0f; // accleration bias in g
dest1[1] = (float) compy/128.0f; // accleration bias in g
dest1[2] = (float) compz/128.0f; // accleration bias in g
}
void magcalBMX055(float * dest1)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0};
int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0};
// ## "Mag Calibration: Wave device in a figure eight until done!" ##
//wait(4);
sample_count = 48;
for(ii = 0; ii < sample_count; ii++)
{
int16_t mag_temp[3] = {0, 0, 0};
readMagData(mag_temp);
for (int jj = 0; jj < 3; jj++)
{
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
wait_ms(105); // at 10 Hz ODR, new mag data is available every 100 ms
}
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
// save mag biases in G for main program
dest1[0] = (float) mag_bias[0]*mRes;
dest1[1] = (float) mag_bias[1]*mRes;
dest1[2] = (float) mag_bias[2]*mRes;
// ## "Mag Calibration done!" ##
}
// Get trim values for magnetometer sensitivity
void trim(void)
{
uint8_t rawData[2]; //placeholder for 2-byte trim data
dig_x1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_X1);
dig_x2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_X2);
dig_y1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_Y1);
dig_y2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_Y2);
dig_xy1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_XY1);
dig_xy2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_XY2);
readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z1_LSB, 2, &rawData[0]);
dig_z1 = (uint16_t) (((uint16_t)rawData[1] << 8) | rawData[0]);
readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z2_LSB, 2, &rawData[0]);
dig_z2 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z3_LSB, 2, &rawData[0]);
dig_z3 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z4_LSB, 2, &rawData[0]);
dig_z4 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_XYZ1_LSB, 2, &rawData[0]);
dig_xyz1 = (uint16_t) (((uint16_t)rawData[1] << 8) | rawData[0]);
}
/** Initialize device for active mode
* @param Ascale set accel full scale
* @param ACCBW set bandwidth for accelerometer
* @param Gscale set gyro full scale
* @param GODRBW set gyro ODR and bandwidth
* @param Mmode set magnetometer operation mode
* @param MODR set magnetometer data rate
* @see ACCBW, GODRBW and MODR enums
*/
void init(uint8_t mAscale = AFS_2G, uint8_t ACCBW = ABW_16Hz,
uint8_t mGscale = GFS_125DPS, uint8_t GODRBW = G_200Hz23Hz,
uint8_t Mmode = Regular, uint8_t MODR = MODR_10Hz)
{
Ascale = mAscale;
Gscale = mGscale;
// Configure accelerometer
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_PMU_RANGE, Ascale & 0x0F); // Set accelerometer full scale
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_PMU_BW, (0x08 | ACCBW) & 0x0F); // Set accelerometer bandwidth
writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_D_HBW, 0x00); // Use filtered data
// Configure Gyro
writeByte(BMX055_GYRO_ADDRESS, BMX055_GYRO_RANGE, Gscale); // set GYRO FS range
writeByte(BMX055_GYRO_ADDRESS, BMX055_GYRO_BW, GODRBW); // set GYRO ODR and Bandwidth
// Configure magnetometer
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL1, 0x82); // Softreset magnetometer, ends up in sleep mode
wait_ms(100);
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL1, 0x01); // Wake up magnetometer
wait_ms(100);
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL2, MODR << 3); // Normal mode
// Set up four standard configurations for the magnetometer
switch (Mmode)
{
case lowPower:
// Low-power
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x01); // 3 repetitions (oversampling)
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x02); // 3 repetitions (oversampling)
break;
case Regular:
// Regular
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x04); // 9 repetitions (oversampling)
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x16); // 15 repetitions (oversampling)
break;
case enhancedRegular:
// Enhanced Regular
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x07); // 15 repetitions (oversampling)
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x22); // 27 repetitions (oversampling)
break;
case highAccuracy:
// High Accuracy
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x17); // 47 repetitions (oversampling)
writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x51); // 83 repetitions (oversampling)
break;
}
// get sensor resolutions, only need to do this once
getAres();
getGres();
// magnetometer resolution is 1 microTesla/16 counts or 1/1.6 milliGauss/count
mRes = 1./1.6;
trim(); // read the magnetometer calibration data
fastcompaccelBMX055(accelBias);
magcalBMX055(magBias);
// TODO: see magcalBMX055(): 128 samples * 105ms = 13.44s
// So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically
// like the gyro and accelerometer biases
// magBias[0] = -5.; // User environmental x-axis correction in milliGauss
// magBias[1] = -95.; // User environmental y-axis correction in milliGauss
// magBias[2] = -260.; // User environmental z-axis correction in milliGauss
}
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
// but is much less computationally intensive
void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm;
float hx, hy, _2bx, _2bz;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1mx;
float _2q1my;
float _2q1mz;
float _2q2mx;
float _4bx;
float _4bz;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
float _2q1q3 = 2.0f * q1 * q3;
float _2q3q4 = 2.0f * q3 * q4;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrt(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
_2q1mx = 2.0f * q1 * mx;
_2q1my = 2.0f * q1 * my;
_2q1mz = 2.0f * q1 * mz;
_2q2mx = 2.0f * q2 * mx;
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
_2bx = sqrt(hx * hx + hy * hy);
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
norm = 1.0f/norm;
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * deltat;
q2 += qDot2 * deltat;
q3 += qDot3 * deltat;
q4 += qDot4 * deltat;
norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}
/** Get raw 9-axis motion sensor readings (accel/gyro/compass).
* @param ax 12-bit signed integer container for accelerometer X-axis value
* @param ay 12-bit signed integer container for accelerometer Y-axis value
* @param az 12-bit signed integer container for accelerometer Z-axis value
* @param gx 16-bit signed integer container for gyroscope X-axis value
* @param gy 16-bit signed integer container for gyroscope Y-axis value
* @param gz 16-bit signed integer container for gyroscope Z-axis value
* @param mx 13-bit signed integer container for magnetometer X-axis value
* @param my 13-bit signed integer container for magnetometer Y-axis value
* @param mz 15-bit signed integer container for magnetometer Z-axis value
* @see getAcceleration()
* @see getRotation()
* @see getMag()
*/
void getRaw9( int16_t* ax, int16_t* ay, int16_t* az,
int16_t* gx, int16_t* gy, int16_t* gz,
int16_t* mx, int16_t* my, int16_t* mz)
{
uint8_t rawData[8]; // x/y/z MSB and LSB registers raw data stored here
// Read the six raw data registers into data array
// Turn the MSB and LSB into a signed 12-bit value
readBytes(BMX055_ACC_ADDRESS, BMX055_ACC_D_X_LSB, 6, rawData);
*ax = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) >> 4;
*ay = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) >> 4;
*az = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) >> 4;
// Read the six raw data registers sequentially into data array
// Turn the MSB and LSB into a signed 16-bit value
readBytes(BMX055_GYRO_ADDRESS, BMX055_GYRO_RATE_X_LSB, 6, rawData);
*gx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);
*gy = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]);
*gz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]);
// Read the six raw data registers into data array
// 13-bit signed integer for x-axis and y-axis field
// 15-bit signed integer for z-axis field
readBytes(BMX055_MAG_ADDRESS, BMX055_MAG_XOUT_LSB, 8, rawData);
if(rawData[6] & 0x01) // Check if data ready status bit is set
{
*mx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) >> 3;
*my = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) >> 3;
*mz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) >> 1;
}
}
/** Get raw 9-axis motion sensor readings (accel/gyro/compass).
* @param ax accelerometer X-axis value (g's)
* @param ay accelerometer Y-axis value (g's)
* @param az accelerometer Z-axis value (g's)
* @param gx gyroscope X-axis value (degrees per second)
* @param gy gyroscope Y-axis value (degrees per second)
* @param gz gyroscope Z-axis value (degrees per second)
* @param mx magnetometer X-axis value (milliGauss)
* @param my magnetometer Y-axis value (milliGauss)
* @param mz magnetometer Z-axis value (milliGauss)
* @see getAcceleration()
* @see getRotation()
* @see getMag()
*/
void getMotion9( float* ax, float* ay, float* az,
float* gx, float* gy, float* gz,
float* mx, float* my, float* mz)
{
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
int16_t magCount[3]; // Stores the 13/15-bit signed magnetometer sensor output
// Read the x/y/z raw values
readAccelData(accelCount);
// Calculate the accleration value into actual g's
// get actual g value, this depends on scale being set
*ax = (float)accelCount[0]*aRes; // + accelBias[0];
*ay = (float)accelCount[1]*aRes; // + accelBias[1];
*az = (float)accelCount[2]*aRes; // + accelBias[2];
// Read the x/y/z raw values
readGyroData(gyroCount);
// Calculate the gyro value into actual degrees per second
// get actual gyro value, this depends on scale being set
*gx = (float)gyroCount[0]*gRes;
*gy = (float)gyroCount[1]*gRes;
*gz = (float)gyroCount[2]*gRes;
// Read the x/y/z raw values
readMagData(magCount);
// Calculate the magnetometer values in milliGauss
// Temperature-compensated magnetic field is in 16 LSB/microTesla
// get actual magnetometer value, this depends on scale being set
*mx = (float)magCount[0]*mRes - magBias[0];
*my = (float)magCount[1]*mRes - magBias[1];
*mz = (float)magCount[2]*mRes - magBias[2];
}
void runAHRS(float mdeltat, float local_declination = LOCAL_DECLINATION)
{
float ax, ay, az, gx, gy, gz, mx, my, mz;
getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz);
deltat = mdeltat;
// Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer;
// the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro!
// We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
// For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
// in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
//MadgwickQuaternionUpdate(ax, ay, az, gx*M_PI/180.0f, gy*M_PI/180.0f, gz*M_PI/180.0f, -my, mx, mz);
MadgwickQuaternionUpdate(-ay, ax, az, -gy*M_PI/180.0f, gx*M_PI/180.0f, gz*M_PI/180.0f, mx, my, mz);
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / M_PI;
yaw *= 180.0f / M_PI;
yaw -= local_declination;
roll *= 180.0f / M_PI;
}
};
#endif /* BMX055_H_ */
Kleber Silva