Skelton of EMG input method program using timer interrupt and thread.

Dependencies:   QEI mbed-rtos mbed

Fork of DCmotor by manabu kosaka

Revision:
0:fe068497f773
Child:
1:b91aeb5673f3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Thu Nov 15 06:18:51 2012 +0000
@@ -0,0 +1,268 @@
+//  DC motor control program using TA7291P driver and 360 resolution rotary encoder with A, B phase.
+//      ver. 121115 by Kosaka lab.
+#include "mbed.h"
+#include "rtos.h"
+#include "QEI.h"
+#define PI 3.14159265358979 // def. of PI
+/*********** User setting for control parameters (begin) ***************/
+#define SIMULATION          // Comment this line if not simulation
+#define CONTROL_MODE    0   // 0:PID control, 1:Frequency response, 2:Step response
+#define GOOD_DATA           // Comment this line if the length of data TMAX/TS2 > 1000
+#define R_SIN               // Comment this line if not r = sin
+float   _freq_u = 0.3;      // [Hz], freq. of Frequency response, or Step response
+float   _r=100./180.*PI;    // [rad], reference signal
+float   _Kp=70;             // P gain for PID ... Kp=1, Ki=0, Kd=0 is good.
+float   _Ki=10;             // I gain for PID
+float   _Kd=0.01;           // D gain for PID
+#define TS  0.001           // [s], TS>0.001[s], sampling time[s] of PID controller
+#define TS2 0.01            // [s], TS2>0.001[s], sampling time[s] of data save to PC. BUG!! Dangerous if TS2<0.1 because multi interrupt by fprintf is not prohibited! 1st aug of fprintf will be destroyed.
+#define TMAX    10          // [s], experiment starts from 0[s] to TMAX[s]
+#define UMAX    3.3         // [V], max of control input u
+#define UMIN   -3.3         // [V], max of control input u
+
+AnalogOut   analog_out(p18);// Vref for DC motor driver TA7291P. DA converter for control input [0.0-1.0]% in the output range of 0.0 to 3.3[V]
+DigitalOut  IN1(p19);       // IN1  for DC motor driver TA7291P
+DigitalOut  IN2(p20);       // IN2  for DC motor driver TA7291P
+DigitalOut  debug_p17(p17); // p17 for debug
+
+#define N_ENC   (360*4)     // "*4": QEI::X4_ENCODING. Number of pulses in one revolution(=360 deg) of rotary encoder.
+QEI encoder (p29, p30, NC, N_ENC, QEI::X4_ENCODING);
+//  QEI(PinName     channelA, mbed pin for channel A input.
+//      PinName     channelB, mbed pin for channel B input.
+//      PinName     index,    mbed pin for channel Z input. (index channel input Z phase th=0), (pass NC if not needed).
+//      int         pulsesPerRev, Number of pulses in one revolution(=360 deg).
+//      Encoding    encoding = X2_ENCODING, X2 is default. X2 uses interrupts on the rising and falling edges of only channel A where as 
+//                    X4 uses them on both channels.
+//  )
+//  void     reset (void)
+//     Reset the encoder. 
+//  int      getCurrentState (void)
+//     Read the state of the encoder. 
+//  int      getPulses (void)
+//     Read the number of pulses recorded by the encoder. 
+//  int      getRevolutions (void)
+//     Read the number of revolutions recorded by the encoder on the index channel. 
+/*********** User setting for control parameters (end) ***************/
+
+
+Serial pc(USBTX, USBRX);        // Display on tera term in PC 
+LocalFileSystem local("local"); // save data to mbed USB disk drive in PC
+//Semaphore semaphore1(1);      // wait and release to protect memories and so on
+//Mutex stdio_mutex;            // wait and release to protect memories and so on
+//Ticker controller_ticker;     // Timer interrupt using TIMER3, TS<0.001 is OK. Priority is higher than rtosTimer.
+
+unsigned long _count;   // sampling number
+float   _time;          // time[s]
+float   _y;             // control output
+float   _e=0;           // e=r-y for PID controller
+float   _eI=0;          // integral of e for PID controller
+float   _u;             // control input[V]
+unsigned char _f_u_plus=1;// sign(u)
+unsigned char _f_umax=0;// flag showing u is max or not
+float   debug[10];      // for debug
+float   disp[10];       // for printf to avoid interrupted by quicker process
+
+#ifdef  GOOD_DATA
+float data[1000][5];    // memory to save data offline instead of "online fprintf".
+unsigned int    count3; // 
+unsigned int    count2=(int)(TS2/TS); // 
+#endif
+
+void u2TA7291P(float u){// input u to TA7291 driver
+    float   abs_u;
+
+    if( u > 0 ){        // forward: rotate to plus
+        abs_u = u;          // Vref
+        if(_f_u_plus==0){   _f_u_plus=1;  IN1=0;  IN2=0;  analog_out=0;  wait(0.0001);}  // if plus to/from minus, set IN1=IN2=0/1 for 100[us].
+        IN1 = 1;
+        IN2 = 0;
+    }else if( u < 0 ){  // reverse: rotate to minus
+        abs_u = -u;
+        if(_f_u_plus==1){   _f_u_plus=0;  IN1=0;  IN2=0;  analog_out=0;  wait(0.0001);}  // if plus to/from minus, set IN1=IN2=0/1 for 100[us].
+        IN1 = 0;
+        IN2 = 1;
+    }else{// if( u == 0 ){  // stop mode
+        abs_u = 0;
+        IN1 = 0;
+        IN2 = 0;
+    }
+    analog_out = abs_u/3.3; // PID write DA, range is 0-1. Output voltage 0-3.3v
+}
+
+void controller(void const *argument) {    // if rtos. current controller & velocity controller
+//void controller() {    // if ticker. current controller & velocity controller
+    void    u2TA7291P(float);    // input u to TA7291 driver
+    float   e_old, wt;
+    float   y, u;     // to avoid time shift
+
+    debug_p17 = 1;  // for debug: processing time check
+//    if(debug_p17 == 1)  debug_p17=0;else    debug_p17=1;  // for debug: sampling time check
+
+    _count+=1;
+//    y_old = _y;  // y_old=y(t-TS) is older than y by 1 sampling time TS[s]. update data
+#ifdef SIMULATION
+    y = _y + TS/0.1*(0.02*_u*100-_y);   //=(1-TS/0.1)*_y + 0.02*TS/0.1*_u; // G = 0.02/(0.1s+1)
+//debug[0]=_u;//plus
+#else
+//    semaphore1.wait();      //
+    y = (float)encoder.getPulses()/(float)N_ENC*2.0*PI;   // get angle [rad] from encoder
+//    semaphore1.release();   //
+#endif
+#ifdef R_SIN
+  #define RMAX  (100./180.*PI)
+  #define RMIN  0
+    wt = _freq_u *2.0*PI*_time;
+    if(wt>2*PI){    wt -= 2*PI*(float)((int)(wt/(2.0*PI)));}
+    _r = sin(wt ) * (RMAX-RMIN)/2.0 + (RMAX+RMIN)/2.0;
+#endif
+    e_old = _e;     // e_old=e(t-TS) is older than e by 1 sampling time TS[s]. update data
+    _e = _r - y;    // error e(t)
+    if( _f_umax==0 ){
+        _eI = _eI + TS*_e;     // integral of e(t)
+    }
+    
+    u = _Kp*_e + _Kd*(_e-e_old)/TS + _Ki*_eI;   // PID output u(t)
+//debug[0]=_e;//minus
+//debug[0]=u;//minus
+ 
+    // u is saturated? for anti-windup
+    if( u>UMAX ){
+        _eI -= (u-UMAX)/_Ki;    if(_eI<0){   _eI=0;}
+        u = UMAX;
+//        _f_umax = 1;
+    } else if( u<UMIN ){
+        _eI -= (u-UMIN)/_Ki;    if(_eI>0){   _eI=0;}
+        u = UMIN;
+//        _f_umax = 1;
+    }else{
+        _f_umax = 0;
+    }
+//#define CONTROL_MODE   2   // 0:PID control, 1:Frequency response, 2:Step response
+#if CONTROL_MODE>=1   // frequency response, or Step response
+    wt = _freq_u *2.0*PI*_time;
+    if(wt>2*PI)    wt -= 2*PI*(float)((int)(wt/2.0*PI));
+    u = sin(wt ) * (UMAX-UMIN)/2.0 + (UMAX+UMIN)/2.0;
+#endif
+#if CONTROL_MODE==2   // Step response
+    if( u>=0 )  u = UMAX;
+    else        u = UMIN;
+#endif
+//debug[0]=u;//minus
+    u2TA7291P(u);    // input u to TA7291 driver
+
+    //-------- update data
+    _time += TS;    // time
+    _y = y;
+    _u = u;
+//debug[0]=_u;//minus
+//debug[0]=_eI;
+debug[0]=_r;
+#ifdef  GOOD_DATA
+    if(count2==(int)(TS2/TS)){
+//        j=0; if(_count>=j&&_count<j+1000){i=_count-j;  data[i][0]=_r; data[i][1]=debug[0]; data[i][2]=_y; data[i][3]=_time; data[i][4]=_u;}
+        data[count3][0]=_r; data[count3][1]=debug[0]; data[count3][2]=_y; data[count3][3]=_time; data[count3][4]=_u;
+        count3++;
+        count2 = 0;
+    }
+    count2++;
+#endif
+    //-------- update data
+
+    debug_p17 = 0;  // for debug: processing time check
+}
+
+void main1() {
+    RtosTimer timer_controller(controller);
+    FILE *fp;   // save data to PC
+#ifdef  GOOD_DATA
+    int i;
+
+    count3=0;
+#endif
+    _count=0;
+    _time = 0;  // time
+    _e = _eI = 0;
+    _y = (float)encoder.getPulses()/(float)N_ENC*2.0*PI;   // get angle [rad] from encoder
+    _r = _r + _y;
+    if( _r>2*PI )    _r -= _r-2*PI;
+
+    pc.printf("Control start!!\r\n");
+    if ( NULL == (fp = fopen( "/local/data.csv", "w" )) ){   error( "" );} // save data to PC
+
+//    controller_ticker.attach(&controller, TS ); // period [s]
+    timer_controller.start((unsigned int)(TS*1000.));   // Sampling period[ms]
+
+//    for ( i = 0; i < (unsigned int)(TMAX/TS2); i++ ) {
+    while ( _time <= TMAX ) {
+        // BUG!! Dangerous if TS2<0.1 because multi interrupt by fprintf is not prohibited! 1st aug of fprintf will be destroyed.
+        //     fprintf returns before process completed.
+//BUG   fprintf( fp, "%8.2f, %8.4f,\t%8.1f,\t%8.2f\r\n", disp[3], disp[1], disp[0], tmp);  // save data to PC (para, y, time, u)
+//OK?   fprintf( fp, "%f, %f, %f, %f, %f\r\n", _time, debug[0], debug[3], (_y/(2*PI)*360.0),_u);  // save data to PC (para, y, time, u)
+#ifndef GOOD_DATA
+        fprintf( fp, "%f, %f, %f, %f, %f\r\n", _r, debug[0], _y, _time, _u);  // save data to PC (para, y, time, u)
+#endif
+        Thread::wait((unsigned int)(TS2*1000.));  //[ms]
+    }
+    timer_controller.stop();    // rtos timer stop
+    analog_out = 0;              // stop motor
+#ifdef  GOOD_DATA
+    for(i=0;i<1000;i++){  fprintf( fp, "%f, %f, %f, %f, %f\r\n", data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);}  // save data to PC (para, y, time, u)
+#endif
+    fclose( fp );               // release mbed USB drive
+    pc.printf("Control completed!!\r\n\r\n");
+}
+
+void thread_print2PC(void const *argument) {
+    while (true) {
+        pc.printf("%8.1f[s]\t%8.5f[V]\t%4d [deg]\t%8.2f\r\n", _time, _u, (int)(_y/(2*PI)*360.0), debug[0]);  // print to tera term
+        Thread::wait(200);
+    }
+}
+
+void main2(void const *argument) {
+#if CONTROL_MODE==0     // PID control
+    char    f;
+    float   val;
+#endif
+    
+    while(true){
+        main1();
+
+#if CONTROL_MODE>=1     // frequency response, or Step response
+        pc.printf("Input u(t) Frequency[Hz]?...");
+        pc.scanf("%f",&_freq_u);
+        pc.printf("%8.3f[Hz]\r\n", _freq_u);  // print to tera term
+#else                   // PID control
+  #ifdef R_SIN
+        pc.printf("Reference signal r(t) Frequency[Hz]?...");
+        pc.scanf("%f",&_freq_u);
+        pc.printf("%8.3f[Hz]\r\n", _freq_u);  // print to tera term
+  #endif
+        pc.printf("What number do you like to change?... 0) no change, 1) Kp, 2) Ki, 3)Kd");
+        f=pc.getc()-48; //int = char-48
+        pc.printf("\r\n    Value?... ");
+        if(f>=1&&f<=3){ pc.scanf("%f",&val);}
+        pc.printf("%8.3f\r\n", val);  // print to tera term
+        if(f==1){    _Kp = val;}
+        if(f==2){    _Ki = val;}
+        if(f==3){    _Kd = val;}
+        pc.printf("Kp=%f, Ki=%f, Kd=%f\r\n",_Kp, _Ki, _Kd);
+#endif
+    }    
+}
+int main() {
+//    void main1();
+    Thread save2PC(main2,NULL,osPriorityBelowNormal);
+    Thread print2PC(thread_print2PC,NULL,osPriorityLow);
+
+//    osStatus set_priority(osPriority osPriorityBelowNormal );
+// Priority of Thread (RtosTimer has no priority?)
+//  osPriorityIdle          = -3,          ///< priority: idle (lowest)--> then, mbed ERROR!!
+//  osPriorityLow           = -2,          ///< priority: low
+//  osPriorityBelowNormal   = -1,          ///< priority: below normal
+//  osPriorityNormal        =  0,          ///< priority: normal (default)
+//  osPriorityAboveNormal   = +1,          ///< priority: above normal
+//  osPriorityHigh          = +2,          ///< priority: high 
+//  osPriorityRealtime      = +3,          ///< priority: realtime (highest)
+//  osPriorityError         =  0x84        ///< system cannot determine priority or thread has illegal priority
+}