Skelton of EMG input method program using timer interrupt and thread.

Dependencies:   QEI mbed-rtos mbed

Fork of DCmotor by manabu kosaka

Committer:
kosaka
Date:
Fri Nov 23 05:53:26 2012 +0000
Revision:
9:b8b31e9b60c2
Parent:
7:613febb8f028
motor current control minor-loop is added. ** shunt resistance is required **

Who changed what in which revision?

UserRevisionLine numberNew contents of line
kosaka 1:b91aeb5673f3 1 // DC motor control program using H-bridge driver (ex. TA7291P) and 360 resolution rotary encoder with A, B phase.
kosaka 9:b8b31e9b60c2 2 // ver. 121123a by Kosaka lab.
kosaka 0:fe068497f773 3 #include "mbed.h"
kosaka 0:fe068497f773 4 #include "rtos.h"
kosaka 0:fe068497f773 5 #include "QEI.h"
kosaka 0:fe068497f773 6 #define PI 3.14159265358979 // def. of PI
kosaka 0:fe068497f773 7 /*********** User setting for control parameters (begin) ***************/
kosaka 4:6ccbf4d3cb6d 8 //#define SIMULATION // Comment this line if not simulation
kosaka 3:b6b9b8c7dce6 9 #define USE_PWM // H bridge PWM mode: Vref=Vcc, FIN,2 = PWM or 0. Comment if use Vref=analog mode
kosaka 9:b8b31e9b60c2 10 #define PWM_FREQ 10000.0 //[Hz], pwm freq. available if USE_PWM is defined.
kosaka 9:b8b31e9b60c2 11 #define USE_CURRENT_CONTROL // Current control on. Comment if current control off.
kosaka 9:b8b31e9b60c2 12 #define CONTROL_MODE 0 // 0:PID control, 1:Frequency response, 2:Step response, 3. u=Rand to identify G(s), 4) FFT identification
kosaka 0:fe068497f773 13 #define GOOD_DATA // Comment this line if the length of data TMAX/TS2 > 1000
kosaka 6:16bee943a9fa 14 //#define R_SIN // Comment this line if r=step, not r = sin
kosaka 0:fe068497f773 15 float _freq_u = 0.3; // [Hz], freq. of Frequency response, or Step response
kosaka 1:b91aeb5673f3 16 float _rmax=100./180.*PI; // [rad], max. of reference signal
kosaka 9:b8b31e9b60c2 17 float _Kp4th=20; // P gain for PID from motor volt. to angle.
kosaka 9:b8b31e9b60c2 18 float _Ki4th=20; // I gain for PID from motor volt. to angle.
kosaka 9:b8b31e9b60c2 19 float _Kd4th=5; // D gain for PID from motor volt. to angle.
kosaka 9:b8b31e9b60c2 20 float _Kp4i=10.0; // P gain for PID from motor volt. to motor current.
kosaka 9:b8b31e9b60c2 21 float _Ki4i=10.0; // I gain for PID from motor volt. to motor current.
kosaka 9:b8b31e9b60c2 22 float _Kd4i=0.0; // D gain for PID from motor volt. to motor current.
kosaka 9:b8b31e9b60c2 23 #define iTS 0.001 // [s], iTS, sampling time[s] of motor current i control PID using timer interrupt
kosaka 9:b8b31e9b60c2 24 #define thTS 0.01 // [s], thTS>=0.001[s], sampling time[s] of motor angle th PID using rtos-timer
kosaka 9:b8b31e9b60c2 25 #define TS2 0.01 // [s], TS2>=0.001[s], sampling time[s] to save data to PC using thread. But, max data length is 1000.
kosaka 0:fe068497f773 26 #define TMAX 10 // [s], experiment starts from 0[s] to TMAX[s]
kosaka 0:fe068497f773 27 #define UMAX 3.3 // [V], max of control input u
kosaka 0:fe068497f773 28 #define UMIN -3.3 // [V], max of control input u
kosaka 9:b8b31e9b60c2 29 #define IMAX 0.5 // [A], max of motor current i
kosaka 9:b8b31e9b60c2 30 #define IMIN -0.5 // [A], max of motor current i
kosaka 3:b6b9b8c7dce6 31 #define DEADTIME 0.0001 // [s], deadtime to be set between plus volt. to/from minus
kosaka 3:b6b9b8c7dce6 32 // H bridge port setting
kosaka 3:b6b9b8c7dce6 33 #define FIN_PORT p21 // FIN (IN1) port of mbed
kosaka 3:b6b9b8c7dce6 34 #define RIN_PORT p22 // RIN (IN2) port of mbed
kosaka 3:b6b9b8c7dce6 35 #define VREF_PORT p18 // Vref port of mbed (available if USE_PWM is not defined)
kosaka 0:fe068497f773 36 DigitalOut debug_p17(p17); // p17 for debug
kosaka 9:b8b31e9b60c2 37 AnalogIn v_shunt_r(p19); // *3.3 [V], Volt of shunt R_SHUNT[Ohm]. The motor current i = v_shunt_r/R_SHUNT [A]
kosaka 9:b8b31e9b60c2 38 #define R_SHUNT 1.25 // [Ohm], shunt resistanse
kosaka 9:b8b31e9b60c2 39 //AnalogIn VCC(p19); // *3.3 [V], Volt of VCC for motor
kosaka 9:b8b31e9b60c2 40 //AnalogIn VCC2(p20); // *3.3 [V], Volt of (VCC-R i), R=2.5[Ohm]. R is for preventing too much i when deadtime is failed.
kosaka 0:fe068497f773 41
kosaka 5:2e53814aae4c 42 #define N_ENC (24*4) // "*4": QEI::X4_ENCODING. Number of pulses in one revolution(=360 deg) of rotary encoder.
kosaka 0:fe068497f773 43 QEI encoder (p29, p30, NC, N_ENC, QEI::X4_ENCODING);
kosaka 0:fe068497f773 44 // QEI(PinName channelA, mbed pin for channel A input.
kosaka 0:fe068497f773 45 // PinName channelB, mbed pin for channel B input.
kosaka 0:fe068497f773 46 // PinName index, mbed pin for channel Z input. (index channel input Z phase th=0), (pass NC if not needed).
kosaka 0:fe068497f773 47 // int pulsesPerRev, Number of pulses in one revolution(=360 deg).
kosaka 0:fe068497f773 48 // Encoding encoding = X2_ENCODING, X2 is default. X2 uses interrupts on the rising and falling edges of only channel A where as
kosaka 0:fe068497f773 49 // X4 uses them on both channels.
kosaka 0:fe068497f773 50 // )
kosaka 0:fe068497f773 51 // void reset (void)
kosaka 0:fe068497f773 52 // Reset the encoder.
kosaka 0:fe068497f773 53 // int getCurrentState (void)
kosaka 0:fe068497f773 54 // Read the state of the encoder.
kosaka 0:fe068497f773 55 // int getPulses (void)
kosaka 0:fe068497f773 56 // Read the number of pulses recorded by the encoder.
kosaka 0:fe068497f773 57 // int getRevolutions (void)
kosaka 0:fe068497f773 58 // Read the number of revolutions recorded by the encoder on the index channel.
kosaka 0:fe068497f773 59 /*********** User setting for control parameters (end) ***************/
kosaka 0:fe068497f773 60
kosaka 0:fe068497f773 61
kosaka 0:fe068497f773 62 Serial pc(USBTX, USBRX); // Display on tera term in PC
kosaka 0:fe068497f773 63 LocalFileSystem local("local"); // save data to mbed USB disk drive in PC
kosaka 0:fe068497f773 64 //Semaphore semaphore1(1); // wait and release to protect memories and so on
kosaka 0:fe068497f773 65 //Mutex stdio_mutex; // wait and release to protect memories and so on
kosaka 9:b8b31e9b60c2 66 Ticker controller_ticker; // Timer interrupt using TIMER3, TS<0.001 is OK. Priority is higher than rtosTimer.
kosaka 0:fe068497f773 67
kosaka 3:b6b9b8c7dce6 68 #ifdef USE_PWM // H bridge PWM mode: Vref=Vcc, FIN,2 = PWM or 0.
kosaka 3:b6b9b8c7dce6 69 PwmOut FIN(FIN_PORT); // PWM for FIN, RIN=0 when forward rotation. H bridge driver PWM mode
kosaka 3:b6b9b8c7dce6 70 PwmOut RIN(RIN_PORT); // PWM for RIN, FIN=0 when reverse rotation. H bridge driver PWM mode
kosaka 3:b6b9b8c7dce6 71 #else // H bridge Vref=analog mode
kosaka 3:b6b9b8c7dce6 72 DigitalOut FIN(FIN_PORT);// FIN for DC motor H bridge driver. FIN=1, RIN=0 then forward rotation
kosaka 3:b6b9b8c7dce6 73 DigitalOut RIN(RIN_PORT);// RIN for DC motor H bridge driver. FIN=0, RIN=1 then reverse rotation
kosaka 3:b6b9b8c7dce6 74 #endif
kosaka 4:6ccbf4d3cb6d 75 AnalogOut analog_out(VREF_PORT);// Vref for DC motor H bridge driver. DA converter for control input [0.0-1.0]% in the output range of 0.0 to 3.3[V]
kosaka 4:6ccbf4d3cb6d 76
kosaka 0:fe068497f773 77 unsigned long _count; // sampling number
kosaka 0:fe068497f773 78 float _time; // time[s]
kosaka 1:b91aeb5673f3 79 float _r; // reference signal
kosaka 9:b8b31e9b60c2 80 float _th=0; // [rad], motor angle, control output of angle controller
kosaka 9:b8b31e9b60c2 81 float _i=0; // [A], motor current, control output of current controller
kosaka 0:fe068497f773 82 float _e=0; // e=r-y for PID controller
kosaka 0:fe068497f773 83 float _eI=0; // integral of e for PID controller
kosaka 9:b8b31e9b60c2 84 float _iref; // reference current iref [A], output of angle th_contorller
kosaka 9:b8b31e9b60c2 85 float _u; // control input[V], motor input volt.
kosaka 9:b8b31e9b60c2 86 float _ei=0; // e=r-y for current PID controller
kosaka 9:b8b31e9b60c2 87 float _eiI=0; // integral of e for current PID controller
kosaka 0:fe068497f773 88 unsigned char _f_u_plus=1;// sign(u)
kosaka 0:fe068497f773 89 unsigned char _f_umax=0;// flag showing u is max or not
kosaka 9:b8b31e9b60c2 90 unsigned char _f_imax=0;// flag showing i is max or not
kosaka 0:fe068497f773 91 float debug[10]; // for debug
kosaka 0:fe068497f773 92 float disp[10]; // for printf to avoid interrupted by quicker process
kosaka 0:fe068497f773 93 #ifdef GOOD_DATA
kosaka 0:fe068497f773 94 float data[1000][5]; // memory to save data offline instead of "online fprintf".
kosaka 0:fe068497f773 95 unsigned int count3; //
kosaka 9:b8b31e9b60c2 96 unsigned int count2=(int)(TS2/iTS); //
kosaka 0:fe068497f773 97 #endif
kosaka 0:fe068497f773 98
kosaka 7:613febb8f028 99 extern "C" void mbed_reset();
kosaka 3:b6b9b8c7dce6 100
kosaka 3:b6b9b8c7dce6 101 void u2Hbridge(float u){// input u to H bridge driver
kosaka 3:b6b9b8c7dce6 102 float duty;
kosaka 3:b6b9b8c7dce6 103 unsigned int f_deadtime, f_in, r_in;
kosaka 0:fe068497f773 104
kosaka 0:fe068497f773 105 if( u > 0 ){ // forward: rotate to plus
kosaka 3:b6b9b8c7dce6 106 duty = u/3.3; // Vref
kosaka 9:b8b31e9b60c2 107 if(_f_u_plus==0){ // if plus to/from minus, set FIN=RIN=0/1 for deadtime 100[us].
kosaka 3:b6b9b8c7dce6 108 f_deadtime = 1; // deadtime is required
kosaka 3:b6b9b8c7dce6 109 _f_u_plus=1;
kosaka 3:b6b9b8c7dce6 110 }else{
kosaka 3:b6b9b8c7dce6 111 f_deadtime = 0; // deadtime is required
kosaka 3:b6b9b8c7dce6 112 }
kosaka 3:b6b9b8c7dce6 113 f_in=1; r_in=0; // set forward direction
kosaka 0:fe068497f773 114 }else if( u < 0 ){ // reverse: rotate to minus
kosaka 3:b6b9b8c7dce6 115 duty = -u/3.3;
kosaka 9:b8b31e9b60c2 116 if(_f_u_plus==1){ // if plus to/from minus, set FIN=RIN=0/1 for deadtime 100[us].
kosaka 3:b6b9b8c7dce6 117 f_deadtime = 1; // deadtime is required
kosaka 3:b6b9b8c7dce6 118 _f_u_plus=0;
kosaka 3:b6b9b8c7dce6 119 }else{
kosaka 3:b6b9b8c7dce6 120 f_deadtime = 0; // deadtime is required
kosaka 3:b6b9b8c7dce6 121 }
kosaka 3:b6b9b8c7dce6 122 f_in=0; r_in=1; // set reverse direction
kosaka 0:fe068497f773 123 }else{// if( u == 0 ){ // stop mode
kosaka 3:b6b9b8c7dce6 124 duty = 0;
kosaka 3:b6b9b8c7dce6 125 f_deadtime = 0; // deadtime is required
kosaka 3:b6b9b8c7dce6 126 f_in=0; r_in=0; // set FIN & RIN
kosaka 0:fe068497f773 127 }
kosaka 3:b6b9b8c7dce6 128
kosaka 3:b6b9b8c7dce6 129 if( f_deadtime==1 ){// making deadtime
kosaka 3:b6b9b8c7dce6 130 FIN=0; RIN=0; // set upper&lower arm zero
kosaka 3:b6b9b8c7dce6 131 wait(DEADTIME);
kosaka 3:b6b9b8c7dce6 132 }
kosaka 3:b6b9b8c7dce6 133 #ifdef USE_PWM // H bridge PWM mode: Vref=Vcc, FIN,2 = PWM or 0
kosaka 3:b6b9b8c7dce6 134 FIN = duty*(float)f_in; RIN = duty*(float)r_in; // setting pwm FIN & RIN
kosaka 4:6ccbf4d3cb6d 135 analog_out = 1; // setting Vref=UMAX, but Vref=Vcc is better.
kosaka 3:b6b9b8c7dce6 136 #else // Analog mode: Vref=analog, FIN, RIN = 1 or 0)
kosaka 3:b6b9b8c7dce6 137 FIN = f_in; RIN = r_in; // setting FIN & RIN
kosaka 3:b6b9b8c7dce6 138 analog_out = duty; // setting Vref : PID write DA, range is 0-1. Output voltage 0-3.3v
kosaka 3:b6b9b8c7dce6 139 #endif
kosaka 0:fe068497f773 140 }
kosaka 0:fe068497f773 141
kosaka 9:b8b31e9b60c2 142 void th_controller(void const *argument) { // if rtos. current controller & velocity controller
kosaka 0:fe068497f773 143 float e_old, wt;
kosaka 9:b8b31e9b60c2 144 float y, u;
kosaka 0:fe068497f773 145
kosaka 9:b8b31e9b60c2 146 // y_old = _th; // y_old=y(t-iTS) is older than y by 1 sampling time iTS[s]. update data
kosaka 0:fe068497f773 147 #ifdef SIMULATION
kosaka 9:b8b31e9b60c2 148 y = _th + iTS/0.1*(0.2*_iref*100-_th); //=(1-iTS/0.1)*_y + 0.2*iTS/0.1*_iref; // G = 0.2/(0.1s+1)
kosaka 0:fe068497f773 149 #else
kosaka 0:fe068497f773 150 // semaphore1.wait(); //
kosaka 0:fe068497f773 151 y = (float)encoder.getPulses()/(float)N_ENC*2.0*PI; // get angle [rad] from encoder
kosaka 0:fe068497f773 152 // semaphore1.release(); //
kosaka 0:fe068497f773 153 #endif
kosaka 9:b8b31e9b60c2 154 #define RMIN 0
kosaka 0:fe068497f773 155 wt = _freq_u *2.0*PI*_time;
kosaka 0:fe068497f773 156 if(wt>2*PI){ wt -= 2*PI*(float)((int)(wt/(2.0*PI)));}
kosaka 1:b91aeb5673f3 157 _r = sin(wt ) * (_rmax-RMIN)/2.0 + (_rmax+RMIN)/2.0;
kosaka 1:b91aeb5673f3 158 #ifndef R_SIN
kosaka 1:b91aeb5673f3 159 if( _r>=(_rmax+RMIN)/2.0 ) _r = _rmax;
kosaka 1:b91aeb5673f3 160 else _r = 0;
kosaka 0:fe068497f773 161 #endif
kosaka 9:b8b31e9b60c2 162 e_old = _e; // e_old=e(t-iTS) is older than e by 1 sampling time iTS[s]. update data
kosaka 0:fe068497f773 163 _e = _r - y; // error e(t)
kosaka 9:b8b31e9b60c2 164 if( _f_imax==0 ){ // u is saturated?
kosaka 9:b8b31e9b60c2 165 if( _e>((360.0/N_ENC)/180*PI) || _e<-((360.0/N_ENC)/180*PI) ){ // e is inside minimum precision?
kosaka 9:b8b31e9b60c2 166 _eI = _eI + thTS*_e; // integral of e(t)
kosaka 9:b8b31e9b60c2 167 }
kosaka 0:fe068497f773 168 }
kosaka 9:b8b31e9b60c2 169 u = _Kp4th*_e + _Kd4th*(_e-e_old)/iTS + _Ki4th*_eI; // PID output u(t)
kosaka 0:fe068497f773 170
kosaka 6:16bee943a9fa 171 #if CONTROL_MODE==1||CONTROL_MODE==2 // frequency response, or Step response
kosaka 0:fe068497f773 172 wt = _freq_u *2.0*PI*_time;
kosaka 0:fe068497f773 173 if(wt>2*PI) wt -= 2*PI*(float)((int)(wt/2.0*PI));
kosaka 0:fe068497f773 174 u = sin(wt ) * (UMAX-UMIN)/2.0 + (UMAX+UMIN)/2.0;
kosaka 0:fe068497f773 175 #endif
kosaka 0:fe068497f773 176 #if CONTROL_MODE==2 // Step response
kosaka 0:fe068497f773 177 if( u>=0 ) u = UMAX;
kosaka 0:fe068497f773 178 else u = UMIN;
kosaka 0:fe068497f773 179 #endif
kosaka 6:16bee943a9fa 180 #if CONTROL_MODE==3 // u=rand() to identify motor transfer function G(s) from V to angle
kosaka 9:b8b31e9b60c2 181 if(count2==(int)(TS2/iTS)){
kosaka 6:16bee943a9fa 182 u = ((float)rand()/RAND_MAX*2.0-1.0) * (UMAX-1.5)/2.0 + (UMAX+1.5)/2.0;
kosaka 6:16bee943a9fa 183 }else{
kosaka 9:b8b31e9b60c2 184 u = _iref;
kosaka 6:16bee943a9fa 185 }
kosaka 6:16bee943a9fa 186 #endif
kosaka 7:613febb8f028 187 #if CONTROL_MODE==4 // FFT identification, u=repetive signal
kosaka 9:b8b31e9b60c2 188 if(count2==(int)(TS2/iTS)){
kosaka 7:613febb8f028 189 u = data[count3][4];
kosaka 7:613febb8f028 190 }else{
kosaka 9:b8b31e9b60c2 191 u = _iref;
kosaka 7:613febb8f028 192 }
kosaka 7:613febb8f028 193 #endif
kosaka 9:b8b31e9b60c2 194 // u is saturated? for anti-windup
kosaka 9:b8b31e9b60c2 195 if( u>IMAX ){
kosaka 9:b8b31e9b60c2 196 _eI -= (u-IMAX)/_Ki4th; if(_eI<0){ _eI=0;}
kosaka 9:b8b31e9b60c2 197 u = IMAX;
kosaka 9:b8b31e9b60c2 198 // _f_imax = 1;
kosaka 9:b8b31e9b60c2 199 } else if( u<IMIN ){
kosaka 9:b8b31e9b60c2 200 _eI -= (u-IMIN)/_Ki4th; if(_eI>0){ _eI=0;}
kosaka 9:b8b31e9b60c2 201 u = IMIN;
kosaka 9:b8b31e9b60c2 202 // _f_imax = 1;
kosaka 9:b8b31e9b60c2 203 }else{
kosaka 9:b8b31e9b60c2 204 _f_imax = 0;
kosaka 9:b8b31e9b60c2 205 }
kosaka 9:b8b31e9b60c2 206 //-------- update data
kosaka 9:b8b31e9b60c2 207 _th = y;
kosaka 9:b8b31e9b60c2 208 _iref = u;
kosaka 9:b8b31e9b60c2 209 }
kosaka 9:b8b31e9b60c2 210 void i_controller() { // if ticker. current controller & velocity controller
kosaka 9:b8b31e9b60c2 211 void u2Hbridge(float); // input u to H bridge (full bridge) driver
kosaka 9:b8b31e9b60c2 212 #ifdef USE_CURRENT_CONTROL
kosaka 9:b8b31e9b60c2 213 float e_old;
kosaka 9:b8b31e9b60c2 214 float y, u;
kosaka 9:b8b31e9b60c2 215
kosaka 9:b8b31e9b60c2 216 // _iref=_r*180/PI; // step response from v to i, useful to tune PID gains.
kosaka 9:b8b31e9b60c2 217 debug_p17 = 1; // for debug: processing time check
kosaka 9:b8b31e9b60c2 218 // if(debug_p17 == 1) debug_p17=0;else debug_p17=1; // for debug: sampling time check
kosaka 9:b8b31e9b60c2 219
kosaka 9:b8b31e9b60c2 220 _count+=1;
kosaka 9:b8b31e9b60c2 221 // current PID controller
kosaka 9:b8b31e9b60c2 222 y = v_shunt_r/R_SHUNT; // get i [A] from shunt resistance
kosaka 9:b8b31e9b60c2 223 if(_f_u_plus==0){ y=-y;}
kosaka 9:b8b31e9b60c2 224
kosaka 9:b8b31e9b60c2 225 e_old = _ei; // e_old=e(t-iTS) is older than e by 1 sampling time iTS[s]. update data
kosaka 9:b8b31e9b60c2 226 _ei = _iref - y; // error e(t)
kosaka 9:b8b31e9b60c2 227 if( _f_umax==0 ){
kosaka 9:b8b31e9b60c2 228 _eiI = _eiI + iTS*_ei; // integral of e(t)
kosaka 9:b8b31e9b60c2 229 }
kosaka 9:b8b31e9b60c2 230 u = _Kp4i*_e + _Kd4i*(_ei-e_old)/iTS + _Ki4i*_eiI; // PID output u(t)
kosaka 9:b8b31e9b60c2 231
kosaka 9:b8b31e9b60c2 232 // u is saturated? for anti-windup
kosaka 9:b8b31e9b60c2 233 if( u>UMAX ){
kosaka 9:b8b31e9b60c2 234 _eiI -= (u-UMAX)/_Ki4i; if(_eiI<0){ _eiI=0;}
kosaka 9:b8b31e9b60c2 235 u = UMAX;
kosaka 9:b8b31e9b60c2 236 // _f_umax = 1;
kosaka 9:b8b31e9b60c2 237 } else if( u<UMIN ){
kosaka 9:b8b31e9b60c2 238 _eiI -= (u-UMIN)/_Ki4i; if(_eiI>0){ _eiI=0;}
kosaka 9:b8b31e9b60c2 239 u = UMIN;
kosaka 9:b8b31e9b60c2 240 // _f_umax = 1;
kosaka 9:b8b31e9b60c2 241 }else{
kosaka 9:b8b31e9b60c2 242 _f_umax = 0;
kosaka 9:b8b31e9b60c2 243 }
kosaka 9:b8b31e9b60c2 244 //-------- update data
kosaka 9:b8b31e9b60c2 245 _i = y;
kosaka 9:b8b31e9b60c2 246 _u = u;
kosaka 9:b8b31e9b60c2 247 #else
kosaka 9:b8b31e9b60c2 248 _u = _iref; // without current control.
kosaka 9:b8b31e9b60c2 249 #endif
kosaka 9:b8b31e9b60c2 250
kosaka 9:b8b31e9b60c2 251 u2Hbridge(_u); // input u to TA7291 driver
kosaka 0:fe068497f773 252
kosaka 0:fe068497f773 253 //-------- update data
kosaka 9:b8b31e9b60c2 254 _time += iTS; // time
kosaka 9:b8b31e9b60c2 255 debug[0]=v_shunt_r; if(_f_u_plus==0){ debug[0]=-debug[0];}
kosaka 0:fe068497f773 256 #ifdef GOOD_DATA
kosaka 9:b8b31e9b60c2 257 if(count2==(int)(TS2/iTS)){
kosaka 9:b8b31e9b60c2 258 // j=0; if(_count>=j&&_count<j+1000){i=_count-j; data[i][0]=_r; data[i][1]=debug[0]; data[i][2]=_th; data[i][3]=_time; data[i][4]=_u;}
kosaka 2:e056793d6fc5 259 if( count3<1000 ){
kosaka 9:b8b31e9b60c2 260 data[count3][0]=_r; data[count3][1]=debug[0]; data[count3][2]=_th; data[count3][3]=_time; data[count3][4]=_u;
kosaka 9:b8b31e9b60c2 261 // data[count3][0]=_iref; data[count3][1]=debug[0]; data[count3][2]=_i; data[count3][3]=_time; data[count3][4]=_u;
kosaka 2:e056793d6fc5 262 count3++;
kosaka 2:e056793d6fc5 263 }
kosaka 0:fe068497f773 264 count2 = 0;
kosaka 0:fe068497f773 265 }
kosaka 0:fe068497f773 266 count2++;
kosaka 0:fe068497f773 267 #endif
kosaka 0:fe068497f773 268 //-------- update data
kosaka 0:fe068497f773 269
kosaka 0:fe068497f773 270 debug_p17 = 0; // for debug: processing time check
kosaka 0:fe068497f773 271 }
kosaka 0:fe068497f773 272
kosaka 0:fe068497f773 273 void main1() {
kosaka 9:b8b31e9b60c2 274 RtosTimer timer_controller(th_controller);
kosaka 0:fe068497f773 275 FILE *fp; // save data to PC
kosaka 0:fe068497f773 276 #ifdef GOOD_DATA
kosaka 0:fe068497f773 277 int i;
kosaka 0:fe068497f773 278
kosaka 0:fe068497f773 279 count3=0;
kosaka 0:fe068497f773 280 #endif
kosaka 3:b6b9b8c7dce6 281 u2Hbridge(0); // initialize H bridge to stop mode
kosaka 0:fe068497f773 282 _count=0;
kosaka 0:fe068497f773 283 _time = 0; // time
kosaka 9:b8b31e9b60c2 284 _eI = _eiI = 0; // reset integrater
kosaka 1:b91aeb5673f3 285 encoder.reset(); // set encoder counter zero
kosaka 9:b8b31e9b60c2 286 _th = (float)encoder.getPulses()/(float)N_ENC*2.0*PI; // get angle [rad] from encoder
kosaka 9:b8b31e9b60c2 287 _r = _r + _th;
kosaka 1:b91aeb5673f3 288 // if( _r>2*PI ) _r -= _r-2*PI;
kosaka 0:fe068497f773 289
kosaka 0:fe068497f773 290 pc.printf("Control start!!\r\n");
kosaka 0:fe068497f773 291 if ( NULL == (fp = fopen( "/local/data.csv", "w" )) ){ error( "" );} // save data to PC
kosaka 3:b6b9b8c7dce6 292 #ifdef USE_PWM
kosaka 3:b6b9b8c7dce6 293 FIN.period( 1.0 / PWM_FREQ ); // PWM period [s]. Common to all PWM
kosaka 3:b6b9b8c7dce6 294 #endif
kosaka 9:b8b31e9b60c2 295 controller_ticker.attach(&i_controller, iTS ); // Sampling period[s] of i_controller
kosaka 9:b8b31e9b60c2 296 timer_controller.start((unsigned int)(iTS*1000.)); // Sampling period[ms] of th controller
kosaka 0:fe068497f773 297
kosaka 9:b8b31e9b60c2 298 // for ( i = 0; i < (unsigned int)(TMAX/iTS2); i++ ) {
kosaka 0:fe068497f773 299 while ( _time <= TMAX ) {
kosaka 0:fe068497f773 300 // BUG!! Dangerous if TS2<0.1 because multi interrupt by fprintf is not prohibited! 1st aug of fprintf will be destroyed.
kosaka 0:fe068497f773 301 // fprintf returns before process completed.
kosaka 0:fe068497f773 302 //BUG fprintf( fp, "%8.2f, %8.4f,\t%8.1f,\t%8.2f\r\n", disp[3], disp[1], disp[0], tmp); // save data to PC (para, y, time, u)
kosaka 0:fe068497f773 303 //OK? fprintf( fp, "%f, %f, %f, %f, %f\r\n", _time, debug[0], debug[3], (_y/(2*PI)*360.0),_u); // save data to PC (para, y, time, u)
kosaka 0:fe068497f773 304 #ifndef GOOD_DATA
kosaka 0:fe068497f773 305 fprintf( fp, "%f, %f, %f, %f, %f\r\n", _r, debug[0], _y, _time, _u); // save data to PC (para, y, time, u)
kosaka 0:fe068497f773 306 #endif
kosaka 0:fe068497f773 307 Thread::wait((unsigned int)(TS2*1000.)); //[ms]
kosaka 0:fe068497f773 308 }
kosaka 9:b8b31e9b60c2 309 controller_ticker.detach(); // timer interrupt stop
kosaka 0:fe068497f773 310 timer_controller.stop(); // rtos timer stop
kosaka 3:b6b9b8c7dce6 311 u2Hbridge(0); // initialize H bridge to stop mode
kosaka 9:b8b31e9b60c2 312 _eI = _eiI = 0; // reset integrater
kosaka 0:fe068497f773 313 #ifdef GOOD_DATA
kosaka 0:fe068497f773 314 for(i=0;i<1000;i++){ fprintf( fp, "%f, %f, %f, %f, %f\r\n", data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);} // save data to PC (para, y, time, u)
kosaka 0:fe068497f773 315 #endif
kosaka 0:fe068497f773 316 fclose( fp ); // release mbed USB drive
kosaka 0:fe068497f773 317 pc.printf("Control completed!!\r\n\r\n");
kosaka 0:fe068497f773 318 }
kosaka 0:fe068497f773 319
kosaka 0:fe068497f773 320 void thread_print2PC(void const *argument) {
kosaka 0:fe068497f773 321 while (true) {
kosaka 9:b8b31e9b60c2 322 pc.printf("%8.1f[s]\t%8.5f[V]\t%4d [deg]\t%8.2f\r\n", _time, _u, (int)(_th/(2*PI)*360.0), debug[0]*3.3/R_SHUNT); // print to tera term
kosaka 0:fe068497f773 323 Thread::wait(200);
kosaka 0:fe068497f773 324 }
kosaka 0:fe068497f773 325 }
kosaka 0:fe068497f773 326
kosaka 0:fe068497f773 327 void main2(void const *argument) {
kosaka 0:fe068497f773 328 #if CONTROL_MODE==0 // PID control
kosaka 0:fe068497f773 329 char f;
kosaka 0:fe068497f773 330 float val;
kosaka 0:fe068497f773 331 #endif
kosaka 7:613febb8f028 332 #if CONTROL_MODE==4 // FFT identification, u=repetive signal
kosaka 7:613febb8f028 333 int i, j;
kosaka 7:613febb8f028 334 float max_u;
kosaka 7:613febb8f028 335 #endif
kosaka 7:613febb8f028 336
kosaka 0:fe068497f773 337 while(true){
kosaka 7:613febb8f028 338 #if CONTROL_MODE==4 // FFT identification, u=repetive signal
kosaka 7:613febb8f028 339 max_u = 0;
kosaka 7:613febb8f028 340 for( i=0;i<1000;i++ ){ // u=data[i][4]: memory for FFT identification input signal.
kosaka 7:613febb8f028 341 data[i][4] = sin(_freq_u*2*PI * i*TS2); // _u_freq = 10/2 * i [Hz]
kosaka 7:613febb8f028 342 if( data[i][4]>max_u ){ max_u=data[i][4];}
kosaka 7:613febb8f028 343 }
kosaka 7:613febb8f028 344 for( j=1;j<50;j++ ){
kosaka 7:613febb8f028 345 for( i=0;i<1000;i++ ){
kosaka 7:613febb8f028 346 data[i][4] += sin((float)(j+1)*_freq_u*2*PI * i*TS2);
kosaka 7:613febb8f028 347 if( data[i][4]>max_u ){ max_u=data[i][4];}
kosaka 7:613febb8f028 348 }
kosaka 7:613febb8f028 349 }
kosaka 7:613febb8f028 350 for( i=0;i<1000;i++ ){
kosaka 7:613febb8f028 351 // data[i][4] *= UMAX/max_u;
kosaka 7:613febb8f028 352 data[i][4] = (data[i][4]/max_u+3)/4*UMAX;
kosaka 7:613febb8f028 353 }
kosaka 7:613febb8f028 354 #endif
kosaka 0:fe068497f773 355 main1();
kosaka 0:fe068497f773 356
kosaka 0:fe068497f773 357 #if CONTROL_MODE>=1 // frequency response, or Step response
kosaka 7:613febb8f028 358 pc.printf("Input u(t) Frequency[Hz]? (if 9, reset mbed)...");
kosaka 0:fe068497f773 359 pc.scanf("%f",&_freq_u);
kosaka 0:fe068497f773 360 pc.printf("%8.3f[Hz]\r\n", _freq_u); // print to tera term
kosaka 7:613febb8f028 361 if(_freq_u==9){ mbed_reset();}
kosaka 0:fe068497f773 362 #else // PID control
kosaka 1:b91aeb5673f3 363 // #ifdef R_SIN
kosaka 1:b91aeb5673f3 364 // pc.printf("Reference signal r(t) Frequency[Hz]?...");
kosaka 1:b91aeb5673f3 365 // pc.scanf("%f",&_freq_u);
kosaka 1:b91aeb5673f3 366 // pc.printf("%8.3f[Hz]\r\n", _freq_u); // print to tera term
kosaka 1:b91aeb5673f3 367 // #endif
kosaka 9:b8b31e9b60c2 368 pc.printf("th-loop: Kp=%f, Ki=%f, Kd=%f, r=%f[deg], %f Hz\r\n",_Kp4th, _Ki4th, _Kd4th, _rmax*180./PI, _freq_u);
kosaka 9:b8b31e9b60c2 369 pc.printf(" i-loop: Kp=%f, Ki=%f, Kd=%f\r\n",_Kp4i, _Ki4i, _Kd4i);
kosaka 9:b8b31e9b60c2 370 pc.printf("Which number do you like to change?\r\n ... 0)no change, 1)Kp, 2)Ki, 3)Kd, 4)r(t) freq.[Hz], 5)r(t) amp.[deg].\r\n 6)iKp, 7)iKi, 8)iKd, 9)reset mbed ?");
kosaka 0:fe068497f773 371 f=pc.getc()-48; //int = char-48
kosaka 0:fe068497f773 372 pc.printf("\r\n Value?... ");
kosaka 1:b91aeb5673f3 373 if(f>=1&&f<=5){ pc.scanf("%f",&val);}
kosaka 0:fe068497f773 374 pc.printf("%8.3f\r\n", val); // print to tera term
kosaka 9:b8b31e9b60c2 375 if(f==1){ _Kp4th = val;}
kosaka 9:b8b31e9b60c2 376 if(f==2){ _Ki4th = val;}
kosaka 9:b8b31e9b60c2 377 if(f==3){ _Kd4th = val;}
kosaka 1:b91aeb5673f3 378 if(f==4){ _freq_u = val;}
kosaka 1:b91aeb5673f3 379 if(f==5){ _rmax = val/180.*PI;}
kosaka 9:b8b31e9b60c2 380 if(f==6){ _Kp4i = val;}
kosaka 9:b8b31e9b60c2 381 if(f==7){ _Ki4i = val;}
kosaka 9:b8b31e9b60c2 382 if(f==8){ _Kd4i = val;}
kosaka 7:613febb8f028 383 if(f==9){ mbed_reset();}
kosaka 9:b8b31e9b60c2 384 pc.printf("th-loop: Kp=%f, Ki=%f, Kd=%f, r=%f[deg], %f Hz\r\n",_Kp4th, _Ki4th, _Kd4th, _rmax*180./PI, _freq_u);
kosaka 9:b8b31e9b60c2 385 pc.printf(" i-loop: Kp=%f, Ki=%f, Kd=%f\r\n",_Kp4i, _Ki4i, _Kd4i);
kosaka 0:fe068497f773 386 #endif
kosaka 0:fe068497f773 387 }
kosaka 0:fe068497f773 388 }
kosaka 0:fe068497f773 389 int main() {
kosaka 0:fe068497f773 390 // void main1();
kosaka 0:fe068497f773 391 Thread save2PC(main2,NULL,osPriorityBelowNormal);
kosaka 0:fe068497f773 392 Thread print2PC(thread_print2PC,NULL,osPriorityLow);
kosaka 0:fe068497f773 393
kosaka 0:fe068497f773 394 // osStatus set_priority(osPriority osPriorityBelowNormal );
kosaka 0:fe068497f773 395 // Priority of Thread (RtosTimer has no priority?)
kosaka 0:fe068497f773 396 // osPriorityIdle = -3, ///< priority: idle (lowest)--> then, mbed ERROR!!
kosaka 0:fe068497f773 397 // osPriorityLow = -2, ///< priority: low
kosaka 0:fe068497f773 398 // osPriorityBelowNormal = -1, ///< priority: below normal
kosaka 0:fe068497f773 399 // osPriorityNormal = 0, ///< priority: normal (default)
kosaka 0:fe068497f773 400 // osPriorityAboveNormal = +1, ///< priority: above normal
kosaka 0:fe068497f773 401 // osPriorityHigh = +2, ///< priority: high
kosaka 0:fe068497f773 402 // osPriorityRealtime = +3, ///< priority: realtime (highest)
kosaka 0:fe068497f773 403 // osPriorityError = 0x84 ///< system cannot determine priority or thread has illegal priority
kosaka 0:fe068497f773 404 }