MPU6050 module library
All credit to kriswiner @https://github.com/kriswiner. Just changed some code for my own purposes
MPU6050.cpp
- Committer:
- kohlerba
- Date:
- 2017-11-21
- Revision:
- 1:ca4d8c044898
- Parent:
- 0:8a2cac9ba89e
File content as of revision 1:ca4d8c044898:
#include "mpu6050.h"
int Gscale = GFS_250DPS;
int Ascale = AFS_2G;
I2C i2c(I2C_SDA, I2C_SCL);
float aRes, gRes;
int intPin = 12;
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
float ax, ay, az; // Stores the real accel value in g's
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
float gx, gy, gz; // Stores the real gyro value in degrees per seconds
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
float temperature;
float SelfTest[6];
int delt_t = 0; // used to control display output rate
int count = 0; // used to control display output rate
// parameters for 6 DoF sensor fusion calculations
//float PI = 3.14159265358979323846f;
float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
float pitch, yaw, roll;
float deltat = 0.0f; // integration interval for both filter schemes
int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
void mpu6050::writeByte(uint8_t address, uint8_t subAddress, uint8_t data){
char data_write[2];
data_write[0] = subAddress;
data_write[1] = data;
i2c.write(address, data_write, 2, 0);
}
char mpu6050::readByte(uint8_t address, uint8_t subAddress){
char data[1]; // `data` will store the register data
char data_write[1];
data_write[0] = subAddress;
i2c.write(address, data_write, 1, 1); // no stop
i2c.read(address, data, 1, 0);
return data[0];
}
void mpu6050::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest){
char data[14];
char data_write[1];
data_write[0] = subAddress;
i2c.write(address, data_write, 1, 1); // no stop
i2c.read(address, data, count, 0);
for(int ii = 0; ii < count; ii++) {
dest[ii] = data[ii];
}
}
void mpu6050::getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case GFS_250DPS:
gRes = 250.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_1000DPS:
gRes = 1000.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}
void mpu6050::getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
}
}
void mpu6050::readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
void mpu6050::readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
int16_t mpu6050::readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
}
// Configure the motion detection control for low power accelerometer mode
void mpu6050::lowPowerAccelOnly()
{
// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
c = readByte(MPU6050_ADDRESS, CONFIG);
writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
c = readByte(MPU6050_ADDRESS, INT_ENABLE);
writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
// for at least the counter duration
writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
wait(0.1); // Add delay for accumulation of samples
c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
}
void mpu6050::reset() {
// reset device
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
wait(0.1);
}
void mpu6050::init()
{
// Initialize MPU6050 device
// wake up device
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
// get stable time source
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
// Configure Gyro and Accelerometer
// Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
// DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
// Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
// Set accelerometer configuration
c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void mpu6050::calibrate(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device, reset all registers, clear gyro and accelerometer bias registers
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
wait(0.1);
// get stable time source
// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
wait(0.2);
// Configure device for bias calculation
writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
wait(0.015);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Push accelerometer biases to hardware registers
// writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
// writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
// writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
// writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
// writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
// writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
// Output scaled accelerometer biases for manual subtraction in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void mpu6050::selfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[4] = {0, 0, 0, 0};
uint8_t selfTest[6];
float factoryTrim[6];
// Configure the accelerometer for self-test
writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
wait(0.25); // Delay a while to let the device execute the self-test
rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
// Extract the acceleration test results first
selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
// Extract the gyration test results first
selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
// Process results to allow final comparison with factory set values
factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
// Output self-test results and factory trim calculation if desired
// Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
// Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
// Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
// Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get to percent, must multiply by 100 and subtract result from 100
for (int i = 0; i < 6; i++) {
destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
}
}
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
void mpu6050::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
{
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm; // vector norm
float f1, f2, f3; // objective funcyion elements
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
float qDot1, qDot2, qDot3, qDot4;
float hatDot1, hatDot2, hatDot3, hatDot4;
float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
// Auxiliary variables to avoid repeated arithmetic
float _halfq1 = 0.5f * q1;
float _halfq2 = 0.5f * q2;
float _halfq3 = 0.5f * q3;
float _halfq4 = 0.5f * q4;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
// float _2q1q3 = 2.0f * q1 * q3;
// float _2q3q4 = 2.0f * q3 * q4;
// Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Compute the objective function and Jacobian
f1 = _2q2 * q4 - _2q1 * q3 - ax;
f2 = _2q1 * q2 + _2q3 * q4 - ay;
f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
J_11or24 = _2q3;
J_12or23 = _2q4;
J_13or22 = _2q1;
J_14or21 = _2q2;
J_32 = 2.0f * J_14or21;
J_33 = 2.0f * J_11or24;
// Compute the gradient (matrix multiplication)
hatDot1 = J_14or21 * f2 - J_11or24 * f1;
hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
hatDot4 = J_14or21 * f1 + J_11or24 * f2;
// Normalize the gradient
norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
hatDot1 /= norm;
hatDot2 /= norm;
hatDot3 /= norm;
hatDot4 /= norm;
// Compute estimated gyroscope biases
gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
// Compute and remove gyroscope biases
gbiasx += gerrx * deltat * zeta;
gbiasy += gerry * deltat * zeta;
gbiasz += gerrz * deltat * zeta;
// gx -= gbiasx;
// gy -= gbiasy;
// gz -= gbiasz;
// Compute the quaternion derivative
qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
// Compute then integrate estimated quaternion derivative
q1 += (qDot1 -(beta * hatDot1)) * deltat;
q2 += (qDot2 -(beta * hatDot2)) * deltat;
q3 += (qDot3 -(beta * hatDot3)) * deltat;
q4 += (qDot4 -(beta * hatDot4)) * deltat;
// Normalize the quaternion
norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}
Bradley Kohler