KSM edits to RA8875

Dependents:   Liz_Test_Code

GraphicsDisplay.h

Committer:
WiredHome
Date:
2014-01-23
Revision:
34:c99ec28fac66
Parent:
33:b6b710758ab3
Child:
35:7dcab9e3ab25

File content as of revision 34:c99ec28fac66:

/* mbed GraphicsDisplay Display Library Base Class
 * Copyright (c) 2007-2009 sford
 * Released under the MIT License: http://mbed.org/license/mit
 *
 * A library for providing a common base class for Graphics displays
 * To port a new display, derive from this class and implement
 * the constructor (setup the display), pixel (put a pixel
 * at a location), width and height functions. Everything else
 * (locate, printf, putc, cls, window, putp, fill, blit, blitbit) 
 * will come for free. You can also provide a specialised implementation
 * of window and putp to speed up the results
 */

#ifndef MBED_GRAPHICSDISPLAY_H
#define MBED_GRAPHICSDISPLAY_H
#include "Bitmap.h"
#include "TextDisplay.h"

/// The GraphicsDisplay class 
/// 
/// This graphics display class supports both graphics and text operations.
/// Typically, a subclass is derived from this which has localizations to
/// adapt to a specific hardware platform (e.g. a display controller chip),
/// that overrides methods in here to either add more capability or perhaps 
/// to improve performance, by leveraging specific hardware capabilities.
///
class GraphicsDisplay : public TextDisplay 
{
public:
    /// The constructor
    GraphicsDisplay(const char* name);
    
    /// Draw a pixel in the specified color.
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @param x is the horizontal offset to this pixel.
    /// @param y is the vertical offset to this pixel.
    /// @param color defines the color for the pixel.
    /// @returns success/failure code. @see RetCode_t.
    ///
    virtual RetCode_t pixel(unsigned int x, unsigned int y, color_t color) = 0;
    
    /// get the screen width in pixels
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @returns screen width in pixels.
    ///
    virtual uint16_t width() = 0;
    
    /// get the screen height in pixels
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @returns screen height in pixels.
    ///
    virtual uint16_t height() = 0;

    /// Prepare the controller to write binary data to the screen by positioning
    /// the memory cursor.
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @param x is the horizontal position in pixels (from the left edge)
    /// @param y is the vertical position in pixels (from the top edge)
    /// @returns success/failure code. @see RetCode_t.
    ///
    virtual RetCode_t SetGraphicsCursor(uint16_t x, uint16_t y) = 0;
    
    /// Draw a filled rectangle in the specified color
    ///
    /// @note As a side effect, this changes the current
    ///     foreground color for subsequent operations.
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @param x1 is the horizontal start of the line.
    /// @param y1 is the vertical start of the line.
    /// @param x2 is the horizontal end of the line.
    /// @param y2 is the vertical end of the line.
    /// @param color defines the foreground color.
    /// @param fillit is optional to NOFILL the rectangle. default is FILL.
    /// @returns success/failure code. @see RetCode_t.
    ///
    virtual RetCode_t fillrect(unsigned int x1, unsigned int y1, unsigned int x2, unsigned int y2, 
        color_t color, fill_t fillit = FILL) = 0;


    virtual RetCode_t WriteCommand(unsigned char command, unsigned int data = 0xFFFF) = 0;
    virtual RetCode_t WriteData(unsigned char data) = 0;

    /// Set the window, which controls where items are written to the screen.
    ///
    /// When something hits the window width, it wraps back to the left side
    /// and down a row. If the initial write is outside the window, it will
    /// be captured into the window when it crosses a boundary.
    ///
    /// @param x is the left edge in pixels.
    /// @param y is the top edge in pixels.
    /// @param w is the window width in pixels.
    /// @param h is the window height in pixels.
    /// @returns success/failure code. @see RetCode_t.
    ///
    virtual RetCode_t window(unsigned int x, unsigned int y, unsigned int w, unsigned int h);
    
    /// Clear the screen.
    ///
    /// The behavior is to clear the whole screen.
    ///
    /// @returns success/failure code. @see RetCode_t.
    ///
    virtual RetCode_t cls();
    

    virtual void WindowMax(void);
    
    /// method to put a single color pixel to the screen.
    ///
    /// This method may be called as many times as necessary after 
    /// @see _StartGraphicsStream() is called, and it should be followed 
    /// by _EndGraphicsStream.
    ///
    /// @param pixel is a color value to be put on the screen.
    /// @returns error code.
    ///
    virtual RetCode_t putp(color_t pixel);

            
    virtual void fill(int x, int y, int w, int h, color_t color);
    virtual void blit(int x, int y, int w, int h, const int * color);    
    
    virtual int blitbit(int x, int y, int w, int h, const char * color);
    
    /// This method transfers one character from the external font data
    /// to the screen.
    ///
    /// @note the font data is in a special format as generate by
    ///         the mikroe font creator. \\
    ///         See http://www.mikroe.com/glcd-font-creator/
    ///
    /// @param x is the horizontal pixel coordinate
    /// @param y is the vertical pixel coordinate
    /// @param fontTable is the base of the table which has the metrics
    /// @param fontChar is the start of that record in the table for the char (e.g. 'A' - 'Z')
    /// @returns how far the cursor should advance to the right in pixels
    ///
    virtual int fontblit(int x, int y, const unsigned char * fontTable, const unsigned char * fontChar);
    
    /// This method returns the color value from a palette.
    ///
    /// This method accepts a pointer to a Bitmap color palette, which
    /// is a table in memory composed of RGB Quad values (r, g, b, 0),
    /// and an index into that table. It then extracts the color information
    /// and downsamples it to a color_t value which it returns.
    ///
    /// @note This method probably has very little value outside of
    ///         the internal methods for reading BMP files.
    ///
    /// @param colorPalette is the handle to the color palette to use.
    /// @param i is the index into the color palette.
    /// @returns the color in color_t format.
    ///
    color_t RGBQuadToRGB16(RGBQUAD * colorPalette, uint16_t i);
    
    /// This method reads a disk file that is in bitmap format and 
    /// puts it on the screen.
    ///
    /// @note This only reads 16-bit bitmap format.
    /// @note This is a slow operation, partially due to the use of
    ///         the local file system, and partially because bmp files
    ///         are stored from the bottom up, and the memory is written
    ///         from the top down; as a result, it constantly 'seeks'
    ///         on the file system for the next row of information.
    ///
    /// As a performance test, a sample picture was timed. A family picture
    /// was converted to Bitmap format; shrunk to 352 x 272 pixels and save
    /// in 8-bit color format. The resulting file size was 94.5 KByte.
    /// The SPI port interface was set to 20 MHz.
    /// The original bitmap rendering software was purely in software, 
    /// pushing 1 pixel at a time to the write function, which did use SPI
    /// hardware (not pin wiggling) to transfer commands and data to the 
    /// display. Then, the driver was improved to leverage the capability
    /// of the derived display driver. As a final check, instead of the
    /// [known slow] local file system, a randomly chosen USB stick was 
    /// used. The performance results are impressive (but depend on the
    /// listed factors). 
    ///
    /// File System     | Rendering Method | Rendering Time
    /// LocalFileSystem | Software only    | 34 sec
    /// LocalFileSystem | Hardware RA8875  | 9 sec
    /// MSCFileSystem   | Hardware RA8875  | 3 sec
    /// 
    /// @param x is the horizontal pixel coordinate
    /// @param y is the vertical pixel coordinate
    /// @param Name_BMP is the filename on the local file system.
    /// @returns success or error code.
    ///
    RetCode_t RenderBitmapFile(unsigned int x, unsigned int y, const char *Name_BMP);
    
    /// prints one character at the specified coordinates.
    ///
    /// This will print the character at the specified pixel coordinates.
    ///
    /// @param x is the horizontal offset in pixels.
    /// @param y is the vertical offset in pixels.
    /// @param value is the character to print.
    /// @returns number of pixels to index to the right if a character was printed, 0 otherwise.
    ///
    virtual int character(int x, int y, int value);
    
    /// get the number of colums based on the currently active font
    ///
    /// @returns number of columns.
    ///    
    virtual int columns(void);

    /// get the number of rows based on the currently active font
    ///
    /// @returns number of rows.
    ///    
    virtual int rows(void);
    
    /// Select a bitmap font (provided by the user) for all subsequent text.
    ///
    /// @note Tool to create the fonts is accessible from its creator
    ///     available at http://www.mikroe.com. 
    ///     Change the data to an array of type char[].
    ///
    /// @param font is a pointer to a specially formed font array.
    ///     This special font array has a 4-byte header, followed by 
    ///     the data:
    ///   - the number of bytes per char
    ///   - the vertical size in pixels for each character
    ///   - the horizontal size in pixels for each character
    ///   - the number of bytes per vertical line (width of the array)
    /// @returns error code.
    ///
    virtual RetCode_t set_font(const unsigned char * font = NULL);

protected:

    /// Pure virtual method indicating the start of a graphics stream.
    ///
    /// This is called prior to a stream of pixel data being sent.
    /// This may cause register configuration changes in the derived
    /// class in order to prepare the hardware to accept the streaming
    /// data.
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @returns error code.
    ///
    virtual RetCode_t _StartGraphicsStream(void) = 0;
    
    /// Pure virtual method indicating the end of a graphics stream.
    ///
    /// This is called to conclude a stream of pixel data that was sent.
    /// This may cause register configuration changes in the derived
    /// class in order to stop the hardware from accept the streaming
    /// data.
    ///
    /// @note this method must be supported in the derived class.
    ///
    /// @returns error code.
    ///
    virtual RetCode_t _EndGraphicsStream(void) = 0;

    const unsigned char * font;     ///< reference to an external font somewhere in memory
    
    // pixel location
    short _x;
    short _y;
    
    // window location
    short _x1;
    short _x2;
    short _y1;
    short _y2;
};

#endif