Maniacbug's nRF24L01 arduino library ported to mbed. Functional with minor issues.
Fork of nRF24L01P_Maniacbug by
Revision 1:d061e50ccc5d, committed 2013-04-04
- Comitter:
- Christilut
- Date:
- Thu Apr 04 11:49:28 2013 +0000
- Parent:
- 0:eb5b89f49c35
- Child:
- 2:a483f426d380
- Commit message:
- Fixed name
Changed in this revision
--- a/nRF24L01P_MANIC.cpp Thu Apr 04 11:46:12 2013 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,964 +0,0 @@
-/*
- Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- version 2 as published by the Free Software Foundation.
- */
-
-#include "nRF24L01P_MANIC.h"
-
-/****************************************************************************/
-
-void RF24::csn(int mode)
-{
-// // Minimum ideal SPI bus speed is 2x data rate
-// // If we assume 2Mbs data rate and 16Mhz clock, a
-// // divider of 4 is the minimum we want.
-// // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
-////#ifdef ARDUINO
-//// spi.setBitOrder(MSBFIRST);
-//// spi.setDataMode(SPI_MODE0);
-//// spi.setClockDivider(SPI_CLOCK_DIV4);
-////#endif
-//// digitalWrite(csn_pin,mode);
-//
-//
- csn_pin = mode;
-}
-
-/****************************************************************************/
-
-void RF24::ce(int level)
-{
- //digitalWrite(ce_pin,level);
- ce_pin = level;
- wait_us(_NRF24L01P_TIMING_Tpece2csn_us);
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
-{
- uint8_t status;
-
- csn(LOW);
- status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
- while ( len-- )
- *buf++ = spi.write(0xff);
-
- csn(HIGH);
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_register(uint8_t reg) //checked
-{
- csn(LOW);
- spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
- uint8_t result = spi.write(0xff);
-
- csn(HIGH);
- return result;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
-{
- uint8_t status;
- int originalCe = ce_pin;
- ce(LOW);
-
- csn(LOW);
- status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
- while ( len-- )
- spi.write(*buf++);
-
- csn(HIGH);
-
- ce_pin = originalCe;
- wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::write_register(uint8_t reg, uint8_t value) //checked
-{
- uint8_t status;
-
-// IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
- int originalCe = ce_pin;
- ce(LOW);
-
-
- csn(LOW);
- status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
- spi.write(value);
- csn(HIGH);
-
- ce_pin = originalCe;
- wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::write_payload(const void* buf, uint8_t len)
-{
- uint8_t status;
-
- const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
-
- uint8_t data_len = min(len,payload_size);
- uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-
- //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
-
- csn(LOW);
- status = spi.write( W_TX_PAYLOAD );
- while ( data_len-- )
- spi.write(*current++);
- while ( blank_len-- )
- spi.write(0);
- csn(HIGH);
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_payload(void* buf, uint8_t len)
-{
- uint8_t status;
- uint8_t* current = reinterpret_cast<uint8_t*>(buf);
-
- uint8_t data_len = min(len,payload_size);
- uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-
- //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
-
- csn(LOW);
- status = spi.write( R_RX_PAYLOAD );
- while ( data_len-- )
- *current++ = spi.write(0xff);
- while ( blank_len-- )
- spi.write(0xff);
- csn(HIGH);
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::flush_rx(void)
-{
- uint8_t status;
-
- csn(LOW);
- status = spi.write( FLUSH_RX );
- csn(HIGH);
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::flush_tx(void)
-{
- uint8_t status;
-
- csn(LOW);
- status = spi.write( FLUSH_TX );
- csn(HIGH);
-
- return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::get_status(void)
-{
- uint8_t status;
-
- csn(LOW);
- status = spi.write( NOP );
- csn(HIGH);
-
- return status;
-}
-
-/****************************************************************************/
-
-void RF24::print_status(uint8_t status)
-{
- printf("STATUS = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n",
- status,
- (status & RX_DR)?1:0,
- (status & TX_DS)?1:0,
- (status & MAX_RT)?1:0,
- ((status >> RX_P_NO) & 7),
- (status & TX_FULL)?1:0
- );
-}
-
-///****************************************************************************/
-
-void RF24::print_observe_tx(uint8_t value)
-{
- printf("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n",
- value,
- (value >> PLOS_CNT) & 15,
- (value >> ARC_CNT) & 15
- );
-}
-
-/****************************************************************************/
-
-void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
-{
-// char extra_tab = strlen(name) < 8 ? '\t' : 0;
- printf("%s =",name);
- while (qty--)
- printf(" 0x%02x",read_register(reg++));
- printf("\r\n");
-}
-
-/****************************************************************************/
-
-void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
-{
-// char extra_tab = strlen(name) < 8 ? '\t' : 0;
- printf("%s =",name);
-
- while (qty--) {
- uint8_t buffer[5];
- read_register(reg++,buffer,sizeof buffer);
-
- printf(" 0x");
- uint8_t* bufptr = buffer + sizeof buffer;
- while( --bufptr >= buffer )
- printf("%02x",*bufptr);
- }
-
- printf("\r\n");
-}
-
-/****************************************************************************/
-
-RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin):
- ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
- payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false),
- pipe0_reading_address(0), spi(mosi, miso, sck)
-{
-}
-
-/****************************************************************************/
-
-void RF24::setChannel(uint8_t channel)
-{
- // TODO: This method could take advantage of the 'wide_band' calculation
- // done in setChannel() to require certain channel spacing.
-
- const uint8_t max_channel = 127;
- write_register(RF_CH,min(channel,max_channel));
-}
-
-/****************************************************************************/
-
-void RF24::setPayloadSize(uint8_t size)
-{
- const uint8_t max_payload_size = 32;
- payload_size = min(size,max_payload_size);
-}
-
-/****************************************************************************/
-
-uint8_t RF24::getPayloadSize(void)
-{
- return payload_size;
-}
-
-/****************************************************************************/
-
-static const char rf24_datarate_e_str_0[] = "1MBPS";
-static const char rf24_datarate_e_str_1[] = "2MBPS";
-static const char rf24_datarate_e_str_2[] = "250KBPS";
-static const char * const rf24_datarate_e_str_P[] = {
- rf24_datarate_e_str_0,
- rf24_datarate_e_str_1,
- rf24_datarate_e_str_2,
-};
-static const char rf24_model_e_str_0[] = "nRF24L01";
-static const char rf24_model_e_str_1[] = "nRF24L01+";
-static const char * const rf24_model_e_str_P[] = {
- rf24_model_e_str_0,
- rf24_model_e_str_1,
-};
-static const char rf24_crclength_e_str_0[] = "Disabled";
-static const char rf24_crclength_e_str_1[] = "8 bits";
-static const char rf24_crclength_e_str_2[] = "16 bits" ;
-static const char * const rf24_crclength_e_str_P[] = {
- rf24_crclength_e_str_0,
- rf24_crclength_e_str_1,
- rf24_crclength_e_str_2,
-};
-static const char rf24_pa_dbm_e_str_0[] = "PA_MIN";
-static const char rf24_pa_dbm_e_str_1[] = "PA_LOW";
-static const char rf24_pa_dbm_e_str_2[] = "PA_MED";
-static const char rf24_pa_dbm_e_str_3[] = "PA_HIGH";
-static const char * const rf24_pa_dbm_e_str_P[] = {
- rf24_pa_dbm_e_str_0,
- rf24_pa_dbm_e_str_1,
- rf24_pa_dbm_e_str_2,
- rf24_pa_dbm_e_str_3,
-};
-
-void RF24::printDetails(void)
-{
- print_status(get_status());
-
- print_address_register("RX_ADDR_P0-1",RX_ADDR_P0,2);
- print_byte_register("RX_ADDR_P2-5", RX_ADDR_P2,4);
- print_address_register("TX_ADDR", TX_ADDR);
-
- print_byte_register("RX_PW_P0-6", RX_PW_P0,6);
- print_byte_register("EN_AA", EN_AA);
- print_byte_register("EN_RXADDR", EN_RXADDR);
- print_byte_register("RF_CH", RF_CH);
- print_byte_register("RF_SETUP", RF_SETUP);
- print_byte_register("CONFIG", CONFIG);
- print_byte_register("DYNPD/FEATURE",DYNPD,2);
-
- printf("Data Rate\t = %s\r\n", rf24_datarate_e_str_P[getDataRate()]);
- printf("Model\t\t = %s\r\n", rf24_model_e_str_P[isPVariant()]);
- printf("CRC Length\t = %s\r\n", rf24_crclength_e_str_P[getCRCLength()]);
- printf("PA Power\t = %s\r\n", rf24_pa_dbm_e_str_P[getPALevel()]);
-}
-
-/****************************************************************************/
-
-void RF24::begin(void)
-{
- // Initialize pins
-// pinMode(ce_pin,OUTPUT); //ARD
-// pinMode(csn_pin,OUTPUT);
-
- mainTimer.start();
-
-
- spi.frequency(_NRF24L01P_SPI_MAX_DATA_RATE/5); // 2Mbit, 1/5th the maximum transfer rate for the SPI bus
- spi.format(8,0); // 8-bit, ClockPhase = 0, ClockPolarity = 0
-
- wait_us(_NRF24L01P_TIMING_Tundef2pd_us); // Wait for Power-on reset //MBED
-
- // Initialize SPI bus
-// spi.begin(); //ARD
-
- ce(LOW);
- csn(HIGH);
-
- // Must allow the radio time to settle else configuration bits will not necessarily stick.
- // This is actually only required following power up but some settling time also appears to
- // be required after resets too. For full coverage, we'll always assume the worst.
- // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
- // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
- // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
-// delay( 5 ) ;
- wait_ms(5);
-
- // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
- // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
- // sizes must never be used. See documentation for a more complete explanation.
- write_register(SETUP_RETR,(4 << ARD) | (15 << ARC));
-
- // Restore our default PA level
- setPALevel( RF24_PA_MAX ) ;
-
- // Determine if this is a p or non-p RF24 module and then
- // reset our data rate back to default value. This works
- // because a non-P variant won't allow the data rate to
- // be set to 250Kbps.
- if( setDataRate( RF24_250KBPS ) ) {
- p_variant = true ;
- }
-
- // Then set the data rate to the slowest (and most reliable) speed supported by all
- // hardware.
- setDataRate( RF24_1MBPS ) ;
-
- // Initialize CRC and request 2-byte (16bit) CRC
- setCRCLength( RF24_CRC_16 ) ;
-
- // Disable dynamic payloads, to match dynamic_payloads_enabled setting
- write_register(DYNPD,0);
-
- // Reset current status
- // Notice reset and flush is the last thing we do
- write_register(STATUS,RX_DR | TX_DS | MAX_RT );
-
- // Set up default configuration. Callers can always change it later.
- // This channel should be universally safe and not bleed over into adjacent
- // spectrum.
- setChannel(76);
-
- // Flush buffers
- flush_rx();
- flush_tx();
-}
-
-/****************************************************************************/
-
-void RF24::startListening(void)
-{
- write_register(CONFIG, read_register(CONFIG) | PWR_UP | PRIM_RX);
- write_register(STATUS, RX_DR | TX_DS | MAX_RT );
-
- // Restore the pipe0 adddress, if exists
- if (pipe0_reading_address)
- write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
-
- // Flush buffers
- flush_rx();
- flush_tx();
-
- // Go!
- ce(HIGH);;
-
- // wait for the radio to come up (130us actually only needed)
-// delayMicroseconds(130);
- wait_us(130);
-}
-
-/****************************************************************************/
-
-void RF24::stopListening(void)
-{
- ce(LOW);
- flush_tx();
- flush_rx();
-}
-
-/****************************************************************************/
-
-void RF24::powerDown(void)
-{
- write_register(CONFIG,read_register(CONFIG) & ~PWR_UP);
-}
-
-/****************************************************************************/
-
-void RF24::powerUp(void)
-{
- write_register(CONFIG,read_register(CONFIG) | PWR_UP);
-}
-
-/******************************************************************/
-
-bool RF24::write( const void* buf, uint8_t len )
-{
- bool result = false;
-
- // Begin the write
- startWrite(buf,len);
-
- // ------------
- // At this point we could return from a non-blocking write, and then call
- // the rest after an interrupt
-
- // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
- // or MAX_RT (maximum retries, transmission failed). Also, we'll timeout in case the radio
- // is flaky and we get neither.
-
- // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster
- // if I tighted up the retry logic. (Default settings will be 1500us.
- // Monitor the send
- uint8_t observe_tx;
- uint8_t status;
- uint32_t sent_at = mainTimer.read_ms();
- const uint32_t timeout = 500; //ms to wait for timeout
- do {
- status = read_register(OBSERVE_TX,&observe_tx,1);
-// IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
- } while( ! ( status & ( TX_DS | MAX_RT ) ) && ( mainTimer.read_ms() - sent_at < timeout ) );
-
- // The part above is what you could recreate with your own interrupt handler,
- // and then call this when you got an interrupt
- // ------------
-
- // Call this when you get an interrupt
- // The status tells us three things
- // * The send was successful (TX_DS)
- // * The send failed, too many retries (MAX_RT)
- // * There is an ack packet waiting (RX_DR)
- bool tx_ok, tx_fail;
- whatHappened(tx_ok,tx_fail,ack_payload_available);
-
- //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
-
- result = tx_ok;
-// IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
-
- // Handle the ack packet
- if ( ack_payload_available ) {
- ack_payload_length = getDynamicPayloadSize();
-// IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
-// IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
- }
-
- // Yay, we are done.
-
- // Power down
- powerDown();
-
- // Flush buffers (Is this a relic of past experimentation, and not needed anymore?
- flush_tx();
-
- return result;
-}
-/****************************************************************************/
-
-void RF24::startWrite( const void* buf, uint8_t len )
-{
- // Transmitter power-up
- write_register(CONFIG, ( read_register(CONFIG) | PWR_UP ) & ~PRIM_RX );
- //delayMicroseconds(150);
- wait_us(150);
-
- // Send the payload
- write_payload( buf, len );
-
- // Allons!
- ce(HIGH);;
-// delayMicroseconds(15);
- wait_us(15);
- ce(LOW);
-}
-
-/****************************************************************************/
-
-uint8_t RF24::getDynamicPayloadSize(void)
-{
- uint8_t result = 0;
-
- csn(LOW);
- spi.write( R_RX_PL_WID );
- result = spi.write(0xff);
- csn(HIGH);
-
- return result;
-}
-
-/****************************************************************************/
-
-bool RF24::available(void)
-{
- return available(NULL);
-}
-
-/****************************************************************************/
-
-bool RF24::available(uint8_t* pipe_num)
-{
- uint8_t status = get_status();
-
- // Too noisy, enable if you really want lots o data!!
- //IF_SERIAL_DEBUG(print_status(status));
-
- bool result = ( status & RX_DR );
-
- if (result) {
- // If the caller wants the pipe number, include that
- if ( pipe_num )
- *pipe_num = ( status >> RX_P_NO ) & 7;
-
- // Clear the status bit
-
- // ??? Should this REALLY be cleared now? Or wait until we
- // actually READ the payload?
-
- write_register(STATUS,RX_DR );
-
- // Handle ack payload receipt
- if ( status & TX_DS ) {
- write_register(STATUS,TX_DS);
- }
- }
-
- return result;
-}
-
-/****************************************************************************/
-
-bool RF24::read( void* buf, uint8_t len )
-{
- // Fetch the payload
- read_payload( buf, len );
-
- // was this the last of the data available?
- return read_register(FIFO_STATUS) & RX_EMPTY;
-}
-
-/****************************************************************************/
-
-void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
-{
- // Read the status & reset the status in one easy call
- // Or is that such a good idea?
- uint8_t status = write_register(STATUS,RX_DR | TX_DS | MAX_RT );
-
- // Report to the user what happened
- tx_ok = status & TX_DS;
- tx_fail = status & MAX_RT;
- rx_ready = status & RX_DR;
-}
-
-/****************************************************************************/
-
-void RF24::openWritingPipe(uint64_t value)
-{
- // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
- // expects it LSB first too, so we're good.
-
- write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
- write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
-
- const uint8_t max_payload_size = 32;
- write_register(RX_PW_P0,min(payload_size,max_payload_size));
-}
-
-/****************************************************************************/
-
-static const uint8_t child_pipe[] = {
- RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
-};
-static const uint8_t child_payload_size[] = {
- RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
-};
-static const uint8_t child_pipe_enable[] = {
- ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
-};
-
-void RF24::openReadingPipe(uint8_t child, uint64_t address)
-{
- // If this is pipe 0, cache the address. This is needed because
- // openWritingPipe() will overwrite the pipe 0 address, so
- // startListening() will have to restore it.
- if (child == 0)
- pipe0_reading_address = address;
-
- if (child <= 6) {
- // For pipes 2-5, only write the LSB
- if ( child < 2 )
- write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
- else
- write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
-
- write_register(child_payload_size[child],payload_size);
-
- // Note it would be more efficient to set all of the bits for all open
- // pipes at once. However, I thought it would make the calling code
- // more simple to do it this way.
- write_register(EN_RXADDR,read_register(EN_RXADDR) | child_pipe_enable[child]);
- }
-}
-
-/****************************************************************************/
-
-void RF24::toggle_features(void)
-{
- csn(LOW);
- spi.write( ACTIVATE );
- spi.write( 0x73 );
- csn(HIGH);
-}
-
-/****************************************************************************/
-
-void RF24::enableDynamicPayloads(void)
-{
- // Enable dynamic payload throughout the system
- write_register(FEATURE,read_register(FEATURE) | EN_DPL );
-
- // If it didn't work, the features are not enabled
- if ( ! read_register(FEATURE) ) {
- // So enable them and try again
- toggle_features();
- write_register(FEATURE,read_register(FEATURE) | EN_DPL );
- }
-
-// IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
-
- // Enable dynamic payload on all pipes
- //
- // Not sure the use case of only having dynamic payload on certain
- // pipes, so the library does not support it.
- write_register(DYNPD,read_register(DYNPD) | DPL_P5 | DPL_P4 | DPL_P3 | DPL_P2 | DPL_P1 | DPL_P0);
-
- dynamic_payloads_enabled = true;
-}
-
-/****************************************************************************/
-
-void RF24::enableAckPayload(void)
-{
- //
- // enable ack payload and dynamic payload features
- //
-
- write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
-
- // If it didn't work, the features are not enabled
- if ( ! read_register(FEATURE) ) {
- // So enable them and try again
- toggle_features();
- write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
- }
-
-// IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
-
- //
- // Enable dynamic payload on pipes 0 & 1
- //
-
- write_register(DYNPD,read_register(DYNPD) | DPL_P1 | DPL_P0);
-}
-
-/****************************************************************************/
-
-void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
-{
- const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
-
- csn(LOW);
- spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) );
- const uint8_t max_payload_size = 32;
- uint8_t data_len = min(len,max_payload_size);
- while ( data_len-- )
- spi.write(*current++);
-
- csn(HIGH);
-}
-
-/****************************************************************************/
-
-bool RF24::isAckPayloadAvailable(void)
-{
- bool result = ack_payload_available;
- ack_payload_available = false;
- return result;
-}
-
-/****************************************************************************/
-
-bool RF24::isPVariant(void)
-{
- return p_variant ;
-}
-
-/****************************************************************************/
-
-void RF24::setAutoAck(bool enable)
-{
- if ( enable )
- write_register(EN_AA, 63);
- else
- write_register(EN_AA, 0);
-}
-
-/****************************************************************************/
-
-void RF24::setAutoAck( uint8_t pipe, bool enable )
-{
- if ( pipe <= 6 ) {
- uint8_t en_aa = read_register( EN_AA ) ;
- if( enable ) {
- en_aa |= pipe ;
- } else {
- en_aa &= ~pipe ;
- }
- write_register( EN_AA, en_aa ) ;
- }
-}
-
-/****************************************************************************/
-
-bool RF24::testCarrier(void)
-{
- return ( read_register(CD) & 1 );
-}
-
-/****************************************************************************/
-
-bool RF24::testRPD(void)
-{
- return ( read_register(RPD) & 1 ) ;
-}
-
-/****************************************************************************/
-
-void RF24::setPALevel(rf24_pa_dbm_e level)
-{
- uint8_t setup = read_register(RF_SETUP) ;
- setup &= ~(RF_PWR_LOW | RF_PWR_HIGH) ;
-
- // switch uses RAM (evil!)
- if ( level == RF24_PA_MAX ) {
- setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
- } else if ( level == RF24_PA_HIGH ) {
- setup |= RF_PWR_HIGH ;
- } else if ( level == RF24_PA_LOW ) {
- setup |= RF_PWR_LOW;
- } else if ( level == RF24_PA_MIN ) {
- // nothing
- } else if ( level == RF24_PA_ERROR ) {
- // On error, go to maximum PA
- setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
- }
-
- write_register( RF_SETUP, setup ) ;
-}
-
-/****************************************************************************/
-
-rf24_pa_dbm_e RF24::getPALevel(void)
-{
- rf24_pa_dbm_e result = RF24_PA_ERROR ;
- uint8_t power = read_register(RF_SETUP) & (RF_PWR_LOW | RF_PWR_HIGH) ;
-
- // switch uses RAM (evil!)
- if ( power == (RF_PWR_LOW | RF_PWR_HIGH) ) {
- result = RF24_PA_MAX ;
- } else if ( power == RF_PWR_HIGH) {
- result = RF24_PA_HIGH ;
- } else if ( power == RF_PWR_LOW) {
- result = RF24_PA_LOW ;
- } else {
- result = RF24_PA_MIN ;
- }
-
- return result ;
-}
-
-/****************************************************************************/
-
-bool RF24::setDataRate(rf24_datarate_e speed)
-{
- bool result = false;
- uint8_t setup = read_register(RF_SETUP) ;
-
- // HIGH and LOW '00' is 1Mbs - our default
- wide_band = false ;
- setup &= ~(RF_DR_LOW | RF_DR_HIGH) ;
- if( speed == RF24_250KBPS ) {
- // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
- // Making it '10'.
- wide_band = false ;
- setup |= RF_DR_LOW ;
- } else {
- // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
- // Making it '01'
- if ( speed == RF24_2MBPS ) {
- wide_band = true ;
- setup |= RF_DR_HIGH;
- } else {
- // 1Mbs
- wide_band = false ;
- }
- }
- write_register(RF_SETUP,setup);
-
- // Verify our result
- if ( read_register(RF_SETUP) == setup ) {
- result = true;
- } else {
- wide_band = false;
- }
-
- return result;
-}
-
-/****************************************************************************/
-
-rf24_datarate_e RF24::getDataRate( void )
-{
- rf24_datarate_e result ;
- uint8_t dr = read_register(RF_SETUP) & (RF_DR_LOW | RF_DR_HIGH);
-
- // switch uses RAM (evil!)
- // Order matters in our case below
- if ( dr == RF_DR_LOW) {
- // '10' = 250KBPS
- result = RF24_250KBPS ;
- } else if ( dr == RF_DR_HIGH) {
- // '01' = 2MBPS
- result = RF24_2MBPS ;
- } else {
- // '00' = 1MBPS
- result = RF24_1MBPS ;
- }
- return result ;
-}
-
-/****************************************************************************/
-
-void RF24::setCRCLength(rf24_crclength_e length)
-{
- uint8_t config = read_register(CONFIG) & ~( CRCO | EN_CRC) ;
-
- if ( length == RF24_CRC_DISABLED ) {
- // Do nothing, we turned it off above.
- } else if ( length == RF24_CRC_8 ) {
- config |= EN_CRC;
- } else {
- config |= EN_CRC;
- config |= CRCO;
- }
- write_register( CONFIG, config ) ;
-
- printf("CRC SET: %u\n\r", config);
-}
-
-/****************************************************************************/
-
-rf24_crclength_e RF24::getCRCLength(void)
-{
- rf24_crclength_e result = RF24_CRC_DISABLED;
- uint8_t config = read_register(CONFIG) & ( CRCO | EN_CRC) ;
-
- if ( config & EN_CRC) {
- if ( config & CRCO )
- result = RF24_CRC_16;
- else
- result = RF24_CRC_8;
- }
-
- return result;
-}
-
-/****************************************************************************/
-
-void RF24::disableCRC( void )
-{
- uint8_t disable = read_register(CONFIG) & ~EN_CRC ;
- write_register( CONFIG, disable ) ;
-}
-
-/****************************************************************************/
-void RF24::setRetries(uint8_t delay, uint8_t count)
-{
- write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
-}
-
-int RF24::min(int a, int b)
-{
- if(a < b)
- return a;
- else
- return b;
-}
--- a/nRF24L01P_MANIC.h Thu Apr 04 11:46:12 2013 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,783 +0,0 @@
-/*
- Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation
- files (the "Software"), to deal in the Software without
- restriction, including without limitation the rights to use, copy,
- modify, merge, publish, distribute, sublicense, and/or sell copies
- of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- DEALINGS IN THE SOFTWARE.
-*/
-
-/* Memory Map */
-#define CONFIG 0x00
-#define EN_AA 0x01
-#define EN_RXADDR 0x02
-#define SETUP_AW 0x03
-#define SETUP_RETR 0x04
-#define RF_CH 0x05
-#define RF_SETUP 0x06
-#define STATUS 0x07
-#define OBSERVE_TX 0x08
-#define CD 0x09
-#define RX_ADDR_P0 0x0A
-#define RX_ADDR_P1 0x0B
-#define RX_ADDR_P2 0x0C
-#define RX_ADDR_P3 0x0D
-#define RX_ADDR_P4 0x0E
-#define RX_ADDR_P5 0x0F
-#define TX_ADDR 0x10
-#define RX_PW_P0 0x11
-#define RX_PW_P1 0x12
-#define RX_PW_P2 0x13
-#define RX_PW_P3 0x14
-#define RX_PW_P4 0x15
-#define RX_PW_P5 0x16
-#define FIFO_STATUS 0x17
-#define DYNPD 0x1C
-#define FEATURE 0x1D
-
-/* Bit Mnemonics */
-#define MASK_RX_DR 6
-#define MASK_TX_DS 5
-#define MASK_MAX_RT 4
-#define EN_CRC 3
-#define CRCO 2
-#define PWR_UP 1
-#define PRIM_RX 0
-#define ENAA_P5 5
-#define ENAA_P4 4
-#define ENAA_P3 3
-#define ENAA_P2 2
-#define ENAA_P1 1
-#define ENAA_P0 0
-#define ERX_P5 5
-#define ERX_P4 4
-#define ERX_P3 3
-#define ERX_P2 2
-#define ERX_P1 1
-#define ERX_P0 0
-#define AW 0
-#define ARD 4
-#define ARC 0
-#define PLL_LOCK 4
-#define RF_DR 3
-#define RF_PWR 6
-#define RX_DR 6
-#define TX_DS 5
-#define MAX_RT 4
-#define RX_P_NO 1
-#define TX_FULL 0
-#define PLOS_CNT 4
-#define ARC_CNT 0
-#define TX_REUSE 6
-#define FIFO_FULL 5
-#define TX_EMPTY 4
-#define RX_FULL 1
-#define RX_EMPTY 0
-#define DPL_P5 5
-#define DPL_P4 4
-#define DPL_P3 3
-#define DPL_P2 2
-#define DPL_P1 1
-#define DPL_P0 0
-#define EN_DPL 2
-#define EN_ACK_PAY 1
-#define EN_DYN_ACK 0
-
-/* Instruction Mnemonics */
-#define R_REGISTER 0x00
-#define W_REGISTER 0x20
-#define REGISTER_MASK 0x1F
-#define ACTIVATE 0x50
-#define R_RX_PL_WID 0x60
-#define R_RX_PAYLOAD 0x61
-#define W_TX_PAYLOAD 0xA0
-#define W_ACK_PAYLOAD 0xA8
-#define FLUSH_TX 0xE1
-#define FLUSH_RX 0xE2
-#define REUSE_TX_PL 0xE3
-#define NOP 0xFF
-
-/* Non-P omissions */
-#define LNA_HCURR 0
-
-/* P model memory Map */
-#define RPD 0x09
-
-/* P model bit Mnemonics */
-#define RF_DR_LOW 5
-#define RF_DR_HIGH 3
-#define RF_PWR_LOW 1
-#define RF_PWR_HIGH 2
-
-#define LOW 0
-#define HIGH 1
-#define _NRF24L01P_SPI_MAX_DATA_RATE 10000000
-#define _NRF24L01P_TIMING_Tundef2pd_us 100000 // 100mS
-#define _NRF24L01P_TIMING_Tpece2csn_us 4
-
-
-
-
-/*
- Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- version 2 as published by the Free Software Foundation.
- */
-
-/**
- * @file RF24.h
- *
- * Class declaration for RF24 and helper enums
- */
-
-#ifndef __RF24_H__
-#define __RF24_H__
-
-#include "mbed.h"
-
-
-/**
- * Power Amplifier level.
- *
- * For use with setPALevel()
- */
-typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ;
-
-/**
- * Data rate. How fast data moves through the air.
- *
- * For use with setDataRate()
- */
-typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e;
-
-/**
- * CRC Length. How big (if any) of a CRC is included.
- *
- * For use with setCRCLength()
- */
-typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e;
-
-/**
- * Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
- */
-
-class RF24
-{
-private:
- DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
- DigitalOut csn_pin; /**< SPI Chip select */
- bool wide_band; /* 2Mbs data rate in use? */
- bool p_variant; /* False for RF24L01 and true for RF24L01P */
- uint8_t payload_size; /**< Fixed size of payloads */
- bool ack_payload_available; /**< Whether there is an ack payload waiting */
- bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */
- uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. */
- uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */
- SPI spi;
- Timer mainTimer;
-
-protected:
- /**
- * @name Low-level internal interface.
- *
- * Protected methods that address the chip directly. Regular users cannot
- * ever call these. They are documented for completeness and for developers who
- * may want to extend this class.
- */
- /**@{*/
-
- /**
- * Set chip select pin
- *
- * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
- * and best of all, we make use of the radio's FIFO buffers. A lower speed
- * means we're less likely to effectively leverage our FIFOs and pay a higher
- * AVR runtime cost as toll.
- *
- * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
- */
- void csn(int mode);
-
- /**
- * Set chip enable
- *
- * @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet
- * for a much more detailed description of this pin.
- */
- void ce(int level);
-
- /**
- * Read a chunk of data in from a register
- *
- * @param reg Which register. Use constants from nRF24L01.h
- * @param buf Where to put the data
- * @param len How many bytes of data to transfer
- * @return Current value of status register
- */
- uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
-
- /**
- * Read single byte from a register
- *
- * @param reg Which register. Use constants from nRF24L01.h
- * @return Current value of register @p reg
- */
- uint8_t read_register(uint8_t reg);
-
- /**
- * Write a chunk of data to a register
- *
- * @param reg Which register. Use constants from nRF24L01.h
- * @param buf Where to get the data
- * @param len How many bytes of data to transfer
- * @return Current value of status register
- */
- uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
-
- /**
- * Write a single byte to a register
- *
- * @param reg Which register. Use constants from nRF24L01.h
- * @param value The new value to write
- * @return Current value of status register
- */
- uint8_t write_register(uint8_t reg, uint8_t value);
-
- /**
- * Write the transmit payload
- *
- * The size of data written is the fixed payload size, see getPayloadSize()
- *
- * @param buf Where to get the data
- * @param len Number of bytes to be sent
- * @return Current value of status register
- */
- uint8_t write_payload(const void* buf, uint8_t len);
-
- /**
- * Read the receive payload
- *
- * The size of data read is the fixed payload size, see getPayloadSize()
- *
- * @param buf Where to put the data
- * @param len Maximum number of bytes to read
- * @return Current value of status register
- */
- uint8_t read_payload(void* buf, uint8_t len);
-
- /**
- * Empty the receive buffer
- *
- * @return Current value of status register
- */
- uint8_t flush_rx(void);
-
- /**
- * Empty the transmit buffer
- *
- * @return Current value of status register
- */
- uint8_t flush_tx(void);
-
- /**
- * Retrieve the current status of the chip
- *
- * @return Current value of status register
- */
- uint8_t get_status(void);
-
- /**
- * Decode and print the given status to stdout
- *
- * @param status Status value to print
- *
- * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
- */
- void print_status(uint8_t status);
-
- /**
- * Decode and print the given 'observe_tx' value to stdout
- *
- * @param value The observe_tx value to print
- *
- * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
- */
- void print_observe_tx(uint8_t value);
-
- /**
- * Print the name and value of an 8-bit register to stdout
- *
- * Optionally it can print some quantity of successive
- * registers on the same line. This is useful for printing a group
- * of related registers on one line.
- *
- * @param name Name of the register
- * @param reg Which register. Use constants from nRF24L01.h
- * @param qty How many successive registers to print
- */
- void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
-
- /**
- * Print the name and value of a 40-bit address register to stdout
- *
- * Optionally it can print some quantity of successive
- * registers on the same line. This is useful for printing a group
- * of related registers on one line.
- *
- * @param name Name of the register
- * @param reg Which register. Use constants from nRF24L01.h
- * @param qty How many successive registers to print
- */
- void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
-
- /**
- * Turn on or off the special features of the chip
- *
- * The chip has certain 'features' which are only available when the 'features'
- * are enabled. See the datasheet for details.
- */
- void toggle_features(void);
- /**@}*/
-
-public:
- /**
- * @name Primary public interface
- *
- * These are the main methods you need to operate the chip
- */
- /**@{*/
-
- /**
- * Constructor
- *
- * Creates a new instance of this driver. Before using, you create an instance
- * and send in the unique pins that this chip is connected to.
- *
- * @param _cepin The pin attached to Chip Enable on the RF module
- * @param _cspin The pin attached to Chip Select
- */
- RF24(PinName, PinName, PinName, PinName, PinName); //mosi miso sck ce cs
-
- /**
- * Begin operation of the chip
- *
- * Call this in setup(), before calling any other methods.
- */
- void begin(void);
-
- /**
- * Start listening on the pipes opened for reading.
- *
- * Be sure to call openReadingPipe() first. Do not call write() while
- * in this mode, without first calling stopListening(). Call
- * isAvailable() to check for incoming traffic, and read() to get it.
- */
- void startListening(void);
-
- /**
- * Stop listening for incoming messages
- *
- * Do this before calling write().
- */
- void stopListening(void);
-
- /**
- * Write to the open writing pipe
- *
- * Be sure to call openWritingPipe() first to set the destination
- * of where to write to.
- *
- * This blocks until the message is successfully acknowledged by
- * the receiver or the timeout/retransmit maxima are reached. In
- * the current configuration, the max delay here is 60ms.
- *
- * The maximum size of data written is the fixed payload size, see
- * getPayloadSize(). However, you can write less, and the remainder
- * will just be filled with zeroes.
- *
- * @param buf Pointer to the data to be sent
- * @param len Number of bytes to be sent
- * @return True if the payload was delivered successfully false if not
- */
- bool write( const void* buf, uint8_t len );
-
- /**
- * Test whether there are bytes available to be read
- *
- * @return True if there is a payload available, false if none is
- */
- bool available(void);
-
- /**
- * Read the payload
- *
- * Return the last payload received
- *
- * The size of data read is the fixed payload size, see getPayloadSize()
- *
- * @note I specifically chose 'void*' as a data type to make it easier
- * for beginners to use. No casting needed.
- *
- * @param buf Pointer to a buffer where the data should be written
- * @param len Maximum number of bytes to read into the buffer
- * @return True if the payload was delivered successfully false if not
- */
- bool read( void* buf, uint8_t len );
-
- /**
- * Open a pipe for writing
- *
- * Only one pipe can be open at once, but you can change the pipe
- * you'll listen to. Do not call this while actively listening.
- * Remember to stopListening() first.
- *
- * Addresses are 40-bit hex values, e.g.:
- *
- * @code
- * openWritingPipe(0xF0F0F0F0F0);
- * @endcode
- *
- * @param address The 40-bit address of the pipe to open. This can be
- * any value whatsoever, as long as you are the only one writing to it
- * and only one other radio is listening to it. Coordinate these pipe
- * addresses amongst nodes on the network.
- */
- void openWritingPipe(uint64_t address);
-
- /**
- * Open a pipe for reading
- *
- * Up to 6 pipes can be open for reading at once. Open all the
- * reading pipes, and then call startListening().
- *
- * @see openWritingPipe
- *
- * @warning Pipes 1-5 should share the first 32 bits.
- * Only the least significant byte should be unique, e.g.
- * @code
- * openReadingPipe(1,0xF0F0F0F0AA);
- * openReadingPipe(2,0xF0F0F0F066);
- * @endcode
- *
- * @warning Pipe 0 is also used by the writing pipe. So if you open
- * pipe 0 for reading, and then startListening(), it will overwrite the
- * writing pipe. Ergo, do an openWritingPipe() again before write().
- *
- * @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
- *
- * @param number Which pipe# to open, 0-5.
- * @param address The 40-bit address of the pipe to open.
- */
- void openReadingPipe(uint8_t number, uint64_t address);
-
- /**@}*/
- /**
- * @name Optional Configurators
- *
- * Methods you can use to get or set the configuration of the chip.
- * None are required. Calling begin() sets up a reasonable set of
- * defaults.
- */
- /**@{*/
- /**
- * Set the number and delay of retries upon failed submit
- *
- * @param delay How long to wait between each retry, in multiples of 250us,
- * max is 15. 0 means 250us, 15 means 4000us.
- * @param count How many retries before giving up, max 15
- */
- void setRetries(uint8_t delay, uint8_t count);
-
- /**
- * Set RF communication channel
- *
- * @param channel Which RF channel to communicate on, 0-127
- */
- void setChannel(uint8_t channel);
-
- /**
- * Set Static Payload Size
- *
- * This implementation uses a pre-stablished fixed payload size for all
- * transmissions. If this method is never called, the driver will always
- * transmit the maximum payload size (32 bytes), no matter how much
- * was sent to write().
- *
- * @todo Implement variable-sized payloads feature
- *
- * @param size The number of bytes in the payload
- */
- void setPayloadSize(uint8_t size);
-
- /**
- * Get Static Payload Size
- *
- * @see setPayloadSize()
- *
- * @return The number of bytes in the payload
- */
- uint8_t getPayloadSize(void);
-
- /**
- * Get Dynamic Payload Size
- *
- * For dynamic payloads, this pulls the size of the payload off
- * the chip
- *
- * @return Payload length of last-received dynamic payload
- */
- uint8_t getDynamicPayloadSize(void);
-
- /**
- * Enable custom payloads on the acknowledge packets
- *
- * Ack payloads are a handy way to return data back to senders without
- * manually changing the radio modes on both units.
- *
- * @see examples/pingpair_pl/pingpair_pl.pde
- */
- void enableAckPayload(void);
-
- /**
- * Enable dynamically-sized payloads
- *
- * This way you don't always have to send large packets just to send them
- * once in a while. This enables dynamic payloads on ALL pipes.
- *
- * @see examples/pingpair_pl/pingpair_dyn.pde
- */
- void enableDynamicPayloads(void);
-
- /**
- * Determine whether the hardware is an nRF24L01+ or not.
- *
- * @return true if the hardware is nRF24L01+ (or compatible) and false
- * if its not.
- */
- bool isPVariant(void) ;
-
- /**
- * Enable or disable auto-acknowlede packets
- *
- * This is enabled by default, so it's only needed if you want to turn
- * it off for some reason.
- *
- * @param enable Whether to enable (true) or disable (false) auto-acks
- */
- void setAutoAck(bool enable);
-
- /**
- * Enable or disable auto-acknowlede packets on a per pipeline basis.
- *
- * AA is enabled by default, so it's only needed if you want to turn
- * it off/on for some reason on a per pipeline basis.
- *
- * @param pipe Which pipeline to modify
- * @param enable Whether to enable (true) or disable (false) auto-acks
- */
- void setAutoAck( uint8_t pipe, bool enable ) ;
-
- /**
- * Set Power Amplifier (PA) level to one of four levels.
- * Relative mnemonics have been used to allow for future PA level
- * changes. According to 6.5 of the nRF24L01+ specification sheet,
- * they translate to: RF24_PA_MIN=-18dBm, RF24_PA_LOW=-12dBm,
- * RF24_PA_MED=-6dBM, and RF24_PA_HIGH=0dBm.
- *
- * @param level Desired PA level.
- */
- void setPALevel( rf24_pa_dbm_e level ) ;
-
- /**
- * Fetches the current PA level.
- *
- * @return Returns a value from the rf24_pa_dbm_e enum describing
- * the current PA setting. Please remember, all values represented
- * by the enum mnemonics are negative dBm. See setPALevel for
- * return value descriptions.
- */
- rf24_pa_dbm_e getPALevel( void ) ;
-
- /**
- * Set the transmission data rate
- *
- * @warning setting RF24_250KBPS will fail for non-plus units
- *
- * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
- * @return true if the change was successful
- */
- bool setDataRate(rf24_datarate_e speed);
-
- /**
- * Fetches the transmission data rate
- *
- * @return Returns the hardware's currently configured datarate. The value
- * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
- * rf24_datarate_e enum.
- */
- rf24_datarate_e getDataRate( void ) ;
-
- /**
- * Set the CRC length
- *
- * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
- */
- void setCRCLength(rf24_crclength_e length);
-
- /**
- * Get the CRC length
- *
- * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
- */
- rf24_crclength_e getCRCLength(void);
-
- /**
- * Disable CRC validation
- *
- */
- void disableCRC( void ) ;
-
- /**@}*/
- /**
- * @name Advanced Operation
- *
- * Methods you can use to drive the chip in more advanced ways
- */
- /**@{*/
-
- /**
- * Print a giant block of debugging information to stdout
- *
- * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
- */
- void printDetails(void);
-
- /**
- * Enter low-power mode
- *
- * To return to normal power mode, either write() some data or
- * startListening, or powerUp().
- */
- void powerDown(void);
-
- /**
- * Leave low-power mode - making radio more responsive
- *
- * To return to low power mode, call powerDown().
- */
- void powerUp(void) ;
-
- /**
- * Test whether there are bytes available to be read
- *
- * Use this version to discover on which pipe the message
- * arrived.
- *
- * @param[out] pipe_num Which pipe has the payload available
- * @return True if there is a payload available, false if none is
- */
- bool available(uint8_t* pipe_num);
-
- /**
- * Non-blocking write to the open writing pipe
- *
- * Just like write(), but it returns immediately. To find out what happened
- * to the send, catch the IRQ and then call whatHappened().
- *
- * @see write()
- * @see whatHappened()
- *
- * @param buf Pointer to the data to be sent
- * @param len Number of bytes to be sent
- * @return True if the payload was delivered successfully false if not
- */
- void startWrite( const void* buf, uint8_t len );
-
- /**
- * Write an ack payload for the specified pipe
- *
- * The next time a message is received on @p pipe, the data in @p buf will
- * be sent back in the acknowledgement.
- *
- * @warning According to the data sheet, only three of these can be pending
- * at any time. I have not tested this.
- *
- * @param pipe Which pipe# (typically 1-5) will get this response.
- * @param buf Pointer to data that is sent
- * @param len Length of the data to send, up to 32 bytes max. Not affected
- * by the static payload set by setPayloadSize().
- */
- void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
-
- /**
- * Determine if an ack payload was received in the most recent call to
- * write().
- *
- * Call read() to retrieve the ack payload.
- *
- * @warning Calling this function clears the internal flag which indicates
- * a payload is available. If it returns true, you must read the packet
- * out as the very next interaction with the radio, or the results are
- * undefined.
- *
- * @return True if an ack payload is available.
- */
- bool isAckPayloadAvailable(void);
-
- /**
- * Call this when you get an interrupt to find out why
- *
- * Tells you what caused the interrupt, and clears the state of
- * interrupts.
- *
- * @param[out] tx_ok The send was successful (TX_DS)
- * @param[out] tx_fail The send failed, too many retries (MAX_RT)
- * @param[out] rx_ready There is a message waiting to be read (RX_DS)
- */
- void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
-
- /**
- * Test whether there was a carrier on the line for the
- * previous listening period.
- *
- * Useful to check for interference on the current channel.
- *
- * @return true if was carrier, false if not
- */
- bool testCarrier(void);
-
- /**
- * Test whether a signal (carrier or otherwise) greater than
- * or equal to -64dBm is present on the channel. Valid only
- * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
- *
- * Useful to check for interference on the current channel and
- * channel hopping strategies.
- *
- * @return true if signal => -64dBm, false if not
- */
- bool testRPD(void) ;
-
- int min(int, int);
-
-};
-
-
-#endif // __RF24_H__
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/nRF24L01P_Maniacbug.cpp Thu Apr 04 11:49:28 2013 +0000
@@ -0,0 +1,964 @@
+/*
+ Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ version 2 as published by the Free Software Foundation.
+ */
+
+#include "nRF24L01P_Maniacbug.h"
+
+/****************************************************************************/
+
+void RF24::csn(int mode)
+{
+// // Minimum ideal SPI bus speed is 2x data rate
+// // If we assume 2Mbs data rate and 16Mhz clock, a
+// // divider of 4 is the minimum we want.
+// // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
+////#ifdef ARDUINO
+//// spi.setBitOrder(MSBFIRST);
+//// spi.setDataMode(SPI_MODE0);
+//// spi.setClockDivider(SPI_CLOCK_DIV4);
+////#endif
+//// digitalWrite(csn_pin,mode);
+//
+//
+ csn_pin = mode;
+}
+
+/****************************************************************************/
+
+void RF24::ce(int level)
+{
+ //digitalWrite(ce_pin,level);
+ ce_pin = level;
+ wait_us(_NRF24L01P_TIMING_Tpece2csn_us);
+}
+
+/****************************************************************************/
+
+uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
+{
+ uint8_t status;
+
+ csn(LOW);
+ status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
+ while ( len-- )
+ *buf++ = spi.write(0xff);
+
+ csn(HIGH);
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::read_register(uint8_t reg) //checked
+{
+ csn(LOW);
+ spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
+ uint8_t result = spi.write(0xff);
+
+ csn(HIGH);
+ return result;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
+{
+ uint8_t status;
+ int originalCe = ce_pin;
+ ce(LOW);
+
+ csn(LOW);
+ status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
+ while ( len-- )
+ spi.write(*buf++);
+
+ csn(HIGH);
+
+ ce_pin = originalCe;
+ wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::write_register(uint8_t reg, uint8_t value) //checked
+{
+ uint8_t status;
+
+// IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
+ int originalCe = ce_pin;
+ ce(LOW);
+
+
+ csn(LOW);
+ status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
+ spi.write(value);
+ csn(HIGH);
+
+ ce_pin = originalCe;
+ wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::write_payload(const void* buf, uint8_t len)
+{
+ uint8_t status;
+
+ const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
+
+ uint8_t data_len = min(len,payload_size);
+ uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+
+ //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
+
+ csn(LOW);
+ status = spi.write( W_TX_PAYLOAD );
+ while ( data_len-- )
+ spi.write(*current++);
+ while ( blank_len-- )
+ spi.write(0);
+ csn(HIGH);
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::read_payload(void* buf, uint8_t len)
+{
+ uint8_t status;
+ uint8_t* current = reinterpret_cast<uint8_t*>(buf);
+
+ uint8_t data_len = min(len,payload_size);
+ uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+
+ //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
+
+ csn(LOW);
+ status = spi.write( R_RX_PAYLOAD );
+ while ( data_len-- )
+ *current++ = spi.write(0xff);
+ while ( blank_len-- )
+ spi.write(0xff);
+ csn(HIGH);
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::flush_rx(void)
+{
+ uint8_t status;
+
+ csn(LOW);
+ status = spi.write( FLUSH_RX );
+ csn(HIGH);
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::flush_tx(void)
+{
+ uint8_t status;
+
+ csn(LOW);
+ status = spi.write( FLUSH_TX );
+ csn(HIGH);
+
+ return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::get_status(void)
+{
+ uint8_t status;
+
+ csn(LOW);
+ status = spi.write( NOP );
+ csn(HIGH);
+
+ return status;
+}
+
+/****************************************************************************/
+
+void RF24::print_status(uint8_t status)
+{
+ printf("STATUS = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n",
+ status,
+ (status & RX_DR)?1:0,
+ (status & TX_DS)?1:0,
+ (status & MAX_RT)?1:0,
+ ((status >> RX_P_NO) & 7),
+ (status & TX_FULL)?1:0
+ );
+}
+
+///****************************************************************************/
+
+void RF24::print_observe_tx(uint8_t value)
+{
+ printf("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n",
+ value,
+ (value >> PLOS_CNT) & 15,
+ (value >> ARC_CNT) & 15
+ );
+}
+
+/****************************************************************************/
+
+void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
+{
+// char extra_tab = strlen(name) < 8 ? '\t' : 0;
+ printf("%s =",name);
+ while (qty--)
+ printf(" 0x%02x",read_register(reg++));
+ printf("\r\n");
+}
+
+/****************************************************************************/
+
+void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
+{
+// char extra_tab = strlen(name) < 8 ? '\t' : 0;
+ printf("%s =",name);
+
+ while (qty--) {
+ uint8_t buffer[5];
+ read_register(reg++,buffer,sizeof buffer);
+
+ printf(" 0x");
+ uint8_t* bufptr = buffer + sizeof buffer;
+ while( --bufptr >= buffer )
+ printf("%02x",*bufptr);
+ }
+
+ printf("\r\n");
+}
+
+/****************************************************************************/
+
+RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin):
+ ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
+ payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false),
+ pipe0_reading_address(0), spi(mosi, miso, sck)
+{
+}
+
+/****************************************************************************/
+
+void RF24::setChannel(uint8_t channel)
+{
+ // TODO: This method could take advantage of the 'wide_band' calculation
+ // done in setChannel() to require certain channel spacing.
+
+ const uint8_t max_channel = 127;
+ write_register(RF_CH,min(channel,max_channel));
+}
+
+/****************************************************************************/
+
+void RF24::setPayloadSize(uint8_t size)
+{
+ const uint8_t max_payload_size = 32;
+ payload_size = min(size,max_payload_size);
+}
+
+/****************************************************************************/
+
+uint8_t RF24::getPayloadSize(void)
+{
+ return payload_size;
+}
+
+/****************************************************************************/
+
+static const char rf24_datarate_e_str_0[] = "1MBPS";
+static const char rf24_datarate_e_str_1[] = "2MBPS";
+static const char rf24_datarate_e_str_2[] = "250KBPS";
+static const char * const rf24_datarate_e_str_P[] = {
+ rf24_datarate_e_str_0,
+ rf24_datarate_e_str_1,
+ rf24_datarate_e_str_2,
+};
+static const char rf24_model_e_str_0[] = "nRF24L01";
+static const char rf24_model_e_str_1[] = "nRF24L01+";
+static const char * const rf24_model_e_str_P[] = {
+ rf24_model_e_str_0,
+ rf24_model_e_str_1,
+};
+static const char rf24_crclength_e_str_0[] = "Disabled";
+static const char rf24_crclength_e_str_1[] = "8 bits";
+static const char rf24_crclength_e_str_2[] = "16 bits" ;
+static const char * const rf24_crclength_e_str_P[] = {
+ rf24_crclength_e_str_0,
+ rf24_crclength_e_str_1,
+ rf24_crclength_e_str_2,
+};
+static const char rf24_pa_dbm_e_str_0[] = "PA_MIN";
+static const char rf24_pa_dbm_e_str_1[] = "PA_LOW";
+static const char rf24_pa_dbm_e_str_2[] = "PA_MED";
+static const char rf24_pa_dbm_e_str_3[] = "PA_HIGH";
+static const char * const rf24_pa_dbm_e_str_P[] = {
+ rf24_pa_dbm_e_str_0,
+ rf24_pa_dbm_e_str_1,
+ rf24_pa_dbm_e_str_2,
+ rf24_pa_dbm_e_str_3,
+};
+
+void RF24::printDetails(void)
+{
+ print_status(get_status());
+
+ print_address_register("RX_ADDR_P0-1",RX_ADDR_P0,2);
+ print_byte_register("RX_ADDR_P2-5", RX_ADDR_P2,4);
+ print_address_register("TX_ADDR", TX_ADDR);
+
+ print_byte_register("RX_PW_P0-6", RX_PW_P0,6);
+ print_byte_register("EN_AA", EN_AA);
+ print_byte_register("EN_RXADDR", EN_RXADDR);
+ print_byte_register("RF_CH", RF_CH);
+ print_byte_register("RF_SETUP", RF_SETUP);
+ print_byte_register("CONFIG", CONFIG);
+ print_byte_register("DYNPD/FEATURE",DYNPD,2);
+
+ printf("Data Rate\t = %s\r\n", rf24_datarate_e_str_P[getDataRate()]);
+ printf("Model\t\t = %s\r\n", rf24_model_e_str_P[isPVariant()]);
+ printf("CRC Length\t = %s\r\n", rf24_crclength_e_str_P[getCRCLength()]);
+ printf("PA Power\t = %s\r\n", rf24_pa_dbm_e_str_P[getPALevel()]);
+}
+
+/****************************************************************************/
+
+void RF24::begin(void)
+{
+ // Initialize pins
+// pinMode(ce_pin,OUTPUT); //ARD
+// pinMode(csn_pin,OUTPUT);
+
+ mainTimer.start();
+
+
+ spi.frequency(_NRF24L01P_SPI_MAX_DATA_RATE/5); // 2Mbit, 1/5th the maximum transfer rate for the SPI bus
+ spi.format(8,0); // 8-bit, ClockPhase = 0, ClockPolarity = 0
+
+ wait_us(_NRF24L01P_TIMING_Tundef2pd_us); // Wait for Power-on reset //MBED
+
+ // Initialize SPI bus
+// spi.begin(); //ARD
+
+ ce(LOW);
+ csn(HIGH);
+
+ // Must allow the radio time to settle else configuration bits will not necessarily stick.
+ // This is actually only required following power up but some settling time also appears to
+ // be required after resets too. For full coverage, we'll always assume the worst.
+ // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
+ // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
+ // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
+// delay( 5 ) ;
+ wait_ms(5);
+
+ // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
+ // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
+ // sizes must never be used. See documentation for a more complete explanation.
+ write_register(SETUP_RETR,(4 << ARD) | (15 << ARC));
+
+ // Restore our default PA level
+ setPALevel( RF24_PA_MAX ) ;
+
+ // Determine if this is a p or non-p RF24 module and then
+ // reset our data rate back to default value. This works
+ // because a non-P variant won't allow the data rate to
+ // be set to 250Kbps.
+ if( setDataRate( RF24_250KBPS ) ) {
+ p_variant = true ;
+ }
+
+ // Then set the data rate to the slowest (and most reliable) speed supported by all
+ // hardware.
+ setDataRate( RF24_1MBPS ) ;
+
+ // Initialize CRC and request 2-byte (16bit) CRC
+ setCRCLength( RF24_CRC_16 ) ;
+
+ // Disable dynamic payloads, to match dynamic_payloads_enabled setting
+ write_register(DYNPD,0);
+
+ // Reset current status
+ // Notice reset and flush is the last thing we do
+ write_register(STATUS,RX_DR | TX_DS | MAX_RT );
+
+ // Set up default configuration. Callers can always change it later.
+ // This channel should be universally safe and not bleed over into adjacent
+ // spectrum.
+ setChannel(76);
+
+ // Flush buffers
+ flush_rx();
+ flush_tx();
+}
+
+/****************************************************************************/
+
+void RF24::startListening(void)
+{
+ write_register(CONFIG, read_register(CONFIG) | PWR_UP | PRIM_RX);
+ write_register(STATUS, RX_DR | TX_DS | MAX_RT );
+
+ // Restore the pipe0 adddress, if exists
+ if (pipe0_reading_address)
+ write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
+
+ // Flush buffers
+ flush_rx();
+ flush_tx();
+
+ // Go!
+ ce(HIGH);;
+
+ // wait for the radio to come up (130us actually only needed)
+// delayMicroseconds(130);
+ wait_us(130);
+}
+
+/****************************************************************************/
+
+void RF24::stopListening(void)
+{
+ ce(LOW);
+ flush_tx();
+ flush_rx();
+}
+
+/****************************************************************************/
+
+void RF24::powerDown(void)
+{
+ write_register(CONFIG,read_register(CONFIG) & ~PWR_UP);
+}
+
+/****************************************************************************/
+
+void RF24::powerUp(void)
+{
+ write_register(CONFIG,read_register(CONFIG) | PWR_UP);
+}
+
+/******************************************************************/
+
+bool RF24::write( const void* buf, uint8_t len )
+{
+ bool result = false;
+
+ // Begin the write
+ startWrite(buf,len);
+
+ // ------------
+ // At this point we could return from a non-blocking write, and then call
+ // the rest after an interrupt
+
+ // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
+ // or MAX_RT (maximum retries, transmission failed). Also, we'll timeout in case the radio
+ // is flaky and we get neither.
+
+ // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster
+ // if I tighted up the retry logic. (Default settings will be 1500us.
+ // Monitor the send
+ uint8_t observe_tx;
+ uint8_t status;
+ uint32_t sent_at = mainTimer.read_ms();
+ const uint32_t timeout = 500; //ms to wait for timeout
+ do {
+ status = read_register(OBSERVE_TX,&observe_tx,1);
+// IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
+ } while( ! ( status & ( TX_DS | MAX_RT ) ) && ( mainTimer.read_ms() - sent_at < timeout ) );
+
+ // The part above is what you could recreate with your own interrupt handler,
+ // and then call this when you got an interrupt
+ // ------------
+
+ // Call this when you get an interrupt
+ // The status tells us three things
+ // * The send was successful (TX_DS)
+ // * The send failed, too many retries (MAX_RT)
+ // * There is an ack packet waiting (RX_DR)
+ bool tx_ok, tx_fail;
+ whatHappened(tx_ok,tx_fail,ack_payload_available);
+
+ //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
+
+ result = tx_ok;
+// IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
+
+ // Handle the ack packet
+ if ( ack_payload_available ) {
+ ack_payload_length = getDynamicPayloadSize();
+// IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
+// IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
+ }
+
+ // Yay, we are done.
+
+ // Power down
+ powerDown();
+
+ // Flush buffers (Is this a relic of past experimentation, and not needed anymore?
+ flush_tx();
+
+ return result;
+}
+/****************************************************************************/
+
+void RF24::startWrite( const void* buf, uint8_t len )
+{
+ // Transmitter power-up
+ write_register(CONFIG, ( read_register(CONFIG) | PWR_UP ) & ~PRIM_RX );
+ //delayMicroseconds(150);
+ wait_us(150);
+
+ // Send the payload
+ write_payload( buf, len );
+
+ // Allons!
+ ce(HIGH);;
+// delayMicroseconds(15);
+ wait_us(15);
+ ce(LOW);
+}
+
+/****************************************************************************/
+
+uint8_t RF24::getDynamicPayloadSize(void)
+{
+ uint8_t result = 0;
+
+ csn(LOW);
+ spi.write( R_RX_PL_WID );
+ result = spi.write(0xff);
+ csn(HIGH);
+
+ return result;
+}
+
+/****************************************************************************/
+
+bool RF24::available(void)
+{
+ return available(NULL);
+}
+
+/****************************************************************************/
+
+bool RF24::available(uint8_t* pipe_num)
+{
+ uint8_t status = get_status();
+
+ // Too noisy, enable if you really want lots o data!!
+ //IF_SERIAL_DEBUG(print_status(status));
+
+ bool result = ( status & RX_DR );
+
+ if (result) {
+ // If the caller wants the pipe number, include that
+ if ( pipe_num )
+ *pipe_num = ( status >> RX_P_NO ) & 7;
+
+ // Clear the status bit
+
+ // ??? Should this REALLY be cleared now? Or wait until we
+ // actually READ the payload?
+
+ write_register(STATUS,RX_DR );
+
+ // Handle ack payload receipt
+ if ( status & TX_DS ) {
+ write_register(STATUS,TX_DS);
+ }
+ }
+
+ return result;
+}
+
+/****************************************************************************/
+
+bool RF24::read( void* buf, uint8_t len )
+{
+ // Fetch the payload
+ read_payload( buf, len );
+
+ // was this the last of the data available?
+ return read_register(FIFO_STATUS) & RX_EMPTY;
+}
+
+/****************************************************************************/
+
+void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
+{
+ // Read the status & reset the status in one easy call
+ // Or is that such a good idea?
+ uint8_t status = write_register(STATUS,RX_DR | TX_DS | MAX_RT );
+
+ // Report to the user what happened
+ tx_ok = status & TX_DS;
+ tx_fail = status & MAX_RT;
+ rx_ready = status & RX_DR;
+}
+
+/****************************************************************************/
+
+void RF24::openWritingPipe(uint64_t value)
+{
+ // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
+ // expects it LSB first too, so we're good.
+
+ write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
+ write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
+
+ const uint8_t max_payload_size = 32;
+ write_register(RX_PW_P0,min(payload_size,max_payload_size));
+}
+
+/****************************************************************************/
+
+static const uint8_t child_pipe[] = {
+ RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
+};
+static const uint8_t child_payload_size[] = {
+ RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
+};
+static const uint8_t child_pipe_enable[] = {
+ ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
+};
+
+void RF24::openReadingPipe(uint8_t child, uint64_t address)
+{
+ // If this is pipe 0, cache the address. This is needed because
+ // openWritingPipe() will overwrite the pipe 0 address, so
+ // startListening() will have to restore it.
+ if (child == 0)
+ pipe0_reading_address = address;
+
+ if (child <= 6) {
+ // For pipes 2-5, only write the LSB
+ if ( child < 2 )
+ write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
+ else
+ write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
+
+ write_register(child_payload_size[child],payload_size);
+
+ // Note it would be more efficient to set all of the bits for all open
+ // pipes at once. However, I thought it would make the calling code
+ // more simple to do it this way.
+ write_register(EN_RXADDR,read_register(EN_RXADDR) | child_pipe_enable[child]);
+ }
+}
+
+/****************************************************************************/
+
+void RF24::toggle_features(void)
+{
+ csn(LOW);
+ spi.write( ACTIVATE );
+ spi.write( 0x73 );
+ csn(HIGH);
+}
+
+/****************************************************************************/
+
+void RF24::enableDynamicPayloads(void)
+{
+ // Enable dynamic payload throughout the system
+ write_register(FEATURE,read_register(FEATURE) | EN_DPL );
+
+ // If it didn't work, the features are not enabled
+ if ( ! read_register(FEATURE) ) {
+ // So enable them and try again
+ toggle_features();
+ write_register(FEATURE,read_register(FEATURE) | EN_DPL );
+ }
+
+// IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+
+ // Enable dynamic payload on all pipes
+ //
+ // Not sure the use case of only having dynamic payload on certain
+ // pipes, so the library does not support it.
+ write_register(DYNPD,read_register(DYNPD) | DPL_P5 | DPL_P4 | DPL_P3 | DPL_P2 | DPL_P1 | DPL_P0);
+
+ dynamic_payloads_enabled = true;
+}
+
+/****************************************************************************/
+
+void RF24::enableAckPayload(void)
+{
+ //
+ // enable ack payload and dynamic payload features
+ //
+
+ write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
+
+ // If it didn't work, the features are not enabled
+ if ( ! read_register(FEATURE) ) {
+ // So enable them and try again
+ toggle_features();
+ write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
+ }
+
+// IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+
+ //
+ // Enable dynamic payload on pipes 0 & 1
+ //
+
+ write_register(DYNPD,read_register(DYNPD) | DPL_P1 | DPL_P0);
+}
+
+/****************************************************************************/
+
+void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
+{
+ const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
+
+ csn(LOW);
+ spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) );
+ const uint8_t max_payload_size = 32;
+ uint8_t data_len = min(len,max_payload_size);
+ while ( data_len-- )
+ spi.write(*current++);
+
+ csn(HIGH);
+}
+
+/****************************************************************************/
+
+bool RF24::isAckPayloadAvailable(void)
+{
+ bool result = ack_payload_available;
+ ack_payload_available = false;
+ return result;
+}
+
+/****************************************************************************/
+
+bool RF24::isPVariant(void)
+{
+ return p_variant ;
+}
+
+/****************************************************************************/
+
+void RF24::setAutoAck(bool enable)
+{
+ if ( enable )
+ write_register(EN_AA, 63);
+ else
+ write_register(EN_AA, 0);
+}
+
+/****************************************************************************/
+
+void RF24::setAutoAck( uint8_t pipe, bool enable )
+{
+ if ( pipe <= 6 ) {
+ uint8_t en_aa = read_register( EN_AA ) ;
+ if( enable ) {
+ en_aa |= pipe ;
+ } else {
+ en_aa &= ~pipe ;
+ }
+ write_register( EN_AA, en_aa ) ;
+ }
+}
+
+/****************************************************************************/
+
+bool RF24::testCarrier(void)
+{
+ return ( read_register(CD) & 1 );
+}
+
+/****************************************************************************/
+
+bool RF24::testRPD(void)
+{
+ return ( read_register(RPD) & 1 ) ;
+}
+
+/****************************************************************************/
+
+void RF24::setPALevel(rf24_pa_dbm_e level)
+{
+ uint8_t setup = read_register(RF_SETUP) ;
+ setup &= ~(RF_PWR_LOW | RF_PWR_HIGH) ;
+
+ // switch uses RAM (evil!)
+ if ( level == RF24_PA_MAX ) {
+ setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
+ } else if ( level == RF24_PA_HIGH ) {
+ setup |= RF_PWR_HIGH ;
+ } else if ( level == RF24_PA_LOW ) {
+ setup |= RF_PWR_LOW;
+ } else if ( level == RF24_PA_MIN ) {
+ // nothing
+ } else if ( level == RF24_PA_ERROR ) {
+ // On error, go to maximum PA
+ setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
+ }
+
+ write_register( RF_SETUP, setup ) ;
+}
+
+/****************************************************************************/
+
+rf24_pa_dbm_e RF24::getPALevel(void)
+{
+ rf24_pa_dbm_e result = RF24_PA_ERROR ;
+ uint8_t power = read_register(RF_SETUP) & (RF_PWR_LOW | RF_PWR_HIGH) ;
+
+ // switch uses RAM (evil!)
+ if ( power == (RF_PWR_LOW | RF_PWR_HIGH) ) {
+ result = RF24_PA_MAX ;
+ } else if ( power == RF_PWR_HIGH) {
+ result = RF24_PA_HIGH ;
+ } else if ( power == RF_PWR_LOW) {
+ result = RF24_PA_LOW ;
+ } else {
+ result = RF24_PA_MIN ;
+ }
+
+ return result ;
+}
+
+/****************************************************************************/
+
+bool RF24::setDataRate(rf24_datarate_e speed)
+{
+ bool result = false;
+ uint8_t setup = read_register(RF_SETUP) ;
+
+ // HIGH and LOW '00' is 1Mbs - our default
+ wide_band = false ;
+ setup &= ~(RF_DR_LOW | RF_DR_HIGH) ;
+ if( speed == RF24_250KBPS ) {
+ // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
+ // Making it '10'.
+ wide_band = false ;
+ setup |= RF_DR_LOW ;
+ } else {
+ // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
+ // Making it '01'
+ if ( speed == RF24_2MBPS ) {
+ wide_band = true ;
+ setup |= RF_DR_HIGH;
+ } else {
+ // 1Mbs
+ wide_band = false ;
+ }
+ }
+ write_register(RF_SETUP,setup);
+
+ // Verify our result
+ if ( read_register(RF_SETUP) == setup ) {
+ result = true;
+ } else {
+ wide_band = false;
+ }
+
+ return result;
+}
+
+/****************************************************************************/
+
+rf24_datarate_e RF24::getDataRate( void )
+{
+ rf24_datarate_e result ;
+ uint8_t dr = read_register(RF_SETUP) & (RF_DR_LOW | RF_DR_HIGH);
+
+ // switch uses RAM (evil!)
+ // Order matters in our case below
+ if ( dr == RF_DR_LOW) {
+ // '10' = 250KBPS
+ result = RF24_250KBPS ;
+ } else if ( dr == RF_DR_HIGH) {
+ // '01' = 2MBPS
+ result = RF24_2MBPS ;
+ } else {
+ // '00' = 1MBPS
+ result = RF24_1MBPS ;
+ }
+ return result ;
+}
+
+/****************************************************************************/
+
+void RF24::setCRCLength(rf24_crclength_e length)
+{
+ uint8_t config = read_register(CONFIG) & ~( CRCO | EN_CRC) ;
+
+ if ( length == RF24_CRC_DISABLED ) {
+ // Do nothing, we turned it off above.
+ } else if ( length == RF24_CRC_8 ) {
+ config |= EN_CRC;
+ } else {
+ config |= EN_CRC;
+ config |= CRCO;
+ }
+ write_register( CONFIG, config ) ;
+
+ printf("CRC SET: %u\n\r", config);
+}
+
+/****************************************************************************/
+
+rf24_crclength_e RF24::getCRCLength(void)
+{
+ rf24_crclength_e result = RF24_CRC_DISABLED;
+ uint8_t config = read_register(CONFIG) & ( CRCO | EN_CRC) ;
+
+ if ( config & EN_CRC) {
+ if ( config & CRCO )
+ result = RF24_CRC_16;
+ else
+ result = RF24_CRC_8;
+ }
+
+ return result;
+}
+
+/****************************************************************************/
+
+void RF24::disableCRC( void )
+{
+ uint8_t disable = read_register(CONFIG) & ~EN_CRC ;
+ write_register( CONFIG, disable ) ;
+}
+
+/****************************************************************************/
+void RF24::setRetries(uint8_t delay, uint8_t count)
+{
+ write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
+}
+
+int RF24::min(int a, int b)
+{
+ if(a < b)
+ return a;
+ else
+ return b;
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/nRF24L01P_Maniacbug.h Thu Apr 04 11:49:28 2013 +0000
@@ -0,0 +1,783 @@
+/*
+ Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
+
+ Permission is hereby granted, free of charge, to any person
+ obtaining a copy of this software and associated documentation
+ files (the "Software"), to deal in the Software without
+ restriction, including without limitation the rights to use, copy,
+ modify, merge, publish, distribute, sublicense, and/or sell copies
+ of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be
+ included in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ DEALINGS IN THE SOFTWARE.
+*/
+
+/* Memory Map */
+#define CONFIG 0x00
+#define EN_AA 0x01
+#define EN_RXADDR 0x02
+#define SETUP_AW 0x03
+#define SETUP_RETR 0x04
+#define RF_CH 0x05
+#define RF_SETUP 0x06
+#define STATUS 0x07
+#define OBSERVE_TX 0x08
+#define CD 0x09
+#define RX_ADDR_P0 0x0A
+#define RX_ADDR_P1 0x0B
+#define RX_ADDR_P2 0x0C
+#define RX_ADDR_P3 0x0D
+#define RX_ADDR_P4 0x0E
+#define RX_ADDR_P5 0x0F
+#define TX_ADDR 0x10
+#define RX_PW_P0 0x11
+#define RX_PW_P1 0x12
+#define RX_PW_P2 0x13
+#define RX_PW_P3 0x14
+#define RX_PW_P4 0x15
+#define RX_PW_P5 0x16
+#define FIFO_STATUS 0x17
+#define DYNPD 0x1C
+#define FEATURE 0x1D
+
+/* Bit Mnemonics */
+#define MASK_RX_DR 6
+#define MASK_TX_DS 5
+#define MASK_MAX_RT 4
+#define EN_CRC 3
+#define CRCO 2
+#define PWR_UP 1
+#define PRIM_RX 0
+#define ENAA_P5 5
+#define ENAA_P4 4
+#define ENAA_P3 3
+#define ENAA_P2 2
+#define ENAA_P1 1
+#define ENAA_P0 0
+#define ERX_P5 5
+#define ERX_P4 4
+#define ERX_P3 3
+#define ERX_P2 2
+#define ERX_P1 1
+#define ERX_P0 0
+#define AW 0
+#define ARD 4
+#define ARC 0
+#define PLL_LOCK 4
+#define RF_DR 3
+#define RF_PWR 6
+#define RX_DR 6
+#define TX_DS 5
+#define MAX_RT 4
+#define RX_P_NO 1
+#define TX_FULL 0
+#define PLOS_CNT 4
+#define ARC_CNT 0
+#define TX_REUSE 6
+#define FIFO_FULL 5
+#define TX_EMPTY 4
+#define RX_FULL 1
+#define RX_EMPTY 0
+#define DPL_P5 5
+#define DPL_P4 4
+#define DPL_P3 3
+#define DPL_P2 2
+#define DPL_P1 1
+#define DPL_P0 0
+#define EN_DPL 2
+#define EN_ACK_PAY 1
+#define EN_DYN_ACK 0
+
+/* Instruction Mnemonics */
+#define R_REGISTER 0x00
+#define W_REGISTER 0x20
+#define REGISTER_MASK 0x1F
+#define ACTIVATE 0x50
+#define R_RX_PL_WID 0x60
+#define R_RX_PAYLOAD 0x61
+#define W_TX_PAYLOAD 0xA0
+#define W_ACK_PAYLOAD 0xA8
+#define FLUSH_TX 0xE1
+#define FLUSH_RX 0xE2
+#define REUSE_TX_PL 0xE3
+#define NOP 0xFF
+
+/* Non-P omissions */
+#define LNA_HCURR 0
+
+/* P model memory Map */
+#define RPD 0x09
+
+/* P model bit Mnemonics */
+#define RF_DR_LOW 5
+#define RF_DR_HIGH 3
+#define RF_PWR_LOW 1
+#define RF_PWR_HIGH 2
+
+#define LOW 0
+#define HIGH 1
+#define _NRF24L01P_SPI_MAX_DATA_RATE 10000000
+#define _NRF24L01P_TIMING_Tundef2pd_us 100000 // 100mS
+#define _NRF24L01P_TIMING_Tpece2csn_us 4
+
+
+
+
+/*
+ Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ version 2 as published by the Free Software Foundation.
+ */
+
+/**
+ * @file RF24.h
+ *
+ * Class declaration for RF24 and helper enums
+ */
+
+#ifndef __RF24_H__
+#define __RF24_H__
+
+#include "mbed.h"
+
+
+/**
+ * Power Amplifier level.
+ *
+ * For use with setPALevel()
+ */
+typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ;
+
+/**
+ * Data rate. How fast data moves through the air.
+ *
+ * For use with setDataRate()
+ */
+typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e;
+
+/**
+ * CRC Length. How big (if any) of a CRC is included.
+ *
+ * For use with setCRCLength()
+ */
+typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e;
+
+/**
+ * Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
+ */
+
+class RF24
+{
+private:
+ DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
+ DigitalOut csn_pin; /**< SPI Chip select */
+ bool wide_band; /* 2Mbs data rate in use? */
+ bool p_variant; /* False for RF24L01 and true for RF24L01P */
+ uint8_t payload_size; /**< Fixed size of payloads */
+ bool ack_payload_available; /**< Whether there is an ack payload waiting */
+ bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */
+ uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. */
+ uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */
+ SPI spi;
+ Timer mainTimer;
+
+protected:
+ /**
+ * @name Low-level internal interface.
+ *
+ * Protected methods that address the chip directly. Regular users cannot
+ * ever call these. They are documented for completeness and for developers who
+ * may want to extend this class.
+ */
+ /**@{*/
+
+ /**
+ * Set chip select pin
+ *
+ * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
+ * and best of all, we make use of the radio's FIFO buffers. A lower speed
+ * means we're less likely to effectively leverage our FIFOs and pay a higher
+ * AVR runtime cost as toll.
+ *
+ * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
+ */
+ void csn(int mode);
+
+ /**
+ * Set chip enable
+ *
+ * @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet
+ * for a much more detailed description of this pin.
+ */
+ void ce(int level);
+
+ /**
+ * Read a chunk of data in from a register
+ *
+ * @param reg Which register. Use constants from nRF24L01.h
+ * @param buf Where to put the data
+ * @param len How many bytes of data to transfer
+ * @return Current value of status register
+ */
+ uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
+
+ /**
+ * Read single byte from a register
+ *
+ * @param reg Which register. Use constants from nRF24L01.h
+ * @return Current value of register @p reg
+ */
+ uint8_t read_register(uint8_t reg);
+
+ /**
+ * Write a chunk of data to a register
+ *
+ * @param reg Which register. Use constants from nRF24L01.h
+ * @param buf Where to get the data
+ * @param len How many bytes of data to transfer
+ * @return Current value of status register
+ */
+ uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
+
+ /**
+ * Write a single byte to a register
+ *
+ * @param reg Which register. Use constants from nRF24L01.h
+ * @param value The new value to write
+ * @return Current value of status register
+ */
+ uint8_t write_register(uint8_t reg, uint8_t value);
+
+ /**
+ * Write the transmit payload
+ *
+ * The size of data written is the fixed payload size, see getPayloadSize()
+ *
+ * @param buf Where to get the data
+ * @param len Number of bytes to be sent
+ * @return Current value of status register
+ */
+ uint8_t write_payload(const void* buf, uint8_t len);
+
+ /**
+ * Read the receive payload
+ *
+ * The size of data read is the fixed payload size, see getPayloadSize()
+ *
+ * @param buf Where to put the data
+ * @param len Maximum number of bytes to read
+ * @return Current value of status register
+ */
+ uint8_t read_payload(void* buf, uint8_t len);
+
+ /**
+ * Empty the receive buffer
+ *
+ * @return Current value of status register
+ */
+ uint8_t flush_rx(void);
+
+ /**
+ * Empty the transmit buffer
+ *
+ * @return Current value of status register
+ */
+ uint8_t flush_tx(void);
+
+ /**
+ * Retrieve the current status of the chip
+ *
+ * @return Current value of status register
+ */
+ uint8_t get_status(void);
+
+ /**
+ * Decode and print the given status to stdout
+ *
+ * @param status Status value to print
+ *
+ * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
+ */
+ void print_status(uint8_t status);
+
+ /**
+ * Decode and print the given 'observe_tx' value to stdout
+ *
+ * @param value The observe_tx value to print
+ *
+ * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
+ */
+ void print_observe_tx(uint8_t value);
+
+ /**
+ * Print the name and value of an 8-bit register to stdout
+ *
+ * Optionally it can print some quantity of successive
+ * registers on the same line. This is useful for printing a group
+ * of related registers on one line.
+ *
+ * @param name Name of the register
+ * @param reg Which register. Use constants from nRF24L01.h
+ * @param qty How many successive registers to print
+ */
+ void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
+
+ /**
+ * Print the name and value of a 40-bit address register to stdout
+ *
+ * Optionally it can print some quantity of successive
+ * registers on the same line. This is useful for printing a group
+ * of related registers on one line.
+ *
+ * @param name Name of the register
+ * @param reg Which register. Use constants from nRF24L01.h
+ * @param qty How many successive registers to print
+ */
+ void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
+
+ /**
+ * Turn on or off the special features of the chip
+ *
+ * The chip has certain 'features' which are only available when the 'features'
+ * are enabled. See the datasheet for details.
+ */
+ void toggle_features(void);
+ /**@}*/
+
+public:
+ /**
+ * @name Primary public interface
+ *
+ * These are the main methods you need to operate the chip
+ */
+ /**@{*/
+
+ /**
+ * Constructor
+ *
+ * Creates a new instance of this driver. Before using, you create an instance
+ * and send in the unique pins that this chip is connected to.
+ *
+ * @param _cepin The pin attached to Chip Enable on the RF module
+ * @param _cspin The pin attached to Chip Select
+ */
+ RF24(PinName, PinName, PinName, PinName, PinName); //mosi miso sck ce cs
+
+ /**
+ * Begin operation of the chip
+ *
+ * Call this in setup(), before calling any other methods.
+ */
+ void begin(void);
+
+ /**
+ * Start listening on the pipes opened for reading.
+ *
+ * Be sure to call openReadingPipe() first. Do not call write() while
+ * in this mode, without first calling stopListening(). Call
+ * isAvailable() to check for incoming traffic, and read() to get it.
+ */
+ void startListening(void);
+
+ /**
+ * Stop listening for incoming messages
+ *
+ * Do this before calling write().
+ */
+ void stopListening(void);
+
+ /**
+ * Write to the open writing pipe
+ *
+ * Be sure to call openWritingPipe() first to set the destination
+ * of where to write to.
+ *
+ * This blocks until the message is successfully acknowledged by
+ * the receiver or the timeout/retransmit maxima are reached. In
+ * the current configuration, the max delay here is 60ms.
+ *
+ * The maximum size of data written is the fixed payload size, see
+ * getPayloadSize(). However, you can write less, and the remainder
+ * will just be filled with zeroes.
+ *
+ * @param buf Pointer to the data to be sent
+ * @param len Number of bytes to be sent
+ * @return True if the payload was delivered successfully false if not
+ */
+ bool write( const void* buf, uint8_t len );
+
+ /**
+ * Test whether there are bytes available to be read
+ *
+ * @return True if there is a payload available, false if none is
+ */
+ bool available(void);
+
+ /**
+ * Read the payload
+ *
+ * Return the last payload received
+ *
+ * The size of data read is the fixed payload size, see getPayloadSize()
+ *
+ * @note I specifically chose 'void*' as a data type to make it easier
+ * for beginners to use. No casting needed.
+ *
+ * @param buf Pointer to a buffer where the data should be written
+ * @param len Maximum number of bytes to read into the buffer
+ * @return True if the payload was delivered successfully false if not
+ */
+ bool read( void* buf, uint8_t len );
+
+ /**
+ * Open a pipe for writing
+ *
+ * Only one pipe can be open at once, but you can change the pipe
+ * you'll listen to. Do not call this while actively listening.
+ * Remember to stopListening() first.
+ *
+ * Addresses are 40-bit hex values, e.g.:
+ *
+ * @code
+ * openWritingPipe(0xF0F0F0F0F0);
+ * @endcode
+ *
+ * @param address The 40-bit address of the pipe to open. This can be
+ * any value whatsoever, as long as you are the only one writing to it
+ * and only one other radio is listening to it. Coordinate these pipe
+ * addresses amongst nodes on the network.
+ */
+ void openWritingPipe(uint64_t address);
+
+ /**
+ * Open a pipe for reading
+ *
+ * Up to 6 pipes can be open for reading at once. Open all the
+ * reading pipes, and then call startListening().
+ *
+ * @see openWritingPipe
+ *
+ * @warning Pipes 1-5 should share the first 32 bits.
+ * Only the least significant byte should be unique, e.g.
+ * @code
+ * openReadingPipe(1,0xF0F0F0F0AA);
+ * openReadingPipe(2,0xF0F0F0F066);
+ * @endcode
+ *
+ * @warning Pipe 0 is also used by the writing pipe. So if you open
+ * pipe 0 for reading, and then startListening(), it will overwrite the
+ * writing pipe. Ergo, do an openWritingPipe() again before write().
+ *
+ * @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
+ *
+ * @param number Which pipe# to open, 0-5.
+ * @param address The 40-bit address of the pipe to open.
+ */
+ void openReadingPipe(uint8_t number, uint64_t address);
+
+ /**@}*/
+ /**
+ * @name Optional Configurators
+ *
+ * Methods you can use to get or set the configuration of the chip.
+ * None are required. Calling begin() sets up a reasonable set of
+ * defaults.
+ */
+ /**@{*/
+ /**
+ * Set the number and delay of retries upon failed submit
+ *
+ * @param delay How long to wait between each retry, in multiples of 250us,
+ * max is 15. 0 means 250us, 15 means 4000us.
+ * @param count How many retries before giving up, max 15
+ */
+ void setRetries(uint8_t delay, uint8_t count);
+
+ /**
+ * Set RF communication channel
+ *
+ * @param channel Which RF channel to communicate on, 0-127
+ */
+ void setChannel(uint8_t channel);
+
+ /**
+ * Set Static Payload Size
+ *
+ * This implementation uses a pre-stablished fixed payload size for all
+ * transmissions. If this method is never called, the driver will always
+ * transmit the maximum payload size (32 bytes), no matter how much
+ * was sent to write().
+ *
+ * @todo Implement variable-sized payloads feature
+ *
+ * @param size The number of bytes in the payload
+ */
+ void setPayloadSize(uint8_t size);
+
+ /**
+ * Get Static Payload Size
+ *
+ * @see setPayloadSize()
+ *
+ * @return The number of bytes in the payload
+ */
+ uint8_t getPayloadSize(void);
+
+ /**
+ * Get Dynamic Payload Size
+ *
+ * For dynamic payloads, this pulls the size of the payload off
+ * the chip
+ *
+ * @return Payload length of last-received dynamic payload
+ */
+ uint8_t getDynamicPayloadSize(void);
+
+ /**
+ * Enable custom payloads on the acknowledge packets
+ *
+ * Ack payloads are a handy way to return data back to senders without
+ * manually changing the radio modes on both units.
+ *
+ * @see examples/pingpair_pl/pingpair_pl.pde
+ */
+ void enableAckPayload(void);
+
+ /**
+ * Enable dynamically-sized payloads
+ *
+ * This way you don't always have to send large packets just to send them
+ * once in a while. This enables dynamic payloads on ALL pipes.
+ *
+ * @see examples/pingpair_pl/pingpair_dyn.pde
+ */
+ void enableDynamicPayloads(void);
+
+ /**
+ * Determine whether the hardware is an nRF24L01+ or not.
+ *
+ * @return true if the hardware is nRF24L01+ (or compatible) and false
+ * if its not.
+ */
+ bool isPVariant(void) ;
+
+ /**
+ * Enable or disable auto-acknowlede packets
+ *
+ * This is enabled by default, so it's only needed if you want to turn
+ * it off for some reason.
+ *
+ * @param enable Whether to enable (true) or disable (false) auto-acks
+ */
+ void setAutoAck(bool enable);
+
+ /**
+ * Enable or disable auto-acknowlede packets on a per pipeline basis.
+ *
+ * AA is enabled by default, so it's only needed if you want to turn
+ * it off/on for some reason on a per pipeline basis.
+ *
+ * @param pipe Which pipeline to modify
+ * @param enable Whether to enable (true) or disable (false) auto-acks
+ */
+ void setAutoAck( uint8_t pipe, bool enable ) ;
+
+ /**
+ * Set Power Amplifier (PA) level to one of four levels.
+ * Relative mnemonics have been used to allow for future PA level
+ * changes. According to 6.5 of the nRF24L01+ specification sheet,
+ * they translate to: RF24_PA_MIN=-18dBm, RF24_PA_LOW=-12dBm,
+ * RF24_PA_MED=-6dBM, and RF24_PA_HIGH=0dBm.
+ *
+ * @param level Desired PA level.
+ */
+ void setPALevel( rf24_pa_dbm_e level ) ;
+
+ /**
+ * Fetches the current PA level.
+ *
+ * @return Returns a value from the rf24_pa_dbm_e enum describing
+ * the current PA setting. Please remember, all values represented
+ * by the enum mnemonics are negative dBm. See setPALevel for
+ * return value descriptions.
+ */
+ rf24_pa_dbm_e getPALevel( void ) ;
+
+ /**
+ * Set the transmission data rate
+ *
+ * @warning setting RF24_250KBPS will fail for non-plus units
+ *
+ * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
+ * @return true if the change was successful
+ */
+ bool setDataRate(rf24_datarate_e speed);
+
+ /**
+ * Fetches the transmission data rate
+ *
+ * @return Returns the hardware's currently configured datarate. The value
+ * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
+ * rf24_datarate_e enum.
+ */
+ rf24_datarate_e getDataRate( void ) ;
+
+ /**
+ * Set the CRC length
+ *
+ * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
+ */
+ void setCRCLength(rf24_crclength_e length);
+
+ /**
+ * Get the CRC length
+ *
+ * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
+ */
+ rf24_crclength_e getCRCLength(void);
+
+ /**
+ * Disable CRC validation
+ *
+ */
+ void disableCRC( void ) ;
+
+ /**@}*/
+ /**
+ * @name Advanced Operation
+ *
+ * Methods you can use to drive the chip in more advanced ways
+ */
+ /**@{*/
+
+ /**
+ * Print a giant block of debugging information to stdout
+ *
+ * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
+ */
+ void printDetails(void);
+
+ /**
+ * Enter low-power mode
+ *
+ * To return to normal power mode, either write() some data or
+ * startListening, or powerUp().
+ */
+ void powerDown(void);
+
+ /**
+ * Leave low-power mode - making radio more responsive
+ *
+ * To return to low power mode, call powerDown().
+ */
+ void powerUp(void) ;
+
+ /**
+ * Test whether there are bytes available to be read
+ *
+ * Use this version to discover on which pipe the message
+ * arrived.
+ *
+ * @param[out] pipe_num Which pipe has the payload available
+ * @return True if there is a payload available, false if none is
+ */
+ bool available(uint8_t* pipe_num);
+
+ /**
+ * Non-blocking write to the open writing pipe
+ *
+ * Just like write(), but it returns immediately. To find out what happened
+ * to the send, catch the IRQ and then call whatHappened().
+ *
+ * @see write()
+ * @see whatHappened()
+ *
+ * @param buf Pointer to the data to be sent
+ * @param len Number of bytes to be sent
+ * @return True if the payload was delivered successfully false if not
+ */
+ void startWrite( const void* buf, uint8_t len );
+
+ /**
+ * Write an ack payload for the specified pipe
+ *
+ * The next time a message is received on @p pipe, the data in @p buf will
+ * be sent back in the acknowledgement.
+ *
+ * @warning According to the data sheet, only three of these can be pending
+ * at any time. I have not tested this.
+ *
+ * @param pipe Which pipe# (typically 1-5) will get this response.
+ * @param buf Pointer to data that is sent
+ * @param len Length of the data to send, up to 32 bytes max. Not affected
+ * by the static payload set by setPayloadSize().
+ */
+ void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
+
+ /**
+ * Determine if an ack payload was received in the most recent call to
+ * write().
+ *
+ * Call read() to retrieve the ack payload.
+ *
+ * @warning Calling this function clears the internal flag which indicates
+ * a payload is available. If it returns true, you must read the packet
+ * out as the very next interaction with the radio, or the results are
+ * undefined.
+ *
+ * @return True if an ack payload is available.
+ */
+ bool isAckPayloadAvailable(void);
+
+ /**
+ * Call this when you get an interrupt to find out why
+ *
+ * Tells you what caused the interrupt, and clears the state of
+ * interrupts.
+ *
+ * @param[out] tx_ok The send was successful (TX_DS)
+ * @param[out] tx_fail The send failed, too many retries (MAX_RT)
+ * @param[out] rx_ready There is a message waiting to be read (RX_DS)
+ */
+ void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
+
+ /**
+ * Test whether there was a carrier on the line for the
+ * previous listening period.
+ *
+ * Useful to check for interference on the current channel.
+ *
+ * @return true if was carrier, false if not
+ */
+ bool testCarrier(void);
+
+ /**
+ * Test whether a signal (carrier or otherwise) greater than
+ * or equal to -64dBm is present on the channel. Valid only
+ * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
+ *
+ * Useful to check for interference on the current channel and
+ * channel hopping strategies.
+ *
+ * @return true if signal => -64dBm, false if not
+ */
+ bool testRPD(void) ;
+
+ int min(int, int);
+
+};
+
+
+#endif // __RF24_H__
\ No newline at end of file
S. Ken San
