only test purpose not official
LSM9DS1.h
- Committer:
- 5hel2l2y
- Date:
- 2016-06-21
- Revision:
- 3:f96b287c0bf7
- Parent:
- 1:0e76f237c23d
- Child:
- 4:7ffcb378cfd4
File content as of revision 3:f96b287c0bf7:
// Most of the Credit goes to jimblom // Modifications by Allen Wild #ifndef _LSM9DS1_H__ #define _LSM9DS1_H__ #include "mbed.h" ///////////////////////////////////////// // LSM9DS1 Accel/Gyro (XL/G) Registers // ///////////////////////////////////////// #define ACT_THS 0x04 #define ACT_DUR 0x05 #define INT_GEN_CFG_XL 0x06 #define INT_GEN_THS_X_XL 0x07 #define INT_GEN_THS_Y_XL 0x08 #define INT_GEN_THS_Z_XL 0x09 #define INT_GEN_DUR_XL 0x0A #define REFERENCE_G 0x0B #define INT1_CTRL 0x0C #define INT2_CTRL 0x0D #define WHO_AM_I_XG 0x0F #define CTRL_REG1_G 0x10 #define CTRL_REG2_G 0x11 #define CTRL_REG3_G 0x12 #define ORIENT_CFG_G 0x13 #define INT_GEN_SRC_G 0x14 #define OUT_TEMP_L 0x15 #define OUT_TEMP_H 0x16 #define STATUS_REG_0 0x17 #define OUT_X_L_G 0x18 #define OUT_X_H_G 0x19 #define OUT_Y_L_G 0x1A #define OUT_Y_H_G 0x1B #define OUT_Z_L_G 0x1C #define OUT_Z_H_G 0x1D #define CTRL_REG4 0x1E #define CTRL_REG5_XL 0x1F #define CTRL_REG6_XL 0x20 #define CTRL_REG7_XL 0x21 #define CTRL_REG8 0x22 #define CTRL_REG9 0x23 #define CTRL_REG10 0x24 #define INT_GEN_SRC_XL 0x26 #define STATUS_REG_1 0x27 #define OUT_X_L_XL 0x28 #define OUT_X_H_XL 0x29 #define OUT_Y_L_XL 0x2A #define OUT_Y_H_XL 0x2B #define OUT_Z_L_XL 0x2C #define OUT_Z_H_XL 0x2D #define FIFO_CTRL 0x2E #define FIFO_SRC 0x2F #define INT_GEN_CFG_G 0x30 #define INT_GEN_THS_XH_G 0x31 #define INT_GEN_THS_XL_G 0x32 #define INT_GEN_THS_YH_G 0x33 #define INT_GEN_THS_YL_G 0x34 #define INT_GEN_THS_ZH_G 0x35 #define INT_GEN_THS_ZL_G 0x36 #define INT_GEN_DUR_G 0x37 /////////////////////////////// // LSM9DS1 Magneto Registers // /////////////////////////////// #define OFFSET_X_REG_L_M 0x05 #define OFFSET_X_REG_H_M 0x06 #define OFFSET_Y_REG_L_M 0x07 #define OFFSET_Y_REG_H_M 0x08 #define OFFSET_Z_REG_L_M 0x09 #define OFFSET_Z_REG_H_M 0x0A #define WHO_AM_I_M 0x0F #define CTRL_REG1_M 0x20 #define CTRL_REG2_M 0x21 #define CTRL_REG3_M 0x22 #define CTRL_REG4_M 0x23 #define CTRL_REG5_M 0x24 #define STATUS_REG_M 0x27 #define OUT_X_L_M 0x28 #define OUT_X_H_M 0x29 #define OUT_Y_L_M 0x2A #define OUT_Y_H_M 0x2B #define OUT_Z_L_M 0x2C #define OUT_Z_H_M 0x2D #define INT_CFG_M 0x30 #define INT_SRC_M 0x30 #define INT_THS_L_M 0x32 #define INT_THS_H_M 0x33 //////////////////////////////// // LSM9DS1 WHO_AM_I Responses // //////////////////////////////// #define WHO_AM_I_AG_RSP 0x68 #define WHO_AM_I_M_RSP 0x3D // Possible I2C addresses for the accel/gyro and mag #define LSM9DS1_AG_I2C_ADDR(sa0) ((sa0) ? 0xD6 : 0xD4) #define LSM9DS1_M_I2C_ADDR(sa1) ((sa1) ? 0x3C : 0x38) /** * LSM9DS1 Class - driver for the 9 DoF IMU */ class LSM9DS1 { public: /// gyro_scale defines the possible full-scale ranges of the gyroscope: enum gyro_scale { G_SCALE_245DPS = 0x0 << 3, // 00 << 3: +/- 245 degrees per second G_SCALE_500DPS = 0x1 << 3, // 01 << 3: +/- 500 dps G_SCALE_2000DPS = 0x3 << 3 // 11 << 3: +/- 2000 dps }; /// gyro_odr defines all possible data rate/bandwidth combos of the gyro: enum gyro_odr { // ODR (Hz) --- Cutoff G_POWER_DOWN = 0x00, // 0 0 G_ODR_15_BW_0 = 0x20, // 14.9 0 G_ODR_60_BW_16 = 0x40, // 59.5 16 G_ODR_119_BW_14 = 0x60, // 119 14 G_ODR_119_BW_31 = 0x61, // 119 31 G_ODR_238_BW_14 = 0x80, // 238 14 G_ODR_238_BW_29 = 0x81, // 238 29 G_ODR_238_BW_63 = 0x82, // 238 63 G_ODR_238_BW_78 = 0x83, // 238 78 G_ODR_476_BW_21 = 0xA0, // 476 21 G_ODR_476_BW_28 = 0xA1, // 476 28 G_ODR_476_BW_57 = 0xA2, // 476 57 G_ODR_476_BW_100 = 0xA3, // 476 100 G_ODR_952_BW_33 = 0xC0, // 952 33 G_ODR_952_BW_40 = 0xC1, // 952 40 G_ODR_952_BW_58 = 0xC2, // 952 58 G_ODR_952_BW_100 = 0xC3 // 952 100 }; /// accel_scale defines all possible FSR's of the accelerometer: enum accel_scale { A_SCALE_2G, // 00: +/- 2g A_SCALE_16G,// 01: +/- 16g A_SCALE_4G, // 10: +/- 4g A_SCALE_8G // 11: +/- 8g }; /// accel_oder defines all possible output data rates of the accelerometer: enum accel_odr { A_POWER_DOWN, // Power-down mode (0x0) A_ODR_10, // 10 Hz (0x1) A_ODR_50, // 50 Hz (0x2) A_ODR_119, // 119 Hz (0x3) A_ODR_238, // 238 Hz (0x4) A_ODR_476, // 476 Hz (0x5) A_ODR_952 // 952 Hz (0x6) }; // accel_bw defines all possible bandwiths for low-pass filter of the accelerometer: enum accel_bw { A_BW_AUTO_SCALE = 0x0, // Automatic BW scaling (0x0) A_BW_408 = 0x4, // 408 Hz (0x4) A_BW_211 = 0x5, // 211 Hz (0x5) A_BW_105 = 0x6, // 105 Hz (0x6) A_BW_50 = 0x7 // 50 Hz (0x7) }; /// mag_scale defines all possible FSR's of the magnetometer: enum mag_scale { M_SCALE_4GS, // 00: +/- 4Gs M_SCALE_8GS, // 01: +/- 8Gs M_SCALE_12GS, // 10: +/- 12Gs M_SCALE_16GS, // 11: +/- 16Gs }; /// mag_odr defines all possible output data rates of the magnetometer: enum mag_odr { M_ODR_0625, // 0.625 Hz (0x00) M_ODR_125, // 1.25 Hz (0x01) M_ODR_25, // 2.5 Hz (0x02) M_ODR_5, // 5 Hz (0x03) M_ODR_10, // 10 (0x04) M_ODR_20, // 20 Hz (0x05) M_ODR_40, // 40 Hz (0x06) M_ODR_80 // 80 Hz (0x07) }; // We'll store the gyro, accel, and magnetometer readings in a series of // public class variables. Each sensor gets three variables -- one for each // axis. Call readGyro(), readAccel(), and readMag() first, before using // these variables! // These values are the RAW signed 16-bit readings from the sensors. int16_t gx_raw, gy_raw, gz_raw; // x, y, and z axis readings of the gyroscope int16_t ax_raw, ay_raw, az_raw; // x, y, and z axis readings of the accelerometer int16_t mx_raw, my_raw, mz_raw; // x, y, and z axis readings of the magnetometer int16_t temperature_raw; // floating-point values of scaled data in real-world units float gx, gy, gz; float ax, ay, az; float mx, my, mz; float temperature_c, temperature_f; // temperature in celcius and fahrenheit float intr; /** LSM9DS1 -- LSM9DS1 class constructor * The constructor will set up a handful of private variables, and set the * communication mode as well. * Input: * - interface = Either MODE_SPI or MODE_I2C, whichever you're using * to talk to the IC. * - xgAddr = If MODE_I2C, this is the I2C address of the accel/gyro. * If MODE_SPI, this is the chip select pin of the accel/gyro (CS_A/G) * - mAddr = If MODE_I2C, this is the I2C address of the mag. * If MODE_SPI, this is the cs pin of the mag (CS_M) */ LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr = LSM9DS1_AG_I2C_ADDR(1), uint8_t mAddr = LSM9DS1_M_I2C_ADDR(1)); /** begin() -- Initialize the gyro, accelerometer, and magnetometer. * This will set up the scale and output rate of each sensor. It'll also * "turn on" every sensor and every axis of every sensor. * Input: * - gScl = The scale of the gyroscope. This should be a gyro_scale value. * - aScl = The scale of the accelerometer. Should be a accel_scale value. * - mScl = The scale of the magnetometer. Should be a mag_scale value. * - gODR = Output data rate of the gyroscope. gyro_odr value. * - aODR = Output data rate of the accelerometer. accel_odr value. * - mODR = Output data rate of the magnetometer. mag_odr value. * Output: The function will return an unsigned 16-bit value. The most-sig * bytes of the output are the WHO_AM_I reading of the accel/gyro. The * least significant two bytes are the WHO_AM_I reading of the mag. * All parameters have a defaulted value, so you can call just "begin()". * Default values are FSR's of: +/- 245DPS, 4g, 2Gs; ODRs of 119 Hz for * gyro, 119 Hz for accelerometer, 80 Hz for magnetometer. * Use the return value of this function to verify communication. */ uint16_t begin(gyro_scale gScl = G_SCALE_245DPS, accel_scale aScl = A_SCALE_2G, mag_scale mScl = M_SCALE_4GS, gyro_odr gODR = G_ODR_119_BW_14, accel_odr aODR = A_ODR_119, mag_odr mODR = M_ODR_80); /** readGyro() -- Read the gyroscope output registers. * This function will read all six gyroscope output registers. * The readings are stored in the class' gx_raw, gy_raw, and gz_raw variables. Read * those _after_ calling readGyro(). */ void readGyro(); /** readAccel() -- Read the accelerometer output registers. * This function will read all six accelerometer output registers. * The readings are stored in the class' ax_raw, ay_raw, and az_raw variables. Read * those _after_ calling readAccel(). */ void readAccel(); /** readMag() -- Read the magnetometer output registers. * This function will read all six magnetometer output registers. * The readings are stored in the class' mx_raw, my_raw, and mz_raw variables. Read * those _after_ calling readMag(). */ void readMag(); void readIntr(); /** readTemp() -- Read the temperature output register. * This function will read two temperature output registers. * The combined readings are stored in the class' temperature variables. Read * those _after_ calling readTemp(). */ void readTemp(); /** setGyroScale() -- Set the full-scale range of the gyroscope. * This function can be called to set the scale of the gyroscope to * 245, 500, or 2000 degrees per second. * Input: * - gScl = The desired gyroscope scale. Must be one of three possible * values from the gyro_scale enum. */ void setGyroScale(gyro_scale gScl); /** setAccelScale() -- Set the full-scale range of the accelerometer. * This function can be called to set the scale of the accelerometer to * 2, 4, 8, or 16 g's. * Input: * - aScl = The desired accelerometer scale. Must be one of five possible * values from the accel_scale enum. */ void setAccelScale(accel_scale aScl); /** setMagScale() -- Set the full-scale range of the magnetometer. * This function can be called to set the scale of the magnetometer to * 4, 8, 12, or 16 Gs. * Input: * - mScl = The desired magnetometer scale. Must be one of four possible * values from the mag_scale enum. */ void setMagScale(mag_scale mScl); /** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope * Input: * - gRate = The desired output rate and cutoff frequency of the gyro. * Must be a value from the gyro_odr enum (check above). */ void setGyroODR(gyro_odr gRate); /** setAccelODR() -- Set the output data rate of the accelerometer * Input: * - aRate = The desired output rate of the accel. * Must be a value from the accel_odr enum (check above). */ void setAccelODR(accel_odr aRate); /** setMagODR() -- Set the output data rate of the magnetometer * Input: * - mRate = The desired output rate of the mag. * Must be a value from the mag_odr enum (check above). */ void setMagODR(mag_odr mRate); private: /** xgAddress and mAddress store the I2C address * for each sensor. */ uint8_t xgAddress, mAddress; // I2C bus I2C i2c; /** gScale, aScale, and mScale store the current scale range for each * sensor. Should be updated whenever that value changes. */ gyro_scale gScale; accel_scale aScale; mag_scale mScale; /** gRes, aRes, and mRes store the current resolution for each sensor. * Units of these values would be DPS (or g's or Gs's) per ADC tick. * This value is calculated as (sensor scale) / (2^15). */ float gRes, aRes, mRes; /** initGyro() -- Sets up the gyroscope to begin reading. * This function steps through all three gyroscope control registers. */ void initGyro(); /** initAccel() -- Sets up the accelerometer to begin reading. * This function steps through all accelerometer related control registers. */ void initAccel(); void initIntr(); /** initMag() -- Sets up the magnetometer to begin reading. * This function steps through all magnetometer-related control registers. */ void initMag(); /** calcgRes() -- Calculate the resolution of the gyroscope. * This function will set the value of the gRes variable. gScale must * be set prior to calling this function. */ void calcgRes(); /** calcmRes() -- Calculate the resolution of the magnetometer. * This function will set the value of the mRes variable. mScale must * be set prior to calling this function. */ void calcmRes(); /** calcaRes() -- Calculate the resolution of the accelerometer. * This function will set the value of the aRes variable. aScale must * be set prior to calling this function. */ void calcaRes(); }; #endif // _LSM9DS1_H //