Median of 3 filter for multiple time of flight sensors translated from arduino by pololu

Dependencies:   mbed

Dependents:   wheelchaircontrol wheelchaircontrol2 wheelchaircontrol3 wheelchaircontrol4 ... more

VL53L1X.cpp

Committer:
jvfausto
Date:
14 months ago
Revision:
5:a75d46c735c7
Parent:
4:f6f0c2b9120a

File content as of revision 5:a75d46c735c7:

// Most of the functionality of this library is based on the VL53L1X API
// provided by ST (STSW-IMG007), and some of the explanatory comments are quoted
// or paraphrased from the API source code, API user manual (UM2356), and
// VL53L1X datasheet.
 
#include "VL53L1X.h"
#include "mbed.h"
 
// Constructors ////////////////////////////////////////////////////////////////
VL53L1X::VL53L1X(PinName SDA, PinName SCL, PinName shutDown) : 
  _i2c(SDA,SCL), _shutDown(shutDown)  
  , io_timeout(0) // no timeout
  , did_timeout(false)
  , calibrated(false)
  , saved_vhv_init(0)
  , saved_vhv_timeout(0)
  , distance_mode(Unknown){
    //Set I2C fast and bring reset line high
   _i2c.frequency(400000);
    address = AddressDefault << 1;
    turnOff();
    }
    
/*VL53L1X::VL53L1X()
  : address(AddressDefault)
{
}*/
 
// Public Methods //////////////////////////////////////////////////////////////
 
void VL53L1X::setAddress(uint8_t new_addr)
{
  writeReg(I2C_SLAVE__DEVICE_ADDRESS, new_addr & 0x7F);
  wait(.02);
  address = new_addr << 1;
  printf("%x\r\n", readReg(I2C_SLAVE__DEVICE_ADDRESS));
}
 
// Initialize sensor using settings taken mostly from VL53L1_DataInit() and
// VL53L1_StaticInit().
// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
// mode.
bool VL53L1X::init(bool io_2v8)
{
  // check model ID and module type registers (values specified in datasheet)
  int tempRegister = readReg16Bit(IDENTIFICATION__MODEL_ID);
  printf("temporary %x\r\n", tempRegister);
  if (tempRegister != 0xEACC) {  
    return false; 
  }
 
  // VL53L1_software_reset() begin
 
  writeReg(SOFT_RESET, 0x00);
  wait(.001);
  writeReg(SOFT_RESET, 0x01);
 
  // VL53L1_poll_for_boot_completion() begin
 
  startTimeout();
  int firmware = (readReg16Bit(FIRMWARE__SYSTEM_STATUS));
  printf("firmware : %x\r\n", firmware);
  while ((readReg(FIRMWARE__SYSTEM_STATUS) & 0x01) == 0)
  {
    printf("stuck\r\n");
    if (checkTimeoutExpired())
    {
      did_timeout = true;
      return false;
    }
  }
  // VL53L1_poll_for_boot_completion() end
 
  // VL53L1_software_reset() end
 
  // VL53L1_DataInit() begin
 
  // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
  if (io_2v8)
  {
    writeReg(PAD_I2C_HV__EXTSUP_CONFIG,
      readReg(PAD_I2C_HV__EXTSUP_CONFIG) | 0x01);
  }
 
  // store oscillator info for later use
  fast_osc_frequency = readReg16Bit(OSC_MEASURED__FAST_OSC__FREQUENCY);
  osc_calibrate_val = readReg16Bit(RESULT__OSC_CALIBRATE_VAL);
 
  // VL53L1_DataInit() end
 
  // VL53L1_StaticInit() begin
 
  // Note that the API does not actually apply the configuration settings below
  // when VL53L1_StaticInit() is called: it keeps a copy of the sensor's
  // register contents in memory and doesn't actually write them until a
  // measurement is started. Writing the configuration here means we don't have
  // to keep it all in memory and avoids a lot of redundant writes later.
 
  // the API sets the preset mode to LOWPOWER_AUTONOMOUS here:
  // VL53L1_set_preset_mode() begin
 
  // VL53L1_preset_mode_standard_ranging() begin
 
  // values labeled "tuning parm default" are from vl53l1_tuning_parm_defaults.h
  // (API uses these in VL53L1_init_tuning_parm_storage_struct())
 
  // static config
  // API resets PAD_I2C_HV__EXTSUP_CONFIG here, but maybe we don't want to do
  // that? (seems like it would disable 2V8 mode)
  writeReg16Bit(DSS_CONFIG__TARGET_TOTAL_RATE_MCPS, TargetRate); // should already be this value after reset
  writeReg(GPIO__TIO_HV_STATUS, 0x02);
  writeReg(SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS, 8); // tuning parm default
  writeReg(SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS, 16); // tuning parm default
  writeReg(ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM, 0x01);
  writeReg(ALGO__RANGE_IGNORE_VALID_HEIGHT_MM, 0xFF);
  writeReg(ALGO__RANGE_MIN_CLIP, 0); // tuning parm default
  writeReg(ALGO__CONSISTENCY_CHECK__TOLERANCE, 2); // tuning parm default
 
  // general config
  writeReg16Bit(SYSTEM__THRESH_RATE_HIGH, 0x0000);
  writeReg16Bit(SYSTEM__THRESH_RATE_LOW, 0x0000);
  writeReg(DSS_CONFIG__APERTURE_ATTENUATION, 0x38);
 
  // timing config
  // most of these settings will be determined later by distance and timing
  // budget configuration
  writeReg16Bit(RANGE_CONFIG__SIGMA_THRESH, 360); // tuning parm default
  writeReg16Bit(RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS, 192); // tuning parm default
 
  // dynamic config
 
  writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_0, 0x01);
  writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_1, 0x01);
  writeReg(SD_CONFIG__QUANTIFIER, 2); // tuning parm default
 
  // VL53L1_preset_mode_standard_ranging() end
 
  // from VL53L1_preset_mode_timed_ranging_*
  // GPH is 0 after reset, but writing GPH0 and GPH1 above seem to set GPH to 1,
  // and things don't seem to work if we don't set GPH back to 0 (which the API
  // does here).
  writeReg(SYSTEM__GROUPED_PARAMETER_HOLD, 0x00);
  writeReg(SYSTEM__SEED_CONFIG, 1); // tuning parm default
 
  // from VL53L1_config_low_power_auto_mode
  writeReg(SYSTEM__SEQUENCE_CONFIG, 0x8B); // VHV, PHASECAL, DSS1, RANGE
  writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 200 << 8);
  writeReg(DSS_CONFIG__ROI_MODE_CONTROL, 2); // REQUESTED_EFFFECTIVE_SPADS
 
  // VL53L1_set_preset_mode() end
 
  // default to long range, 50 ms timing budget
  // note that this is different than what the API defaults to
  setDistanceMode(Short);
  setMeasurementTimingBudget(50000);
 
  // VL53L1_StaticInit() end
 
  // the API triggers this change in VL53L1_init_and_start_range() once a
  // measurement is started; assumes MM1 and MM2 are disabled
  writeReg16Bit(ALGO__PART_TO_PART_RANGE_OFFSET_MM,
    readReg16Bit(MM_CONFIG__OUTER_OFFSET_MM) * 4);
 t.start();
  return true;
}
 
// Write an 8-bit register
void VL53L1X::writeReg(uint16_t registerAddr, uint8_t data)
{
    char data_write[3];
    data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address 
    data_write[1] = registerAddr & 0xFF; //LSB of register address 
    data_write[2] = data & 0xFF; 
    _i2c.write(address, data_write, 3); 
}
 
void VL53L1X::writeReg16Bit(uint16_t registerAddr, uint16_t data)
{
    char data_write[4];
    data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address 
    data_write[1] = registerAddr & 0xFF; //LSB of register address 
    data_write[2] = (data >> 8) & 0xFF;
    data_write[3] = data & 0xFF; 
    _i2c.write(address, data_write, 4); 
}
 
 
// Write a 32-bit register
/*
void VL53L1X::writeReg32Bit(uint16_t registerAddr, uint32_t data)
{
    char data_write[5];
    data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address 
    data_write[1] = registerAddr & 0xFF; //LSB of register address 
    data_write[2] = (data >> 16) & 0xFF;
    data_write[3] = (data >> 8) & 0xFF; 
    data_write[4] =  data & 0xFF;
    _i2c.write(address, data_write, 5); 
}
*/
void VL53L1X::writeReg32Bit(uint16_t registerAddr, uint32_t data)
{
    char data_write[6];
    data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address 
    data_write[1] = registerAddr & 0xFF; //LSB of register address 
    data_write[2] = (data >> 24) & 0xFF;
    data_write[3] = (data >> 16) & 0xFF; 
    data_write[4] = (data >> 8) & 0xFF;;
    data_write[5] =  data & 0xFF;
    _i2c.write(address, data_write, 6); 
}
 
 
// Read an 8-bit register
uint8_t VL53L1X::readReg(uint16_t registerAddr)
{
  uint8_t data;
  char data_write[2];
  char data_read[1];
  data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address 
  data_write[1] = registerAddr & 0xFF; //LSB of register address 
  _i2c.write(address, data_write, 2,0); 
  _i2c.read(address,data_read,1,1);
  //Read Data from selected register
  data=data_read[0];
  return data;
}
 
uint16_t VL53L1X::readReg16Bit(uint16_t registerAddr)
{
  uint8_t data_low;
  uint8_t data_high;
  uint16_t data;
 
  char data_write[2];
  char data_read[2];
  data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address 
  data_write[1] = registerAddr & 0xFF; //LSB of register address 
  _i2c.write(address, data_write, 2,0); 
  _i2c.read(address,data_read,2,1);
  data_high = data_read[0]; //Read Data from selected register
  data_low = data_read[1]; //Read Data from selected register
  data = (data_high << 8)|data_low;
 
  return data;
}
// Read a 32-bit register
uint32_t VL53L1X::readReg32Bit(uint16_t reg)
{
  uint32_t value;
/*
  _i2c.beginTransmission(address);
  _i2c.write((reg >> 8) & 0xFF); // reg high byte
  _i2c.write( reg       & 0xFF); // reg low byte
  last_status = _i2c.endTransmission();
 
  _i2c.requestFrom(address, (uint8_t)4);
  value  = (uint32_t)_i2c.read() << 24; // value highest byte
  value |= (uint32_t)_i2c.read() << 16;
  value |= (uint16_t)_i2c.read() <<  8;
  value |=           _i2c.read();       // value lowest byte
*/
  return value;
}
 
// set distance mode to Short, Medium, or Long
// based on VL53L1_SetDistanceMode()
bool VL53L1X::setDistanceMode(DistanceMode mode)
{
  // save existing timing budget
  uint32_t budget_us = getMeasurementTimingBudget();
  switch (mode)
  {
    case Short:
      // from VL53L1_preset_mode_standard_ranging_short_range()
 
      // timing config
      writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x07);
      writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x05);
      writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x38);
 
      // dynamic config
      writeReg(SD_CONFIG__WOI_SD0, 0x07);
      writeReg(SD_CONFIG__WOI_SD1, 0x05);
      writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 6); // tuning parm default
      writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 6); // tuning parm default
 
      break;
 
    case Medium:
      // from VL53L1_preset_mode_standard_ranging()
 
      // timing config
      writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0B);
      writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x09);
      writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x78);
 
      // dynamic config
      writeReg(SD_CONFIG__WOI_SD0, 0x0B);
      writeReg(SD_CONFIG__WOI_SD1, 0x09);
      writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 10); // tuning parm default
      writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 10); // tuning parm default
 
      break;
 
    case Long: // long
      // from VL53L1_preset_mode_standard_ranging_long_range()
 
      // timing config
      writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0F);
      writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x0D);
      writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0xB8);
 
      // dynamic config
      writeReg(SD_CONFIG__WOI_SD0, 0x0F);
      writeReg(SD_CONFIG__WOI_SD1, 0x0D);
      writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 14); // tuning parm default
      writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 14); // tuning parm default
 
      break;
 
    default:
      // unrecognized mode - do nothing
      return false;
  }
 
  // reapply timing budget
  setMeasurementTimingBudget(budget_us);
 
  // save mode so it can be returned by getDistanceMode()
  distance_mode = mode;
 
  return true;
}
 
// Set the measurement timing budget in microseconds, which is the time allowed
// for one measurement. A longer timing budget allows for more accurate
// measurements.
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
bool VL53L1X::setMeasurementTimingBudget(uint32_t budget_us)
{
  // assumes PresetMode is LOWPOWER_AUTONOMOUS
 
  if (budget_us <= TimingGuard) { return false; }
 
  uint32_t range_config_timeout_us = budget_us -= TimingGuard;
  if (range_config_timeout_us > 1100000) { return false; } // FDA_MAX_TIMING_BUDGET_US * 2
 
  range_config_timeout_us /= 2;
 
  // VL53L1_calc_timeout_register_values() begin
 
  uint32_t macro_period_us;
 
  // "Update Macro Period for Range A VCSEL Period"
  macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A));
 
  // "Update Phase timeout - uses Timing A"
  // Timeout of 1000 is tuning parm default (TIMED_PHASECAL_CONFIG_TIMEOUT_US_DEFAULT)
  // via VL53L1_get_preset_mode_timing_cfg().
  uint32_t phasecal_timeout_mclks = timeoutMicrosecondsToMclks(1000, macro_period_us);
  if (phasecal_timeout_mclks > 0xFF) { phasecal_timeout_mclks = 0xFF; }
  writeReg(PHASECAL_CONFIG__TIMEOUT_MACROP, phasecal_timeout_mclks);
 
  // "Update MM Timing A timeout"
  // Timeout of 1 is tuning parm default (LOWPOWERAUTO_MM_CONFIG_TIMEOUT_US_DEFAULT)
  // via VL53L1_get_preset_mode_timing_cfg(). With the API, the register
  // actually ends up with a slightly different value because it gets assigned,
  // retrieved, recalculated with a different macro period, and reassigned,
  // but it probably doesn't matter because it seems like the MM ("mode
  // mitigation"?) sequence steps are disabled in low power auto mode anyway.
  writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_A, encodeTimeout(
    timeoutMicrosecondsToMclks(1, macro_period_us)));
 
  // "Update Range Timing A timeout"
  writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A, encodeTimeout(
    timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us)));
 
  // "Update Macro Period for Range B VCSEL Period"
  macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_B));
 
  // "Update MM Timing B timeout"
  // (See earlier comment about MM Timing A timeout.)
  writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_B, encodeTimeout(
    timeoutMicrosecondsToMclks(1, macro_period_us)));
 
  // "Update Range Timing B timeout"
  writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_B, encodeTimeout(
    timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us)));
  // VL53L1_calc_timeout_register_values() end
 
  return true;
}
 
// Get the measurement timing budget in microseconds
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
uint32_t VL53L1X::getMeasurementTimingBudget()
{
  // assumes PresetMode is LOWPOWER_AUTONOMOUS and these sequence steps are
  // enabled: VHV, PHASECAL, DSS1, RANGE
 
  // VL53L1_get_timeouts_us() begin
 
  // "Update Macro Period for Range A VCSEL Period"
  uint32_t macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A));
 
  // "Get Range Timing A timeout"
 
  uint32_t range_config_timeout_us = timeoutMclksToMicroseconds(decodeTimeout(
    readReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A)), macro_period_us);
 
  // VL53L1_get_timeouts_us() end
 
  return  2 * range_config_timeout_us + TimingGuard;
}
 
// Start continuous ranging measurements, with the given inter-measurement
// period in milliseconds determining how often the sensor takes a measurement.
void VL53L1X::startContinuous(uint32_t period_ms)
{
  // from VL53L1_set_inter_measurement_period_ms()
  writeReg32Bit(SYSTEM__INTERMEASUREMENT_PERIOD, period_ms * osc_calibrate_val);
  writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
  writeReg(SYSTEM__MODE_START, 0x40); // mode_range__timed
}
 
// Stop continuous measurements
// based on VL53L1_stop_range()
void VL53L1X::stopContinuous()
{
  writeReg(SYSTEM__MODE_START, 0x80); // mode_range__abort
 
  // VL53L1_low_power_auto_data_stop_range() begin
 
  calibrated = false;
 
  // "restore vhv configs"
  if (saved_vhv_init != 0)
  {
    writeReg(VHV_CONFIG__INIT, saved_vhv_init);
  }
  if (saved_vhv_timeout != 0)
  {
     writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, saved_vhv_timeout);
  }
 
  // "remove phasecal override"
  writeReg(PHASECAL_CONFIG__OVERRIDE, 0x00);
 
  // VL53L1_low_power_auto_data_stop_range() end
}
 
// Returns a range reading in millimeters when continuous mode is active
// (readRangeSingleMillimetersx () also calls this function after starting a
// single-shot range measurement)
uint16_t VL53L1X::read(bool blocking)
{
  if (blocking)
  {
  //  startTimeout();
    
    /* dataReady returns 0. Loop is never entered. */
    /*
    while (dataReady())
    {
      if (checkTimeoutExpired())
      {
        did_timeout = true;
        ranging_data.range_status = None;
        ranging_data.range_mm = 0;
        ranging_data.peak_signal_count_rate_MCPS = 0;
        ranging_data.ambient_count_rate_MCPS = 0;
        return ranging_data.range_mm;
      }
    }*/
  }
 
  readResults();
 
  if (!calibrated)
  {
    setupManualCalibration();
    calibrated = true;
  }
 
  updateDSS();
 
  getRangingData();
 
  writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
    
  return ranging_data.range_mm;
}
 
// convert a RangeStatus to a readable string
// Note that on an AVR, these strings are stored in RAM (dynamic memory), which
// makes working with them easier but uses up 200+ bytes of RAM (many AVR-based
// Arduinos only have about 2000 bytes of RAM). You can avoid this memory usage
// if you do not call this function in your sketch.
const char * VL53L1X::rangeStatusToString(RangeStatus status)
{
  switch (status)
  {
    case RangeValid:
      return "range valid";
 
    case SigmaFail:
      return "sigma fail";
 
    case SignalFail:
      return "signal fail";
 
    case RangeValidMinRangeClipped:
      return "range valid, min range clipped";
 
    case OutOfBoundsFail:
      return "out of bounds fail";
 
    case HardwareFail:
      return "hardware fail";
 
    case RangeValidNoWrapCheckFail:
      return "range valid, no wrap check fail";
 
    case WrapTargetFail:
      return "wrap target fail";
 
    case XtalkSignalFail:
      return "xtalk signal fail";
 
    case SynchronizationInt:
      return "synchronization int";
 
    case MinRangeFail:
      return "min range fail";
 
    case None:
      return "no update";
 
    default:
      return "unknown status";
  }
}
 
// Did a timeout occur in one of the read functions since the last call to
// timeoutOccurred()?
bool VL53L1X::timeoutOccurred()
{
  bool tmp = did_timeout;
  did_timeout = false;
  return tmp;
}
 
// Private Methods /////////////////////////////////////////////////////////////
 
// "Setup ranges after the first one in low power auto mode by turning off
// FW calibration steps and programming static values"
// based on VL53L1_low_power_auto_setup_manual_calibration()
void VL53L1X::setupManualCalibration()
{
  // "save original vhv configs"
  saved_vhv_init = readReg(VHV_CONFIG__INIT);
  saved_vhv_timeout = readReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND);
 
  // "disable VHV init"
  writeReg(VHV_CONFIG__INIT, saved_vhv_init & 0x7F);
 
  // "set loop bound to tuning param"
  writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND,
    (saved_vhv_timeout & 0x03) + (3 << 2)); // tuning parm default (LOWPOWERAUTO_VHV_LOOP_BOUND_DEFAULT)
 
  // "override phasecal"
  writeReg(PHASECAL_CONFIG__OVERRIDE, 0x01);
  writeReg(CAL_CONFIG__VCSEL_START, readReg(PHASECAL_RESULT__VCSEL_START));
}
 
// read measurement results into buffer
void VL53L1X::readResults()
{
  char infoToWrite[2];
  char infoToRead[18];
  //_i2c.beginTransmission(address);
  //_i2c.write(address);
  //_i2c.write((RESULT__RANGE_STATUS >> 8) & 0xFF); // reg high byte
  //_i2c.write( RESULT__RANGE_STATUS       & 0xFF); // reg low byte
//  last_status = _i2c.endTransmission();
  infoToWrite[0] = ((RESULT__RANGE_STATUS >> 8) & 0xFF);
  infoToWrite[1] = ( RESULT__RANGE_STATUS       & 0xFF);
  _i2c.write(address, infoToWrite, 2, 1);
 
//  _i2c.requestFrom(address, (uint8_t)17);
  _i2c.read(address, infoToRead, 17, 0);
 
  wait(.005);
  results.range_status = infoToRead[0];
 
//  infoToRead[1]; // report_status: not used
 
  results.stream_count = infoToRead[2];
 
  results.dss_actual_effective_spads_sd0  = (uint16_t)infoToRead[3] << 8; // high byte
  results.dss_actual_effective_spads_sd0 |=           infoToRead[4];      // low byte
 
//  infoToRead[5]; // peak_signal_count_rate_mcps_sd0: not used
//  infoToRead[6];
 
  results.ambient_count_rate_mcps_sd0  = (uint16_t)infoToRead[7] << 8; // high byte
  results.ambient_count_rate_mcps_sd0 |=           infoToRead[8];      // low byte
 
//  infoToRead[9]; // sigma_sd0: not used
//  infoToRead[10];
 
//  infoToRead[11]; // phase_sd0: not used
//  infoToRead[12];
 
  results.final_crosstalk_corrected_range_mm_sd0  = (uint16_t)infoToRead[13] << 8; // high byte
  results.final_crosstalk_corrected_range_mm_sd0 |=           infoToRead[14];      // low byte
 
  results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0  = (uint16_t)infoToRead[15] << 8; // high byte
  results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 |=           infoToRead[16];      // low byte
}
 
// perform Dynamic SPAD Selection calculation/update
// based on VL53L1_low_power_auto_update_DSS()
void VL53L1X::updateDSS()
{
  uint16_t spadCount = results.dss_actual_effective_spads_sd0;
 
  if (spadCount != 0)
  {
    // "Calc total rate per spad"
 
    uint32_t totalRatePerSpad =
      (uint32_t)results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 +
      results.ambient_count_rate_mcps_sd0;
 
    // "clip to 16 bits"
    if (totalRatePerSpad > 0xFFFF) { totalRatePerSpad = 0xFFFF; }
 
    // "shift up to take advantage of 32 bits"
    totalRatePerSpad <<= 16;
 
    totalRatePerSpad /= spadCount;
 
    if (totalRatePerSpad != 0)
    {
      // "get the target rate and shift up by 16"
      uint32_t requiredSpads = ((uint32_t)TargetRate << 16) / totalRatePerSpad;
 
      // "clip to 16 bit"
      if (requiredSpads > 0xFFFF) { requiredSpads = 0xFFFF; }
 
      // "override DSS config"
      writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, requiredSpads);
      // DSS_CONFIG__ROI_MODE_CONTROL should already be set to REQUESTED_EFFFECTIVE_SPADS
 
      return;
    }
  }
 
  // If we reached this point, it means something above would have resulted in a
  // divide by zero.
  // "We want to gracefully set a spad target, not just exit with an error"
 
   // "set target to mid point"
   writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 0x8000);
}
 
// get range, status, rates from results buffer
// based on VL53L1_GetRangingMeasurementData()
void VL53L1X::getRangingData()
{
  // VL53L1_copy_sys_and_core_results_to_range_results() begin
 
  uint16_t range = results.final_crosstalk_corrected_range_mm_sd0;
 
  // "apply correction gain"
  // gain factor of 2011 is tuning parm default (VL53L1_TUNINGPARM_LITE_RANGING_GAIN_FACTOR_DEFAULT)
  // Basically, this appears to scale the result by 2011/2048, or about 98%
  // (with the 1024 added for proper rounding).
  ranging_data.range_mm = ((uint32_t)range * 2011 + 0x0400) / 0x0800;
  wait(.005);
  // VL53L1_copy_sys_and_core_results_to_range_results() end
 
  // set range_status in ranging_data based on value of RESULT__RANGE_STATUS register
  // mostly based on ConvertStatusLite()
  switch(results.range_status)
  {
    case 17: // MULTCLIPFAIL
    case 2: // VCSELWATCHDOGTESTFAILURE
    case 1: // VCSELCONTINUITYTESTFAILURE
    case 3: // NOVHVVALUEFOUND
      // from SetSimpleData()
      ranging_data.range_status = HardwareFail;
      break;
 
    case 13: // USERROICLIP
     // from SetSimpleData()
      ranging_data.range_status = MinRangeFail;
      break;
 
    case 18: // GPHSTREAMCOUNT0READY
      ranging_data.range_status = SynchronizationInt;
      break;
 
    case 5: // RANGEPHASECHECK
      ranging_data.range_status =  OutOfBoundsFail;
      break;
 
    case 4: // MSRCNOTARGET
      ranging_data.range_status = SignalFail;
      break;
 
    case 6: // SIGMATHRESHOLDCHECK
      ranging_data.range_status = SignalFail;
      break;
 
    case 7: // PHASECONSISTENCY
      ranging_data.range_status = WrapTargetFail;
      break;
 
    case 12: // RANGEIGNORETHRESHOLD
      ranging_data.range_status = XtalkSignalFail;
      break;
 
    case 8: // MINCLIP
      ranging_data.range_status = RangeValidMinRangeClipped;
      break;
 
    case 9: // RANGECOMPLETE
      // from VL53L1_copy_sys_and_core_results_to_range_results()
      if (results.stream_count == 0)
      {
        ranging_data.range_status = RangeValidNoWrapCheckFail;
      }
      else
      {
        ranging_data.range_status = RangeValid;
      }
      break;
 
    default:
      ranging_data.range_status = None;
  }
 
  // from SetSimpleData()
  ranging_data.peak_signal_count_rate_MCPS =
    countRateFixedToFloat(results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0);
  ranging_data.ambient_count_rate_MCPS =
    countRateFixedToFloat(results.ambient_count_rate_mcps_sd0);
}
 
// Decode sequence step timeout in MCLKs from register value
// based on VL53L1_decode_timeout()
uint32_t VL53L1X::decodeTimeout(uint16_t reg_val)
{
  return ((uint32_t)(reg_val & 0xFF) << (reg_val >> 8)) + 1;
}
 
// Encode sequence step timeout register value from timeout in MCLKs
// based on VL53L1_encode_timeout()
uint16_t VL53L1X::encodeTimeout(uint32_t timeout_mclks)
{
  // encoded format: "(LSByte * 2^MSByte) + 1"
 
  uint32_t ls_byte = 0;
  uint16_t ms_byte = 0;
 
  if (timeout_mclks > 0)
  {
    ls_byte = timeout_mclks - 1;
 
    while ((ls_byte & 0xFFFFFF00) > 0)
    {
      ls_byte >>= 1;
      ms_byte++;
    }
 
    return (ms_byte << 8) | (ls_byte & 0xFF);
  }
  else { return 0; }
}
 
// Convert sequence step timeout from macro periods to microseconds with given
// macro period in microseconds (12.12 format)
// based on VL53L1_calc_timeout_us()
uint32_t VL53L1X::timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us)
{
  return ((uint64_t)timeout_mclks * macro_period_us + 0x800) >> 12;
}
 
// Convert sequence step timeout from microseconds to macro periods with given
// macro period in microseconds (12.12 format)
// based on VL53L1_calc_timeout_mclks()
uint32_t VL53L1X::timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us)
{
  return (((uint32_t)timeout_us << 12) + (macro_period_us >> 1)) / macro_period_us;
}
 
// Calculate macro period in microseconds (12.12 format) with given VCSEL period
// assumes fast_osc_frequency has been read and stored
// based on VL53L1_calc_macro_period_us()
uint32_t VL53L1X::calcMacroPeriod(uint8_t vcsel_period)
{
  // from VL53L1_calc_pll_period_us()
  // fast osc frequency in 4.12 format; PLL period in 0.24 format
  uint32_t pll_period_us = ((uint32_t)0x01 << 30) / fast_osc_frequency;
 
  // from VL53L1_decode_vcsel_period()
  uint8_t vcsel_period_pclks = (vcsel_period + 1) << 1;
 
  // VL53L1_MACRO_PERIOD_VCSEL_PERIODS = 2304
  uint32_t macro_period_us = (uint32_t)2304 * pll_period_us;
  macro_period_us >>= 6;
  macro_period_us *= vcsel_period_pclks;
  macro_period_us >>= 6;
 
  return macro_period_us;
}










bool VL53L1X::initReading(int addr, int timing_budget)
{
  turnOn();
  wait_ms(100);
  setTimeout(500);
  if (!init())  {
    didInitialize = false;
    return false;
  }
 // setDistanceMode(VL53L1X::Short);//Short Medium Long
  setAddress(addr);//change I2C address for next sensor
  setMeasurementTimingBudget(timing_budget);//min 20ms for Short, 33ms for Medium and Long
  startContinuous(50);
  wait_ms(100);
  didInitialize = true;
  return true;
}
//*************************************

//*********GPIO***********
void VL53L1X::turnOff(void)
{
  //turn pin LOW
  _shutDown = false;
}
void VL53L1X::resetPin(void)
{
  //reset pin and set it to LOW
    _shutDown = false;
    wait(.05);
    _shutDown = true;
    wait(.05); 
    _shutDown = false;
    wait(.05);  

}
void VL53L1X::turnOn(void)
{
  //turn pin HIGH
    _shutDown = true;
}
int VL53L1X::readFromOneSensor(void)
{
    if (didInitialize)   //create bool
        return medianFilter();
    else 
        return -1;  
}
int VL53L1X::medianFilter(void)
{
    rawData[1] = rawData[0];
    rawData[2] = rawData[1];
    rawData[0] = read();
    if((rawData[0] < rawData[1] && rawData[0] > rawData[2]) || (rawData[0] > rawData[1] && rawData[0] < rawData[2]))
        return rawData[0];
    else if((rawData[1] < rawData[0] && rawData[1] > rawData[2]) || (rawData[1] > rawData[0] && rawData[1] < rawData[2]))
        return rawData[1];
    else
        return rawData[2];
}