ECE4180 Final Project
Dependencies: LSM9DS1_Library Motor mbed-rtos mbed HC_SR04_Ultrasonic_Library
Fork of IMURoomba4_ThrowSumMo by
main.cpp
- Committer:
- CRaslawski
- Date:
- 2017-05-04
- Revision:
- 6:7123768ea0c9
- Parent:
- 5:ab5fd9a37d7a
File content as of revision 6:7123768ea0c9:
#include "mbed.h"
#include "LSM9DS1.h"
#include "rtos.h"
//#include "SDFileSystem.h"
#include "Motor.h"
//#include "wave_player.h"
#include "ultrasonic.h"
#define PI 3.14159
// Earth's magnetic field varies by location. Add or subtract
// a declination to get a more accurate heading. Calculate
// your's here:
// http://www.ngdc.noaa.gov/geomag-web/#declination
#define DECLINATION -4.94 // Declination (degrees) in Atlanta,GA.
//collab test
Serial pc(USBTX, USBRX);
//RawSerial pc(USBTX, USBRX);
Serial dev(p28,p27); //
//RawSerial dev(p28,p27); //tx, rx
DigitalOut myled(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);
DigitalOut led4(LED4);
//IR sensors on p19(front) & p20 (right)
AnalogIn IR1(p19);
AnalogIn IR2(p20);
//L and R DC motors
Motor Left(p21, p14, p13); // green wires. pwm, fwd, rev, add ", 1" for braking
Motor Right(p22, p12, p11); // red wires
// Speaker out
//AnalogOut DACout(p18); //must(?) be p18
//SDFileSystem sd(p5, p6, p7, p8, "sd"); //SD card
Thread thread1;
//Thread thread2;
//Mutex BTmutex; //mutex for send/recv data on Bluetooth
Mutex mutex; //other mutex for global resources
//Globals
float throttle = 0.5;
//float currIR1;
float currIR2;
float sonar;
float sonarThresh = 0.5;
//float origHeading;
//float heading;
void dist(int distance)
{
//put code here to execute when the distance has changed
if(distance*0.00328084 < 40) {
//printf("Distance %f ft\r\n", distance*0.00328084);
}
}
ultrasonic mu(p29, p30, .1, 1, &dist); //Set the trigger pin to D8 and the echo pin to D9
//have updates every .1 seconds and a timeout after 1
//second, and call dist when the distance changes
// Calculate pitch, roll, and heading.
// Pitch/roll calculations taken from this app note:
// http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf?fpsp=1
// Heading calculations taken from this app note:
// http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
void printAttitude(float ax, float ay, float az, float mx, float my, float mz)
{
//entire subroutine is BTmutexed already
float roll = atan2(ay, az);
float pitch = atan2(-ax, sqrt(ay * ay + az * az));
// touchy trig stuff to use arctan to get compass heading (scale is 0..360)
mx = -mx;
float heading; //was global
if (my == 0.0) {
//mutex.lock(); //heading isn't global mutexes not needed
heading = (mx < 0.0) ? 180.0 : 0.0;
//mutex.unlock();
} else {
//mutex.lock();
heading = atan2(mx, my)*360.0/(2.0*PI);
//mutex.unlock();
}
//pc.printf("heading atan=%f \n\r",heading);
//mutex.lock();
heading -= DECLINATION; //correct for geo location
if(heading>180.0) heading = heading - 360.0;
else if(heading<-180.0) heading = 360.0 + heading;
else if(heading<0.0) heading = 360.0 + heading;
//mutex.unlock();
// Convert everything from radians to degrees:
//heading *= 180.0 / PI;
pitch *= 180.0 / PI;
roll *= 180.0 / PI;
mutex.lock();
//~pc.printf("Pitch: %f, Roll: %f degress\n\r",pitch,roll);
//~pc.printf("Magnetic Heading: %f degress\n\r",heading);
//dev.printf("Magnetic Heading: %f degrees\n\r",heading);
mutex.unlock();
}
/*
void dev_recv()
{
led2 = !led2;
while(dev.readable()) {
pc.putc(dev.getc());
}
}
void pc_recv()
{
led4 = !led4;
while(pc.readable()) {
dev.putc(pc.getc());
}
}*/
// Driving Methods
void forward(float speed)
{
Left.speed(speed);
Right.speed(speed);
}
void reverse(float speed)
{
Left.speed(-speed);
Right.speed(-speed);
}
void turnRight(float speed)
{
Left.speed(speed);
Right.speed(-speed);
//wait(0.7);
}
void turnLeft(float speed)
{
Left.speed(-speed);
Right.speed(speed);
//wait(0.7);
}
void stop()
{
Left.speed(0.0);
Right.speed(0.0);
}
void IMU()
{
//IMU setup
LSM9DS1 IMU(p9, p10, 0xD6, 0x3C); // this executes. Pins are correct. Changing them causes fault
IMU.begin();
if (!IMU.begin()) {
led2=1;
pc.printf("Failed to communicate with LSM9DS1.\n");
}
IMU.calibrate(1);
IMU.calibrateMag(0);
while(1) {
//myled = 1;
while(!IMU.magAvailable(X_AXIS));
IMU.readMag();
//myled = 0;
while(!IMU.accelAvailable());
IMU.readAccel();
while(!IMU.gyroAvailable());
IMU.readGyro();
//mutex.lock(); //changed from BTmutex
//pc.puts(" X axis Y axis Z axis\n\r");
//dev.puts(" X axis Y axis Z axis\n\r");
//pc.printf("gyro: %9f %9f %9f in deg/s\n\r", IMU.calcGyro(IMU.gx), IMU.calcGyro(IMU.gy), IMU.calcGyro(IMU.gz));
//pc.printf("accel: %9f %9f %9f in Gs\n\r", IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az));
//pc.printf("mag: %9f %9f %9f in gauss\n\r", IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
//dev.printf("mag: %9f %9f %9f in gauss\n\r", IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
printAttitude(IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az), IMU.calcMag(IMU.mx),
IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
//mutex.unlock(); //changed from BTmutex
//myled = 1;
wait(0.5);
//myled = 0;
wait(0.5);
}
}
void avoidObstacle()
{
//currIR1 = IR1; //get IR readings - already received from main thread that initially decided to call avoidObstacle()
//currIR2 = IR2;
stop();
Thread::wait(300);
//BTmutex.lock();
//dev.printf("Collision Detected!\n\r");
//BTmutex.unlock();
//dev.printf("Turning Left...\n\r");
turnLeft(0.4); //turn 90deg
Thread::wait(1000); //time to turn estimate
stop();
Thread::wait(500);
// turn should be complete. Drive until obstacle passed on right, then turn right again
//BTmutex.lock();
//dev.printf("Driving past obstacle.\n\r");
//BTmutex.unlock();
forward(throttle);
bool objOnRight = true;
while(objOnRight) {
mutex.lock();
//pc.printf("Avoiding Obstacles...\n\r");
//currIR1 = IR1; //must keep scanning IR readers to know when object is cleared
sonar = mu.getCurrentDistance()*0.00328084;
currIR2 = IR2;
//pc.printf(" IR1 Reading IR2 Reading\n\r %f %f\n\r", sonar, currIR2);
mutex.unlock();
if(currIR2 < 0.7) {
objOnRight = false; //if IR2 drops below threshold, obstacle passed. Break out of loop
wait(0.5); //give robot time to drive past object
}
if(sonar < sonarThresh){ // don;t crash to anything in front
stop();
myled=led2=led3=led4=1;
}
//Thread::wait(1250); //
}
stop();
Thread::wait(250);
//BTmutex.lock();
//dev.printf("Object passed. Turning right...\n\r");
turnRight(0.5); // turn 90deg
Thread::wait(1000); //time to turn estimate
stop();
Thread::wait(1000);
forward(throttle);
}
/*
void defaultDrive() //default behavior for robot //moved to main instead of being a thread
{
//Drive forward until object detected. Stop, turn left, then drive until IR2 says path is clear, then turn right to go around object.
forward(throttle);
while(1) {
myled=1;
//update current IR readings
currIR1 = IR1;
currIR2 = IR2;
BTmutex.lock(); //prevent race conditions in BT dataoutput
//dev.puts(" Front IR reading Right IR reading\n\r"); // print IR readings over BT
//dev.printf(" %2f %2f\n\r", currIR1, currIR2);
pc.puts(" Front IR reading Right IR reading\n\r"); // print IR readings over BT
pc.printf(" %2f %2f\n\r", currIR1, currIR2);
BTmutex.unlock();
// Forward collision handling code block
if(currIR1 > 0.8) { // 0.85 is threshold for collision
led3=1;
avoidObstacle(); // steer around obstacle when detected
led3=0;
}
Thread::wait(400); // for debug. IR polling too quick and floods output terminal
wait(0.4);
myled=0;
}
}
*/
/*
void manualMode() // also moved to main
{
bool on = true;
char temp;
while(on) {
temp = dev.getc();
if(temp == 'A') { // reset command
on = false;
} else if(temp=='U') {
led2=led3=1;
forward(throttle);
wait(1);
led2=led3=0;
} else if(temp=='L') { // turn left
myled=led2=1; //debug
stop();
wait(0.3);
turnLeft(0.4);
wait(0.6);
stop();
wait(0.3);
forward(throttle);
myled=led2=0; //debug
} else if(temp=='R') { // turn right
led3=led4=1;
stop();
wait(0.3);
turnRight(0.4);
wait(0.6);
stop();
wait(0.3);
forward(throttle);
led3=led4=0;
} else if(temp=='X') { // halt/brake command
stop();
}
//myled=1;
//wait(0.5);
//myled=0;
//wait(0.5);
}
}
*/
/*
void updateIRs()
{
mutex.lock();
currIR1 = IR1; //must keep scanning IR readers to know when object is cleared
currIR2 = IR2;
mutex.unlock();
}*/
int main()
{
//bluetooth setup
pc.baud(9600);
dev.baud(9600);
mu.startUpdates();//start measuring the distance from Sonar
//wait to recv start command or time delay
for(int i=0; i<3; i++) { //temp delay for a few sec
myled=led2=led3=led4=1;
wait(0.5);
myled=led2=led3=led4=0;
wait(0.5);
}
thread1.start(IMU); // start the IMU thread
char state = 'D'; //Roomba's drive state
char temp;
/*
while(1){ //robot will receive a char from GUI signalling time to start
temp = dev.getc();
led3=1;
pc.putc(temp);
if (temp == 'B'){
break;
}
if(led2 == 0) led2 = 1;
else {led2 = 0;}
wait(0.25);
}
*/
led3=0;
//thread2.start(defaultDrive); default drive inserted into main while
while(1) {
//Drive forward until object detected. Stop, turn left, then drive until IR2 says path is clear, then turn right to go around object.
forward(throttle);
while(state == 'D') { //default drive
myled=1;
//update current IR readings
//mutex.lock();//IR readings included in mutex since they are shared global variables
//currIR1 = IR1; //replaced with sonar
mu.checkDistance();
sonar = mu.getCurrentDistance()*0.00328084;
currIR2 = IR2;
mutex.lock(); //prevent race conditions in BT dataoutput //changed from BTmutex
//pc.puts(" Front Sonar reading Right IR reading\n\r"); // print IR readings over BT
//dev.printf(" %2f %2f\n\r", currIR1, currIR2);
//pc.printf(" %2f %2f\n\r", sonar, currIR2); //changed
//pc.puts(" Front IR reading Right IR reading\n\r"); // print IR readings over serial
//pc.printf(" %2f %2f\n\r", currIR1, currIR2);
mutex.unlock(); // changed from BTmutex
// Forward collision handling code block
if(sonar < sonarThresh) { // 0.85 is threshold for collision
led3=1;
avoidObstacle(); // steer around obstacle when detected
led3=0;
}
Thread::wait(400); // for debug. IR polling too quick and floods output terminal
wait(0.4);
myled=0;
//was already ITT
if (dev.readable()) {
mutex.lock();
temp = dev.getc();
pc.putc(temp);
mutex.unlock();
}
if(temp == 'M') {
led4=1;
stop();
//thread2.terminate(); //stop default drive
//manualMode(); //switch to manual control
/*
while(1) {
temp = dev.getc();
if(temp=='U') {
led2=1;
}
} */
//once manualMode is exited, return to default
led4=0;
//thread2.start(defaultDrive);
state = 'M';
}
}
while(state == 'M') {
if (dev.readable()){
mutex.lock();
temp = dev.getc();
pc.putc(temp);
mutex.unlock();
}
if(temp == 'A') { // reset command
state = 'D';
} else if(temp=='U') {
led2=led3=1;
forward(throttle);
wait(1);
led2=led3=0;
} else if(temp=='L') { // turn left
myled=led2=1; //debug
stop();
wait(0.5);
turnLeft(0.4);
wait(1);
stop();
wait(0.5);
forward(throttle);
myled=led2=0; //debug
} else if(temp=='R') { // turn right
led3=led4=1;
stop();
wait(0.3);
turnRight(0.5);
wait(0.6);
stop();
wait(0.3);
forward(throttle);
led3=led4=0;
} else if(temp=='X') { // halt/brake command
stop();
}
//myled=1;
//wait(0.5);
//myled=0;
//wait(0.5);
}
}
}

