10DOF FreeIMU port for FreeIMU v4 board and GY-86. This library was modified extensively to specifically suit the Mbed platform. Used threads and interrupts to achieve async mode.
Dependencies: HMC58X3 MODI2C MPU6050 MS561101BA
Fork of FreeIMU by
FreeIMU.cpp
- Committer:
- joe4465
- Date:
- 2015-01-22
- Revision:
- 17:7d83fc674fb2
- Parent:
- 15:ea86489d606b
File content as of revision 17:7d83fc674fb2:
/*
FreeIMU.cpp - A libre and easy to use orientation sensing library for Arduino
Copyright (C) 2011-2012 Fabio Varesano <fabio at varesano dot net>
Development of this code has been supported by the Department of Computer Science,
Universita' degli Studi di Torino, Italy within the Piemonte Project
http://www.piemonte.di.unito.it/
This program is free software: you can redistribute it and/or modify
it under the terms of the version 3 GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
02/20/2013 - Modified by Aloïs Wolff for MBED with MPU6050 only (wolffalois@gmail.com)
*/
//#include <inttypes.h>
//#include <stdint.h>
//#define DEBUG
#include "MODI2C.h"
#include "FreeIMU.h"
#include "rtos.h"
#define M_PI 3.1415926535897932384626433832795
FreeIMU::FreeIMU()
{
// initialize quaternion
q0 = 1.0f;
q1 = 0.0f;
q2 = 0.0f;
q3 = 0.0f;
exInt = 0.0;
eyInt = 0.0;
ezInt = 0.0;
twoKp = twoKpDef;
twoKi = twoKiDef;
twoKiz = twoKiDef / 4.0;
twoKpz = twoKpDef * 6.0;
integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f;
update.start();
dt_us=0;
/*
lastUpdate = 0;
now = 0;
*/
#ifndef CALIBRATION_H
// initialize scale factors to neutral values
acc_scale_x = 1;
acc_scale_y = 1;
acc_scale_z = 1;
magn_scale_x = 1;
magn_scale_y = 1;
magn_scale_z = 1;
#else
// get values from global variables of same name defined in calibration.h
acc_off_x = ::acc_off_x;
acc_off_y = ::acc_off_y;
acc_off_z = ::acc_off_z;
acc_scale_x = ::acc_scale_x;
acc_scale_y = ::acc_scale_y;
acc_scale_z = ::acc_scale_z;
magn_off_x = ::magn_off_x;
magn_off_y = ::magn_off_y;
magn_off_z = ::magn_off_z;
magn_scale_x = ::magn_scale_x;
magn_scale_y = ::magn_scale_y;
magn_scale_z = ::magn_scale_z;
#endif
}
void FreeIMU::init()
{
init(FIMU_ACCGYRO_ADDR, false);
}
void FreeIMU::init(bool fastmode)
{
init(FIMU_ACCGYRO_ADDR, fastmode);
}
void FreeIMU::sample(bool sampling)
{
accgyro->sample(sampling);
}
/**
* Initialize the FreeIMU I2C bus, sensors and performs gyro offsets calibration
*/
void FreeIMU::init(int accgyro_addr, bool fastmode)
{
accgyro = new MPU6050();
Thread::wait(10);
baro = new MS561101BA();
magn = new HMC58X3();
Thread::wait(10);
accgyro->initialize();
accgyro->setI2CMasterModeEnabled(0);
accgyro->setI2CBypassEnabled(1);
accgyro->setFullScaleGyroRange(MPU6050_GYRO_FS_1000);
accgyro->setDLPFMode(0);
accgyro->setRate(0);
Thread::wait(20);
accgyro->start_sampling();
Thread::wait(10);
// init HMC5843
magn->init(false); // Don't set mode yet, we'll do that later on.
magn->setGain(0);
// Calibrate HMC using self test, not recommended to change the gain after calibration.
magn->calibrate(0, 8); // Use gain 1=default, valid 0-7, 7 not recommended.
Thread::wait(30);
magn->setDOR(6);
Thread::wait(30);
magn->start_sampling();
Thread::wait(30);
baro->init(FIMU_BARO_ADDR);
// zero gyro
zeroGyro();
#ifndef CALIBRATION_H
// load calibration from eeprom
calLoad();
#endif
Thread::wait(30);
getQ_simple(NULL);
baro->start_sampling(MS561101BA_OSR_4096);
}
void FreeIMU::getQ_simple(float* q)
{
float values[9];
getValues(values);
float pitch = atan2(values[0], sqrt(values[1]*values[1]+values[2]*values[2]));
float roll = -atan2(values[1], sqrt(values[0]*values[0]+values[2]*values[2]));
float xh = values[6]*cos(pitch)+values[7]*sin(roll)*sin(pitch)-values[8]*cos(roll)*sin(pitch);
float yh = values[7]*cos(roll)+values[8]*sin(roll);
float yaw = -atan2(yh, xh);
float rollOver2 = (roll + M_PI) * 0.5f;
float sinRollOver2 = (float)sin(rollOver2);
float cosRollOver2 = (float)cos(rollOver2);
float pitchOver2 = pitch * 0.5f;
float sinPitchOver2 = (float)sin(pitchOver2);
float cosPitchOver2 = (float)cos(pitchOver2);
float yawOver2 = yaw * 0.5f;
float sinYawOver2 = (float)sin(yawOver2);
float cosYawOver2 = (float)cos(yawOver2);
q0 = cosYawOver2 * cosPitchOver2 * sinRollOver2 - sinYawOver2 * sinPitchOver2 * cosRollOver2;
q1 = cosYawOver2 * cosPitchOver2 * cosRollOver2 + sinYawOver2 * sinPitchOver2 * sinRollOver2;
q2 = sinYawOver2 * cosPitchOver2 * cosRollOver2 - cosYawOver2 * sinPitchOver2 * sinRollOver2;
q3 = cosYawOver2 * sinPitchOver2 * cosRollOver2 + sinYawOver2 * cosPitchOver2 * sinRollOver2;
if (q!=NULL) {
q[0] = q0;
q[1] = q1;
q[2] = q2;
q[3] = q3;
}
}
/**
* Populates raw_values with the raw_values from the sensors
*/
void FreeIMU::getRawValues(int16_t * raw_values)
{
accgyro->getMotion6(&raw_values[0], &raw_values[1], &raw_values[2], &raw_values[3], &raw_values[4], &raw_values[5]);
magn->getValues(&raw_values[6], &raw_values[7], &raw_values[8]);
int temp, press;
//TODO: possible loss of precision
temp = baro->rawTemperature();
raw_values[9] = temp;
press = baro->rawPressure();
raw_values[10] = press;
}
/**
* Populates values with calibrated readings from the sensors
*/
void FreeIMU::getValues(float * values)
{
// MPU6050
int16_t accgyroval[6];
accgyro->getMotion6(&accgyroval[0], &accgyroval[1], &accgyroval[2], &accgyroval[3], &accgyroval[4], &accgyroval[5]);
// remove offsets from the gyroscope
accgyroval[3] = accgyroval[3] - gyro_off_x;
accgyroval[4] = accgyroval[4] - gyro_off_y;
accgyroval[5] = accgyroval[5] - gyro_off_z;
for(int i = 0; i<6; i++) {
if(i < 3) {
values[i] = (float) accgyroval[i];
} else {
values[i] = ((float) accgyroval[i]) / 32.8f; // NOTE: this depends on the sensitivity chosen
}
}
#warning Accelerometer calibration active: have you calibrated your device?
// remove offsets and scale accelerometer (calibration)
values[0] = (values[0] - acc_off_x) / acc_scale_x;
values[1] = (values[1] - acc_off_y) / acc_scale_y;
values[2] = (values[2] - acc_off_z) / acc_scale_z;
magn->getValues(&values[6]);
// calibration
#warning Magnetometer calibration active: have you calibrated your device?
values[6] = (values[6] - magn_off_x) / magn_scale_x;
values[7] = (values[7] - magn_off_y) / magn_scale_y;
values[8] = (values[8] - magn_off_z) / magn_scale_z;
}
/**
* Computes gyro offsets
*/
void FreeIMU::zeroGyro()
{
const int totSamples = 64;
int16_t raw[11];
float tmpOffsets[] = {0,0,0};
for (int i = 0; i < totSamples; i++) {
getRawValues(raw);
tmpOffsets[0] += raw[3];
tmpOffsets[1] += raw[4];
tmpOffsets[2] += raw[5];
Thread::wait(3);
}
gyro_off_x = tmpOffsets[0] / totSamples;
gyro_off_y = tmpOffsets[1] / totSamples;
gyro_off_z = tmpOffsets[2] / totSamples;
}
extern volatile bool magn_valid;
/**
* Quaternion implementation of the 'DCM filter' [Mayhony et al]. Incorporates the magnetic distortion
* compensation algorithms from Sebastian Madgwick's filter which eliminates the need for a reference
* direction of flux (bx bz) to be predefined and limits the effect of magnetic distortions to yaw
* axis only.
*
* @see: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
*/
void FreeIMU::AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz, bool _magn_valid)
{
float recipNorm;
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
float halfex = 0.0f, halfey = 0.0f, halfez = 0.0f;
float qa, qb, qc;
// Auxiliary variables to avoid repeated arithmetic
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
// Use magnetometer measurement only when valid (avoids NaN in magnetometer normalisation)
if((mx != 0.0f) && (my != 0.0f) && (mz != 0.0f) && _magn_valid) {
float hx, hy, bx, bz;
float halfwx, halfwy, halfwz;
// Normalise magnetometer measurement
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Reference direction of Earth's magnetic field
hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
bx = sqrt(hx * hx + hy * hy);
bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
// Estimated direction of magnetic field
halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex = (my * halfwz - mz * halfwy);
halfey = (mz * halfwx - mx * halfwz);
halfez = (mx * halfwy - my * halfwx);
magn_valid = false;
}
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if((ax != 0.0f) && (ay != 0.0f) && (az != 0.0f)) {
float halfvx, halfvy, halfvz;
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex += (ay * halfvz - az * halfvy);
halfey += (az * halfvx - ax * halfvz);
halfez += (ax * halfvy - ay * halfvx);
}
// Apply feedback only when valid data has been gathered from the accelerometer or magnetometer
if(halfex != 0.0f && halfey != 0.0f && halfez != 0.0f) {
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sampleFreq);
integralFBz += twoKiz * halfez * (1.0f / sampleFreq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
} else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKpz * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sampleFreq));
gz *= (0.5f * (1.0f / sampleFreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
/**
* Populates array q with a quaternion representing the IMU orientation with respect to the Earth
*
* @param q the quaternion to populate
*/
float val[9];
void FreeIMU::getQ(float * q)
{
getValues(val);
dt_us=update.read_us();
sampleFreq = 1.0 / ((dt_us) / 1000000.0);
update.reset();
// lastUpdate = now;
// gyro values are expressed in deg/sec, the * M_PI/180 will convert it to radians/sec
AHRSupdate(val[3] * M_PI/180.0, val[4] * M_PI/180.0, val[5] * M_PI/180.0, val[0], val[1], val[2], val[6], val[7], val[8], magn_valid);
if (q!=NULL) {
q[0] = q0;
q[1] = q1;
q[2] = q2;
q[3] = q3;
}
}
void FreeIMU::getRate(float * r)
{
r[0] = val[3];
r[1] = val[4];
r[2] = val[5];
}
const float def_sea_press = 1013.25;
/**
* Returns an altitude estimate from baromether readings only using sea_press as current sea level pressure
*/
float FreeIMU::getBaroAlt(float sea_press)
{
float temp = baro->getTemperature();
float press = baro->getPressure();
return ((pow((float)(sea_press / press), 1.0f/5.257f) - 1.0f) * (temp + 273.15f)) / 0.0065f;
}
/**
* Returns an altitude estimate from baromether readings only using a default sea level pressure
*/
float FreeIMU::getBaroAlt()
{
return getBaroAlt(def_sea_press);
}
float FreeIMU::getRawPressure()
{
return baro->getPressure();
}
/**
* Compensates the accelerometer readings in the 3D vector acc expressed in the sensor frame for gravity
* @param acc the accelerometer readings to compensate for gravity
* @param q the quaternion orientation of the sensor board with respect to the world
*/
void FreeIMU::gravityCompensateAcc(float * acc, float * q)
{
float g[3];
// get expected direction of gravity in the sensor frame
g[0] = 2 * (q[1] * q[3] - q[0] * q[2]);
g[1] = 2 * (q[0] * q[1] + q[2] * q[3]);
g[2] = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
// compensate accelerometer readings with the expected direction of gravity
acc[0] = acc[0] - g[0];
acc[1] = acc[1] - g[1];
acc[2] = acc[2] - g[2];
}
/**
* Returns the Euler angles in radians defined in the Aerospace sequence.
* See Sebastian O.H. Madwick report "An efficient orientation filter for
* inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation
*
* @param angles three floats array which will be populated by the Euler angles in radians
*/
void FreeIMU::getEulerRad(float * angles)
{
float q[4]; // quaternion
getQ(q);
angles[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1); // psi
angles[1] = -asin(2 * q[1] * q[3] + 2 * q[0] * q[2]); // theta
angles[2] = atan2(2 * q[2] * q[3] - 2 * q[0] * q[1], 2 * q[0] * q[0] + 2 * q[3] * q[3] - 1); // phi
}
/**
* Returns the Euler angles in degrees defined with the Aerospace sequence.
* See Sebastian O.H. Madwick report "An efficient orientation filter for
* inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation
*
* @param angles three floats array which will be populated by the Euler angles in degrees
*/
void FreeIMU::getEuler(float * angles)
{
getEulerRad(angles);
arr3_rad_to_deg(angles);
}
/**
* Returns the yaw pitch and roll angles, respectively defined as the angles in radians between
* the Earth North and the IMU X axis (yaw), the Earth ground plane and the IMU X axis (pitch)
* and the Earth ground plane and the IMU Y axis.
*
* @note This is not an Euler representation: the rotations aren't consecutive rotations but only
* angles from Earth and the IMU. For Euler representation Yaw, Pitch and Roll see FreeIMU::getEuler
*
* @param ypr three floats array which will be populated by Yaw, Pitch and Roll angles in radians
*/
void FreeIMU::getYawPitchRollRad(float * ypr)
{
float q[4]; // quaternion
float gx, gy, gz; // estimated gravity direction
getQ(q);
gx = 2 * (q[1]*q[3] - q[0]*q[2]);
gy = 2 * (q[0]*q[1] + q[2]*q[3]);
gz = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1);
ypr[1] = atan(gx / sqrt(gy*gy + gz*gz));
ypr[2] = atan(gy / sqrt(gx*gx + gz*gz));
}
/**
* Returns the yaw pitch and roll angles, respectively defined as the angles in degrees between
* the Earth North and the IMU X axis (yaw), the Earth ground plane and the IMU X axis (pitch)
* and the Earth ground plane and the IMU Y axis.
*
* @note This is not an Euler representation: the rotations aren't consecutive rotations but only
* angles from Earth and the IMU. For Euler representation Yaw, Pitch and Roll see FreeIMU::getEuler
*
* @param ypr three floats array which will be populated by Yaw, Pitch and Roll angles in degrees
*/
void FreeIMU::getYawPitchRoll(float * ypr)
{
getYawPitchRollRad(ypr);
arr3_rad_to_deg(ypr);
}
/**
* Converts a 3 elements array arr of angles expressed in radians into degrees
*/
void arr3_rad_to_deg(float * arr)
{
arr[0] *= 180/M_PI;
arr[1] *= 180/M_PI;
arr[2] *= 180/M_PI;
}
/**
* Fast inverse square root implementation
* @see http://en.wikipedia.org/wiki/Fast_inverse_square_root
*/
float invSqrt(float number)
{
volatile long i;
volatile float x, y;
volatile const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f375a86 - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( f - ( x * y * y ) );
return y;
}
Joseph Roberts
