stingr lib for v8_1

Stingr.cpp

Committer:
jmoreno10
Date:
2018-10-29
Revision:
0:0159aa4d2062

File content as of revision 0:0159aa4d2062:

/* 
 * mbed STINGR Library
 * Copyright (c) 2018 
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
 
#include "Stingr.h"
#include "mbed.h"
#include "rtos.h"

#define QUERY_ESN           'a'
#define QUERY_BURSTS        'b'
#define QUERY_FIRMWARE      'c'
#define QUERY_SETUP         'd'
#define QUERY_HARDWARE      'e'
#define NAK_COMMAND         'f'
#define SETUP               'g'
#define SEND_DATA           'h'
#define ABORT_TRANSMISSION  'i'

// These two lines redundant?
Serial _stingrUART(p13, p14, 9600);  // tx, rx Comunicación Serial con el STINGR
Serial _pc(USBTX, USBRX, 9600);      // tx, rx Comunicación Serial con la PC

// Pin Digital de entrada "CTS" en modo Pull-Up 
// para encontrarse normalmente a VCC cuando no haya un pulso. 
DigitalIn _CTS(p11, PullUp);         

// Pin Digital de Salida "RTS" 
// Predefinido para valer 1 en su estado inactivo dentro del código.
DigitalOut _RTS(p12, 1);

DigitalOut led1(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);
DigitalOut led4(LED4);

// Constructor
Stingr::Stingr()
{
    incomingByte = 0;
    flag = 1;
    num = 0;
    incomingByteR = 0;
    incomingByteX = 0;
    
    // For Luis Fernando:
    // This thread is for the Mbed to read and serial print responses from STINGR
    t1.start(callback(this,&Stingr::respuesta));
    
    // For Luis Fernando:
    // This thread is for reading commands from serial PC. (May be commented)
    t2.start(callback(this,&Stingr::PC_communication));
}

// Accessor
const char* Stingr::get_resp() const
{
    return _resp;
}

// Mutator
void Stingr::setPacketByte(int incomingByte)
{
    _packet[num] = incomingByte;
    num++;
}

/******************************************************************************/
/********************[SERIAL PACKET PROCESSING FUNCTIONS]**********************/
/******************************************************************************/

void Stingr::clearPacket()
{
    num = 0;
    for(int i = 0; i < 15 ; i++)
        _packet[i] = 0;
}

void Stingr::printPacket()
{
    _pc.printf("\nResponse(Stingr)dec: \t");
    for(int i = 0; i < 15 ; i++)
    {
        _pc.printf("%u",_packet[i]);  // Format specifier
        _pc.printf(" ");
    }
}

void Stingr::waitCTS()
{
    Thread::wait(200);                                                    // Se da un tiempo para que el analizador se estabilice
    incomingByte=0;
    //pc.printf("El valor de CTS es %d\n\r",CTS.read());        // Se lee el valor de la variable CTS, la cual debe ser 1
    //pc.printf("El valor de RTS es %d\n\r",RTS.read());        // Se lee el valor de la variable RTS, la cual debe ser 1
    _RTS=0;                                                      // Se manda un pulso en bajo en RTS, para inicial el proceso de transmisión
    
    while(flag==1)
    {// Flag inicialmente vale 1, así que el ciclo while cambiará hasta que esa condición no se cumpla           
        flag=_CTS.read();        // Cuando entra el ciclo, se iguala flag a CTS, el cual cuando cambie a 0 provocará que termine el while (máx 125 ms)
        //pc.printf("El valor de flag es %d\n\r", flag);    // Se imprime el valor de flag, para identificar cuando termina el ciclo while
    }
}

void Stingr::postCommand()
{
    Thread::wait(10);                // Se esperan .1 segundos una vez que se terminaron de hacer las transmisiones
    //El tiempo total de transmisión es; el wait previo a las transmisiones, el tiempo que tarda el Mu en enviar los datos y el wait posterior a la transmisión
    _RTS=1;
    Thread::wait(150);
    //pc.printf("\n\rCTS: %d\n\r",CTS.read());
    flag=1;
} 

void Stingr::command(char* com)  
{ 
    char c = com[0];    
        
    switch(c) 
    {
        case QUERY_ESN:
            query_ESN();
            break;
            
        case QUERY_BURSTS:
            query_Bursts();
            break;
            
        case QUERY_FIRMWARE:
            query_Firmware();
            break;
            
        case QUERY_SETUP:
            query_Setup();
            break;
            
        case QUERY_HARDWARE:
            query_Hardware();
            break;
            
        case NAK_COMMAND:
            NAK_command();
            break;
            
        case SETUP:
            _setup(com);           //* later make this function to pass buf parameter
            break;
            
        case SEND_DATA:
            send_Data(com);
            break;
            
        case ABORT_TRANSMISSION:
            abort_Transmission();
            break;
            
        default:
        {
            //do nothing
        }
    }     
}

void Stingr::execute(char* com)  
{ 
    char c = com[0];    

    switch(c) 
    {
        case 'a':
        case 'b':
        case 'c':
        case 'd':
        case 'e':
        case 'f':
        case 'g':
        case 'h':
        case 'i':
            // if 'a'-'i', set _resp to garbage for 1st call
            strncpy(_resp,"garbage",sizeof(_resp)); 
            break;
        default:
        {
            // do nothing for 2nd call.
        } 
    }     
}

/******************************************************************************/
/************************[STINGR COMMAND FUNCTIONS]****************************/
/******************************************************************************/

//0x01 Query ESN
void Stingr::query_ESN()
{
    led1=!led1;             
        
    _pc.printf("\r0x01\t\t\tQuery ESN\n");
    _pc.printf("Command(HEX):\t\tAA 5 1 50 D5\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    
    waitCTS();
    Thread::wait(10);
     
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X01);
    _stingrUART.putc(0X50);
    _stingrUART.putc(0XD5);  
    
    postCommand();
    printPacket();
    
// Correct ESN
    if (_packet[3] ==   0 && // 0x00
        _packet[4] ==  41 && // 0x29
        _packet[5] ==  72 && // 0x48      //0x43 STINGR TLE
        _packet[6] == 254)   // 0xFE      //0xB3 STINGR TLE 
    {
        clearPacket();
        _pc.printf("\nQuery ESN is correct. VALID\n");
        strncpy(_resp,"Query ESN is correct",sizeof(_resp)); 
    }
// Wrong ESN
    else
    {
        clearPacket();
        _pc.printf("\nNAK response. INVALID\n");    
        strncpy(_resp,"NAK response (Query ESN)",sizeof(_resp));  
    }
}

//0x04 Query Bursts
void Stingr::query_Bursts()
{
    int bursts = 0; //default value
    
    led2=!led2;
    _pc.printf("\r0x04\t\t\tQuery Burst Remaining\n");
    _pc.printf("Command(HEX):\t\tAA 5 4 FD 82\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    waitCTS();
    Thread::wait(10);
                    
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X04);
    _stingrUART.putc(0XFD);
    _stingrUART.putc(0X82);
    
    postCommand();
    printPacket();
    
// NAK response
    if (_packet[0] == 170 && // 0xAA
        _packet[1] ==   5 && // 0x05
        _packet[2] == 255 && // 0xFF
        _packet[3] == 161 && // 0xA1
        _packet[4] == 203)   // 0xCB
    {
        clearPacket();
        
        _pc.printf("\nNAK response. INVALID"); 
        strncpy(_resp,"NAK response (Query Bursts)",sizeof(_resp));
    }
// ACK response
    else
    {
        bursts = _packet[3];
        clearPacket();
        
        char qry[2];
        sprintf(qry,"%d",bursts); 
        char strt[] = "Bursts Remaining is ";   
        strcat(strt,qry);
                                
        _pc.printf("\nBursts Remaining: \t");
        _pc.printf("%u",bursts); 
        _pc.printf("\n");
                                
        strncpy(_resp,strt,sizeof(_resp)); 
    }
}
    
//0x05 Query Firmware
void Stingr::query_Firmware()
{
    led3=!led3;
    _pc.printf("\r0x05\t\t\tQuery Firmware Version\n");
    _pc.printf("Command(HEX):\t\tAA 5 5 74 93\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    waitCTS();
    Thread::wait(10);               
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X74);
    _stingrUART.putc(0X93);        
    
    postCommand();
    printPacket();
    if (_packet[3] == 1 && // 0x01
        _packet[4] == 3)   // 0x03
    {
        clearPacket();
        _pc.printf("\nResponse Processing:\tQuery Firmware is correct. VALID\n");
        _pc.printf(" Firmware Version: 1.3\n");
        strncpy(_resp,"Query Firmware is correct",sizeof(_resp));    
    }
    else
    {
        clearPacket();
        _pc.printf("NAK. INVALID");
        strncpy(_resp,"NAK response (Query Firmware)",sizeof(_resp));
    }
}

//0x07 Query Setup
void Stingr::query_Setup()
{
    int numSetup = 0;
    led4=!led4;
    _pc.printf("\r0x07\t\t\tQuery Setup\n");
    _pc.printf("Command(HEX):\t\tAA 5 7 66 B0\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    waitCTS();
    Thread::wait(10);
                    
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X07);
    _stingrUART.putc(0X66);
    _stingrUART.putc(0XB0);
    
    postCommand();
    
// NAK response
    if (_packet[0] == 170 && // 0xAA
        _packet[1] ==   5 && // 0x05
        _packet[2] == 255 && // 0xFF
        _packet[3] == 161 && // 0xA1
        _packet[4] == 203)   // 0xCB
    {
        clearPacket();
        _pc.printf("NAK");    
    }
// ACK response 
    else
    {
        numSetup = _packet[7]*10000000 + _packet[8]*100000 + _packet[9]*1000 + _packet[10];
        clearPacket();
        
        char qryRF[1];
        char qryBursts[2];
        char qryMin[3];
        char qryMax[3];
    
        char strt[] = "";   
                                
        //Print Channel 
        _pc.printf("\n RF Channel: ");
        _pc.printf("%u",numSetup/(10000000)); 
        int rfprint = numSetup/(10000000);                  // RF channel
        sprintf(qryRF,"%d",rfprint);
        strcat(strt,qryRF);
        numSetup = numSetup - (numSetup/10000000)*10000000; // Truncate RF Digits
                            
        //Print Bursts
        _pc.printf("\n # of Bursts: ");
        _pc.printf("%u",numSetup/(100000));                  // Bursts Per Message
        int burprint = numSetup/(100000);
        sprintf(qryBursts,"%d",burprint);
        strcat(strt,qryBursts);
        numSetup = numSetup - (numSetup/100000)*100000;     // Truncate Burst Digits
                            
        //Print Min Interval
        _pc.printf("\n Min Burst Interval: ");
        _pc.printf("%u",numSetup/1000*5);                    // Min Interval
        int minprint = numSetup/1000*5;
        sprintf(qryMin,"%d",minprint);
        strcat(strt,qryMin);
        numSetup = numSetup - (numSetup/1000)*1000;         // Truncate Min Interval
        _pc.printf(" seconds");
                            
        //Print Max Interval
        _pc.printf("\n Max Burst Interval: ");
        _pc.printf("%u",numSetup*5);
        int maxprint = numSetup*5;                          // Max Interval
        sprintf(qryMax,"%d",maxprint);
        strcat(strt,qryMax);
        _pc.printf(" seconds\n");
                            
        strncpy(_resp,strt,sizeof(_resp));
    }
}

//0x09 Query Hardware
void Stingr::query_Hardware()
{
    led1=!led1;
    _pc.printf("\r0x09\t\t\tQuery Hardware Version\n");
    _pc.printf("Command(HEX):\t\tAA 5 9 18 59\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    waitCTS();
    Thread::wait(10);                
    
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X09);
    _stingrUART.putc(0X18);
    _stingrUART.putc(0X59);
    
    postCommand();
    printPacket();
    
// ACK response
    if (_packet[5] == 143 && // 0x8F
        _packet[6] == 98  && // 0x62
        _packet[7] == 98)    // 0x62
    {
        clearPacket();
        _pc.printf("\nResponse Processing:\tQuery Hardware is correct. VALID\n");
        _pc.printf(" Device Code: 01\n");
        _pc.printf(" CPU Revision: 62\n");
        _pc.printf(" Radio Revision: 62\n");
        strncpy(_resp,"Query Hardware is correct",sizeof(_resp));    
    }
// NAK response
    else
    {
        clearPacket();
        _pc.printf("\n");
        _pc.printf("NAK. INVALID");
        strncpy(_resp,"NAK response (Query Hardware)",sizeof(_resp));
    }
}

//NAK Command
void Stingr::NAK_command()
{
    led2=!led2;
    _pc.printf("\rXxXX\t\t\tNAK\n");
    _pc.printf("Command(HEX):\t\tAA 5 7 66 B1\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    waitCTS();
    Thread::wait(10);  
                  
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X07);
    _stingrUART.putc(0X66);
    _stingrUART.putc(0XB1);
    
    postCommand();
    printPacket();
    clearPacket();
    _pc.printf("\n");
    strncpy(_resp,"NAK response",sizeof(_resp)); 
}

//0x06 Setup
void Stingr::_setup(char* b)
{
    led3=!led3;
    _pc.printf("\r0x06\t\t\tSetup\n");
    //_pc.printf("Command(HEX):\t\tAA 0E 06 00 00 00 00 00 03 18 30 00 CE 9C\n\r");
    
// RF Channel 
    int rf = b[1] - '0';
    _pc.printf("rf channel: %u \n",rf);
    
// Bursts
    int brst = b[2] - '0';
    _pc.printf("bursts: %u \n", brst);    
    
// Min Interval
    int min_hund = b[3] - '0';
    int min_tens = b[4] - '0';
    int min_ones = b[5] - '0';   
    //_pc.printf("Min interval: %u%u%u seconds\n", min_hund, min_tens, min_ones);
    int min_int = (min_hund*100 + min_tens*10 + min_ones)/5;
    _pc.printf("Min interval: %u seconds\n", min_int*5);

// Max Interval
    int max_hund = b[6] - '0';
    int max_tens = b[7] - '0';
    int max_ones = b[8] - '0';
    //_pc.printf("Max interval: %u%u%u seconds\n", max_hund, max_tens, max_ones);
    int max_int = (max_hund*100 + max_tens*10 + max_ones)/5;
    _pc.printf("Max interval: %u seconds\n", max_int*5);

    char header[12] = {0xAA,0x0E,0x06,0x00,0x00,0x00,0x00,rf,brst,min_int,max_int,0x00};
    
    _pc.printf("Command(HEX):\t\t");
    //Print b characters in HEX
    for(int k = 0; k < 12; k++)   
        _pc.printf("%X ",header[k]); 
    
    // CRC calculation
    char *t = (char *)header;    //a
    char crc1 = ModRTU_CRC(t,t[1]-2)&0xFF;
    char crc2 = ModRTU_CRC(t,t[1]-2)>>8;
    
    _pc.printf("%X ",crc1); //%X print char in HEX format
    _pc.printf("%X ",crc2); //%X print char in HEX format
    
    _pc.printf("\nResponse(Stingr)HEX:\t");
    
    waitCTS();
    Thread::wait(10);
    
    
    //Send Command to STINGR
    for(int k = 0; k < 12; k++)
        _stingrUART.putc(header[k]);
    _stingrUART.putc(crc1);
    _stingrUART.putc(crc2);    
    
    /*              
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X0E);
    _stingrUART.putc(0X06);
    _stingrUART.putc(0X00);
    _stingrUART.putc(0X00);
    _stingrUART.putc(0X00);
    _stingrUART.putc(0X00);
    _stingrUART.putc(0X00);
    _stingrUART.putc(0X03);
    _stingrUART.putc(0X18);
    _stingrUART.putc(0X30);
    _stingrUART.putc(0X00);
    _stingrUART.putc(0XCE);
    _stingrUART.putc(0X9C);
    */
    
    postCommand();
    printPacket();
    
    _pc.printf("\n");
    clearPacket();
}
                           
//0x00 Send Data
void Stingr::send_Data(char* b) //char* s //Replace "buf" with "b"
{
    led4=!led4;
    
// Count all characters before the "Return" key in the buffer
    int cnt = 0;         
    for (int k = 0; k < 200; k++)
    {
        if(b[k] == '\n') 
            break;
        cnt++; 
    }  
    
// Print command info and input                    
    _pc.printf("0x00\t\t\tSend Data\n\r");
    cnt--; //Decrement total by 1. Don't count 8/h.
    _pc.printf("Data Packet length: \t%u\n",cnt);    
    
// Port b array to str, but without first character '8/h'                    
    char str[cnt];  //Declare str array. str will copy buf but without '8'
    for (int k = 0; k < cnt; k++)
        str[k] = b[k+1]; //Starts 1 index after '8'.
                        
// str1 copies str but with correct datalength by truncating the extra characters
// found in str        
    char str1[cnt]; 
    strncpy(str1,str,cnt); //truncation of extra characters
    str1[cnt] = '\0'; //Null character                    
    _pc.printf("Data Packet: \t\t%s \n",str1);
    
//--------------------replace b with str1
    
    waitCTS();
    Thread::wait(10);                

// Put str "data" into Serial packet array (to send to STINGR)
    size_t n = strlen(str1);   //Measure size of b. This includes the zeros //!replaced
    int number = n+3;
    int len = n+5;
    char header[3] = {0xAA,len,0x00};  //Define header information
    char vec[number];
    //pc.printf("number = %u\n",number);
    
    //store all in vec
    for(int k = 0; k < 3; k++)
       vec[k] = header[k];
    for(int k = 3; k < number; k++)
       vec[k] = str1[k-3];//!replaced
       
    _pc.printf("Command(HEX):\t\t");
    //Print b characters in HEX
    for(int k = 0; k < number; k++)   
        _pc.printf("%X ",vec[k]); 

// CRC calculation
    char *t = (char *)vec;    //a
    char crc1 = ModRTU_CRC(t,t[1]-2)&0xFF;
    char crc2 = ModRTU_CRC(t,t[1]-2)>>8;
    
    _pc.printf("%X ",crc1); //%X print char in HEX format
    _pc.printf("%X ",crc2); //%X print char in HEX format
    _pc.printf("\nResponse(Stingr)HEX:\t");
    
//Send Command to STINGR
    for(int k = 0; k < number; k++)
        _stingrUART.putc(vec[k]);
    _stingrUART.putc(crc1);
    _stingrUART.putc(crc2);
          
    postCommand();
    printPacket();
    
// NAK response
    if (_packet[0] == 170 && // 0xAA
        _packet[1] ==   5 && // 0x05
        _packet[2] == 255 && // 0xFF
        _packet[3] == 161 && // 0xA1
        _packet[4] == 203)   // 0xCB
    {  
        clearPacket();
        _pc.printf("\n");
        _pc.printf("\nNAK response. INVALID");  
        strncpy(_resp,"NAK response (Send Data)",sizeof(_resp)); 
    }
// ACK response
    else
    {
        clearPacket();
        _pc.printf("\n");        
        _pc.printf("\nSend Data is successful. VALID\n");
        strncpy(_resp,"Send Data is successful",sizeof(_resp));
    }
}

//0x03 Abort Transmission
void Stingr::abort_Transmission()
{
    led1=!led1;
    _pc.printf("\r0x03\t\t\tAbort Transmission\n");
    _pc.printf("Command(HEX):\t\tAA 5 3 42 F6\n\r");
    _pc.printf("Response(Stingr)HEX:\t");
    waitCTS();
    Thread::wait(10);               
    _stingrUART.putc(0XAA);      
    _stingrUART.putc(0X05);
    _stingrUART.putc(0X03);
    _stingrUART.putc(0X42);
    _stingrUART.putc(0XF6);
    
    postCommand();
    printPacket();

// ACK response
    if (_packet[0] == 170 && // 0xAA
        _packet[1] ==   5 && // 0x05
        _packet[2] ==   3 && // 0x03
        _packet[3] ==  66 && // 0x42
        _packet[4] == 246)   // 0xF6
    {
        clearPacket();
        _pc.printf("\nResponse Processing:\tTransmission successfully aborted.\n");
        strncpy(_resp,"Transmission successfully aborted.",sizeof(_resp));
    }
// NAK response
    else
    {
        clearPacket();
        _pc.printf("\nResponse Processing:\tNAK response. INVALID");   
        strncpy(_resp,"NAK response (Abort Transmission)",sizeof(_resp)); 
    }
}

uint16_t Stingr::ModRTU_CRC(char * buf, int len)
{
    unsigned char i;
    unsigned short data;
    uint16_t crc = 0xFFFF;
 
    do{
        data = (unsigned int)0x00FF & *buf++;
        crc = crc ^ data;

        for(i = 8; i > 0; i--)
        {
            if(crc & 0x0001)
                crc = (crc >> 1) ^ 0x8408;
            else
                crc >>=1;  
        }
    
    }while (--len);
  
    crc = ~crc;
  
    // Note, this number has low and high bytes swapped, so use it accordingly (or swap bytes)
    return (crc);  
}

void Stingr::respuesta()
{
    while(1)
    {
        if(_stingrUART.readable()) 
        {   // Se esperan datos provenientes del TX del módulo STX3
            incomingByteR = _stingrUART.getc();
            //stingr.setPacketByte(incomingByteR);
            setPacketByte(incomingByteR);
            _pc.printf("%X",incomingByteR);  // Format specifier
            _pc.printf(" ");
        }
    }
}

// Thread 2: Reading commands from PC
void Stingr::PC_communication()
{
    int a = 0;
    
    while(1)
    {
        char str1[200];
        if (_pc.readable())
        { 
            incomingByteX = _pc.getc();
            strx[a] = incomingByteX;
            a++;
            
            if(incomingByteX == '\n')
            {
                _pc.printf("\n\nPC input: \t\t");  
                strncpy(str1,strx,sizeof(strx));
                _pc.printf("%s",str1);
                _pc.printf("\n");
                //stingr.command(str1);
                command(str1);
                memset(strx, 0, 200);
                a = 0;
            }
        }           
    }
}