HRV -> Mood
Dependencies: MAX30101 Hexi_KW40Z Hexi_OLED_SSD1351
8cee5929f4d8/main.cpp
- Committer:
- jeannie9809
- Date:
- 2019-03-17
- Revision:
- 15:5d291cd60879
- Parent:
- 14:0258b126d726
- Child:
- 16:8b4f1abd8acc
File content as of revision 15:5d291cd60879:
#include "mbed.h"
#include "mbed_events.h"
#include "MAX30101.h"
#include "string.h"
#include "Hexi_OLED_SSD1351.h"
#include "Hexi_KW40Z.h"
#include "OLED_types.h"
#include "OpenSans_Font.h"
#include <math.h>
#include <vector>
using namespace std;
#define FIFO_DATA_MAX 288
//#define M_PI 3.14159265358979323846
#define M_PI 3.14159
void UpdateSensorData(void);
void StartHaptic(void);
void StopHaptic(void const *n);
void txTask(void);
DigitalOut blueLed(LED3,1); // i added this
DigitalOut pwr1v8(PTA29);
DigitalOut pwr3v3b(PTC13);
DigitalOut pwr15v(PTB12);
I2C i2c0(PTB1, PTB0);
InterruptIn maximInterrupt(PTB18);
Serial pc(USBTX, USBRX);
SSD1351 oled(PTB22,PTB21,PTC13,PTB20,PTE6, PTD15);
KW40Z kw40z_device(PTE24, PTE25);
DigitalOut haptic(PTB9);
EventQueue evqueue(32 * EVENTS_EVENT_SIZE);
Thread t;
/* Define timer for haptic feedback */
RtosTimer hapticTimer(StopHaptic, osTimerOnce);
/*Create a Thread to handle sending BLE Sensor Data */
Thread txThread;
MAX30101 hr(i2c0);
int ppg_single_sample;
int mask_ppg = 0;
uint32_t count = 0;
uint32_t num;
// uint8_t testsignal = 60;
uint8_t battery = 0;
char text[20]; /* Text Buffer */
// I added this
const int num_samples = 500; // for 30 sec
int ppg[num_samples];
int SDNN, valence_arousal;
double HF_LF = 0.0;
double HF_LF_n;
int SDNN_n = 0;
bool ready = false;
bool ready_to_send = false;
void StartHaptic(void)
{
hapticTimer.start(50);
haptic = 1;
}
void ButtonRight(void)
{
StartHaptic();
kw40z_device.ToggleAdvertisementMode();
}
void ButtonLeft(void)
{
StartHaptic();
kw40z_device.ToggleAdvertisementMode();
}
void StopHaptic(void const *n)
{
haptic = 0;
hapticTimer.stop();
}
void txTask(void)
{
while (true) {
while(ready_to_send == false) {
Thread::wait(100); // wait until has something to send
}
UpdateSensorData();
ready_to_send = false;
printf("Sending!");
/*Notify Hexiwear App that it is running Sensor Tag mode*/
kw40z_device.SendSetApplicationMode(GUI_CURRENT_APP_SENSOR_TAG);
kw40z_device.SendBatteryLevel(battery);
//send heartrate
// kw40z_device.SendHeartRate(testsignal);
/*The following is sending dummy data over BLE. Replace with real data*/
/*Send Battery Level for 20%
kw40z_device.SendBatteryLevel(battery);
Send Ambient Light Level at 50%
kw40z_device.SendAmbientLight(light);*/
/*Send Humidity at 90% */
//kw40z_device.SendHumidity(humidity);
/*Send Temperature at 25 degrees Celsius
kw40z_device.SendTemperature(temperature);
//Send Pressure at 100kPA
//kw40z_device.SendPressure(pressure); */
/*Send Mag,Accel,Gyro Data.
kw40z_device.SendGyro(x,y,z);
kw40z_device.SendAccel(z,x,y);
kw40z_device.SendMag(y,z,x);*/
Thread::wait(1000);
}
}
void UpdateSensorData(void)
{
// testsignal+=1;
battery = valence_arousal;
/*battery -= 5;
if(battery < 5) battery = 100;
light += 20;
if(light > 100) light = 0;
humidity += 500;
if(humidity > 8000) humidity = 2000;
temperature -= 200;
if(temperature < 200) temperature = 4200;
pressure += 300;
if(pressure > 10300) pressure = 7500;
x += 1400;
y -= 2300;
z += 1700;*/
}
void interruptHandlerQueued()
{
// int temp_ppg[num_samples];
for(int iter = 0; iter < num_samples; iter+=0) {
MAX30101::InterruptBitField_u interruptStatus;
hr.getInterruptStatus(interruptStatus);
// printf("Interrupt Status: 0x%02x\r\n", interruptStatus.all);
if (interruptStatus.bits.pwr_rdy == 0x1) {
// printf("Powered on\r\n");
// Soft reset
MAX30101::ModeConfiguration_u modeConf;
modeConf.all = 0;
modeConf.bits.reset = 1;
hr.setModeConfiguration(modeConf);
wait(0.01);
// Configure FIFO
MAX30101::FIFO_Configuration_u fifoConf;
hr.getFIFOConfiguration(fifoConf);
// pc.printf("FIFO Configuration: 0x%02x\r\n", fifoConf.all);
// Set LED power
hr.setLEDPulseAmplitude(MAX30101::LED1_PA, 0x0C);
hr.setLEDPulseAmplitude(MAX30101::ProxModeLED_PA, 0x19);
// pc.printf("LED set\r\n");
MAX30101::SpO2Configuration_u spo2Conf;
hr.getSpO2Configuration(spo2Conf);
spo2Conf.bits.led_pw = MAX30101::PW_1;
spo2Conf.bits.spo2_sr = MAX30101::SR_100_Hz;
hr.setSpO2Configuration(spo2Conf);
hr.getSpO2Configuration(spo2Conf);
// pc.printf("SpO2 Configuration: 0x%02x\r\n", spo2Conf.all);
// Proximity settings
hr.setProxIntThreshold(0x14);
// Enable HR mode
modeConf.all = 0;
modeConf.bits.mode = MAX30101::HeartRateMode;
hr.setModeConfiguration(modeConf);
// printf("Mode set\r\n");
}
if (interruptStatus.bits.prox_int == 0x1) {
// printf("Proximity Triggered, entered HR Mode.");
}
if (interruptStatus.bits.ppg_rdy == 0x1) {
// printf("PPG Ready.\r\n");
mask_ppg = 1;
}
if (interruptStatus.bits.a_full == 0x1) {
// printf("FIFO Almost Full.\r\n");
uint8_t data[FIFO_DATA_MAX];
uint16_t readBytes = 0;
hr.readFIFO(MAX30101::OneLedChannel, data, readBytes);
// printf("data length: %u \r\n",readBytes);
//printf("data length: %u \r\n",data);
for (uint16_t i = 0; i < readBytes; i += 3) {
uint8_t sample[4] = {0};
sample[0] = data[i + 2];
sample[1] = data[i + 1];
sample[2] = data[i];
num = *(uint32_t *) sample;
if (num < 0) {
ppg_single_sample = 0;
// printf("keep closer to your hand \r\n");
} else {
//ppg_single_sample = 65;
ppg_single_sample = num;
if(iter < num_samples && !ready) {
ppg[iter] = num;
// printf("%d \n", ppg[iter]);
if(iter == num_samples-1)
ready = true;
}
// printf("%d ", ppg_single_sample); // I commented this out
iter++;
}
// printf("%d; %d\r\n", iter, ppg[iter-1]);
}
}
interruptStatus.all = 0xFF;
if (mask_ppg == 1) {
interruptStatus.bits.ppg_rdy = 0;
}
hr.enableInterrupts(interruptStatus);
}
/*
for(int i = 0; i < num_samples; i++) {
ppg[i] = temp_ppg[i];
}
*/
//ppg = temp_ppg;
}
void interruptHandler()
{
evqueue.call(interruptHandlerQueued);
// interruptHandlerQueued();
// printf("\nLezzgo\n");
if(ready) {
printf("\nStarting... ");
int i = 0;
int j = 0;
double TIME[num_samples];
for(int i = 0; i < num_samples; i++) {
TIME[i] = (double)i*(5.0/(double)num_samples); // change to 30.0 later
}
// moving average
double movave[num_samples];
int avecap = 25;
for(i = 0; i < (avecap-1)/2; i++) {
movave[i] = (double)ppg[0];
for(j = 1; j < 1+(avecap-1)/2; j++) {
movave[i] = movave[i] + (double)ppg[j];
}
movave[i] = (double)(movave[i]/(i+(avecap-1)/2-1));
}
for(i = (num_samples-(avecap-1)/2); i < num_samples; i++) {
movave[i] = (double)ppg[i-(avecap-1)/2-1];
for(j = (i-(avecap-1)/2); j < num_samples; j++) {
movave[i] = movave[i] + (double)ppg[j];
}
movave[i] = movave[i]/(double)(num_samples-i+(avecap-1)/2);
}
for(i = (avecap-1)/2; i < (num_samples-(avecap-1)/2); i++) {
movave[i] = (double)ppg[i-(avecap-1)/2-1];
for(j = i-(avecap-1)/2; j < i+(avecap-1)/2; j++) {
movave[i] = movave[i] + (double)ppg[j];
}
movave[i] = movave[i]/(double)avecap;
}
// normalize ppg
for(i = 0; i < num_samples; i++) {
ppg[i] = ppg[i] - (int)movave[i];
if(ppg[i] > 1000 || ppg[i] < -1000)
ppg[i] = 0;
}
// smoothing curve
for(i = 1; i < num_samples; i++) {
ppg[i] = ppg[i] + ppg[i-1];
//printf("%d ", ppg[i]);
}
// AMPD Algorithm
const int kcap = 25;
int m[kcap][num_samples];
for(int k = 1; k <= kcap; k++) {
for(i = 1; i < num_samples; i++) {
if(i-1 < 0 || i-k-1 < 0 || i+k-1 >= num_samples)
m[k-1][i] = 0;
else if(ppg[i-1] > ppg[i-k-1] && ppg[i-1] > ppg[i+k-1])
m[k-1][i] = 1;
else
m[k-1][i] = 0;
}
}
int max_mult[num_samples];
for(i = 0; i < num_samples; i++) { // max_mult = m(1,:)';
max_mult[i] = m[0][i];
}
for(int k = 1; k < kcap; k++) {
for(i = 0; i < num_samples; i++) {
max_mult[i] = max_mult[i]*m[k][i];
}
}
int num_max = 0;
// extract times that are max
for(i = 0; i < num_samples; i++) {
num_max = num_max + max_mult[i];
}
// printf("num_max = %d ", num_max);
vector<double> time_of_max;
vector<int> index_of_max;
vector<int> max_points;
for(i = 0; i < num_samples; i++) {
if(max_mult[i] == 1) {
time_of_max.push_back(TIME[i-1]);
index_of_max.push_back(i-1);
max_points.push_back(ppg[i-1]);
}
}
// calculating HRV
vector<double> r;
vector<int> index_r;
double mean_inter_time = 0;
for(i = 0; i < num_max-1; i++) {
r.push_back(time_of_max.at(i+1)-time_of_max.at(i));
index_r.push_back(index_of_max.at(i+1) - index_of_max.at(i));
mean_inter_time = mean_inter_time + r.at(i);
}
//printf("r: %.2f %.2f %.2f ", r.at(0), r.at(1), r.at(2));
mean_inter_time = mean_inter_time/(double)(num_max-1);
// getting rid of outlier points in r
for(i = 0; i < num_max-1; i++) {
if(r.at(i) > mean_inter_time + 0.11)
r.at(i) = mean_inter_time + 0.11;
else if(r.at(i) < mean_inter_time - 0.11)
r.at(i) = mean_inter_time - 0.11;
}
// SDNN -- std of normal to normal R-R intervals
mean_inter_time = 0;
for(i = 0; i < num_max-1; i++) {
mean_inter_time = mean_inter_time + r.at(i);
}
mean_inter_time = double(mean_inter_time/(num_max-1));
double SDNN_doub = 0.0;
for(i = 0; i < num_max-1; i++) {
SDNN_doub = SDNN_doub + (r.at(i)-mean_inter_time)*(r.at(i)-mean_inter_time);
}
SDNN = (int)(sqrt(SDNN_doub/(num_max-1))*1000);
printf("SDNN = %d ", SDNN);
// TIME TO CALCULATE HF/LF
// FFT: use movave as fftppg
for(i = 0; i < num_samples; i++) {
double real = 0;
double im = 0;
double dum_ppg;
for(j = 0; j < num_samples; j++) {
dum_ppg = (double) ppg[j];
real = real + dum_ppg * cos(2.0*M_PI*(double)(j*i)/(double)num_samples);
im = im + dum_ppg * sin(2.0*M_PI*(double)(j*i)/(double)num_samples);
}
movave[i] = sqrt(real*real + im*im)/(double)num_samples;
}
// make frequency array: use TIME
double sampling_freq = (double)(1/TIME[1]);
for(i = 0; i < num_samples; i++) {
TIME[i] = sampling_freq*(double)(i)/(double)(num_samples);
}
double LF = 0.0;
i = 0;
while(TIME[i] < 0.15) {
LF = LF + movave[i];
i++;
}
double HF = 0.0;
while(TIME[i] < 0.4) {
HF = HF + movave[i];
i++;
}
HF_LF = HF/LF;
printf("HF/LF = %.2f \n", HF_LF);
if(SDNN_n < 1) {
SDNN_n = SDNN;
HF_LF_n = HF_LF;
valence_arousal = 0;
}
else {
// mapping SDNN, HF/LF to valence, arousal
int comp_sdnn = SDNN-SDNN_n;
if(comp_sdnn > 20)
valence_arousal = 5;
else if(comp_sdnn > 5)
valence_arousal = 4;
else if(comp_sdnn > -5)
valence_arousal = 3;
else if(comp_sdnn > -20)
valence_arousal = 2;
else
valence_arousal = 1;
double comp_hf_lf = HF_LF/HF_LF_n;
if(comp_hf_lf > 5.0)
valence_arousal += 50;
else if(comp_hf_lf > 1.5)
valence_arousal += 40;
else if(comp_hf_lf > 0.9)
valence_arousal += 30;
else if(comp_hf_lf > 0.7)
valence_arousal += 20;
else
valence_arousal += 10;
printf("valence_arousal = %d ", valence_arousal);
ready_to_send = true;
}
ready = false; // last line
}
}
// main() runs in its own thread in the OS
int main()
{
// printf("Hello world.\r\n");
t.start(callback(&evqueue, &EventQueue::dispatch_forever));
kw40z_device.attach_buttonLeft(&ButtonLeft);
kw40z_device.attach_buttonRight(&ButtonRight);
pwr1v8 = 1;
pwr3v3b = 1;
pwr15v = 0;
maximInterrupt.fall(interruptHandler);
maximInterrupt.enable_irq();
MAX30101::InterruptBitField_u interruptStatus;
interruptStatus.all = 0xFF;
hr.enableInterrupts(interruptStatus);
oled_text_properties_t textProperties = {0};
oled.GetTextProperties(&textProperties);
/* Turn on the backlight of the OLED Display */
oled.DimScreenON();
/* Fills the screen with solid black */
oled.FillScreen(COLOR_BLACK);
strcpy((char *) text, "Raw PPG:");
oled.Label((uint8_t *)text,7,0);
strcpy((char *) text, " LOFI");
oled.Label((uint8_t *)text,7,40);
//dynamic text setup
textProperties.fontColor = COLOR_WHITE;
textProperties.alignParam = OLED_TEXT_ALIGN_RIGHT;
oled.SetTextProperties(&textProperties);
txThread.start(txTask);
while (true) {
// Format the time reading
sprintf(text,"%d",ppg_single_sample);
oled.TextBox((uint8_t *)text,55,15,35,15); //Increase textbox for more digits
/*
// Display time reading in 35px by 15px textbox at(x=55, y=40)
if (ppg_single_sample > 45) {
sprintf(text,"%d; %.2f",SDNN, HF_LF);
// Display time reading in 35px by 15px textbox at(x=55, y=40)
oled.TextBox((uint8_t *)text,55,55,35,15); //Increase textbox for more digits
} else {
sprintf(text,"wait HR");
// Display time reading in 35px by 15px textbox at(x=55, y=40)
oled.TextBox((uint8_t *)text,55,55,35,15);
}*/
Thread::wait(1000);
}
return 0;
}