Openwear requires RC oscillator to be used
Fork of nRF51822 by
Diff: nordic/nrf-sdk/s110/nrf_soc.h
- Revision:
- 0:eff01767de02
- Child:
- 37:c29c330d942c
diff -r 000000000000 -r eff01767de02 nordic/nrf-sdk/s110/nrf_soc.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nordic/nrf-sdk/s110/nrf_soc.h Wed Mar 26 14:38:17 2014 +0000 @@ -0,0 +1,778 @@ +/* Copyright (c) 2011 Nordic Semiconductor. All Rights Reserved. + * + * The information contained herein is confidential property of Nordic Semiconductor. The use, + * copying, transfer or disclosure of such information is prohibited except by express written + * agreement with Nordic Semiconductor. + * + */ + +/** + @defgroup nrf_soc_api SoC Library API + @{ + + @brief APIs for the SoC library. + +*/ + +#ifndef NRF_SOC_H__ +#define NRF_SOC_H__ + +#include <stdint.h> +#include <stdbool.h> +#include "nordic_global.h" +#include "nrf_svc.h" +#include "nrf51.h" +#include "nrf51_bitfields.h" +#include "nrf_error_soc.h" + +/** @addtogroup NRF_SOC_DEFINES Defines + * @{ */ + +/**@brief The number of the lowest SVC number reserved for the SoC library. */ +#define SOC_SVC_BASE 0x20 + +/**@brief Guranteed time for application to process radio inactive notification. */ +#define NRF_RADIO_NOTIFICATION_INACTIVE_GUARANTEED_TIME_US (62) + +#define SOC_ECB_KEY_LENGTH (16) /**< ECB key length. */ +#define SOC_ECB_CLEARTEXT_LENGTH (16) /**< ECB cleartext length. */ +#define SOC_ECB_CIPHERTEXT_LENGTH (SOC_ECB_CLEARTEXT_LENGTH) /**< ECB ciphertext length. */ + +#define SD_EVT_IRQn (SWI2_IRQn) /**< SoftDevice Event IRQ number. Used for both protocol events and SoC events. */ +#define SD_EVT_IRQHandler (SWI2_IRQHandler) /**< SoftDevice Event IRQ handler. Used for both protocol events and SoC events. */ +#define RADIO_NOTIFICATION_IRQn (SWI1_IRQn) /**< The radio notification IRQ number. */ +#define RADIO_NOTIFICATION_IRQHandler (SWI1_IRQHandler) /**< The radio notification IRQ handler. */ + +/** @} */ + +/** @addtogroup NRF_SOC_TYPES Types + * @{ */ + +/**@brief The SVC numbers used by the SVC functions in the SoC library. */ +enum NRF_SOC_SVCS +{ + SD_MUTEX_NEW = SOC_SVC_BASE, + SD_MUTEX_ACQUIRE, + SD_MUTEX_RELEASE, + SD_NVIC_ENABLEIRQ, + SD_NVIC_DISABLEIRQ, + SD_NVIC_GETPENDINGIRQ, + SD_NVIC_SETPENDINGIRQ, + SD_NVIC_CLEARPENDINGIRQ, + SD_NVIC_SETPRIORITY, + SD_NVIC_GETPRIORITY, + SD_NVIC_SYSTEMRESET, + SD_NVIC_CRITICAL_REGION_ENTER, + SD_NVIC_CRITICAL_REGION_EXIT, + SD_RAND_APPLICATION_POOL_CAPACITY, + SD_RAND_APPLICATION_BYTES_AVAILABLE, + SD_RAND_APPLICATION_GET_VECTOR, + SD_POWER_MODE_SET, + SD_POWER_SYSTEM_OFF, + SD_POWER_RESET_REASON_GET, + SD_POWER_RESET_REASON_CLR, + SD_POWER_POF_ENABLE, + SD_POWER_POF_THRESHOLD_SET, + SD_POWER_RAMON_SET, + SD_POWER_RAMON_CLR, + SD_POWER_RAMON_GET, + SD_POWER_GPREGRET_SET, + SD_POWER_GPREGRET_CLR, + SD_POWER_GPREGRET_GET, + SD_POWER_DCDC_MODE_SET, + SD_APP_EVT_WAIT, + SD_CLOCK_HFCLK_REQUEST, + SD_CLOCK_HFCLK_RELEASE, + SD_CLOCK_HFCLK_IS_RUNNING, + SD_PPI_CHANNEL_ENABLE_GET, + SD_PPI_CHANNEL_ENABLE_SET, + SD_PPI_CHANNEL_ENABLE_CLR, + SD_PPI_CHANNEL_ASSIGN, + SD_PPI_GROUP_TASK_ENABLE, + SD_PPI_GROUP_TASK_DISABLE, + SD_PPI_GROUP_ASSIGN, + SD_PPI_GROUP_GET, + SD_RADIO_NOTIFICATION_CFG_SET, + SD_ECB_BLOCK_ENCRYPT, + SD_RESERVED1, + SD_RESERVED2, + SD_RESERVED3, + SD_EVT_GET, + SD_TEMP_GET, + SD_FLASH_ERASE_PAGE, + SD_FLASH_WRITE, + SD_FLASH_PROTECT, + SVC_SOC_LAST +}; + +/**@brief Possible values of a ::nrf_mutex_t. */ +enum NRF_MUTEX_VALUES +{ + NRF_MUTEX_FREE, + NRF_MUTEX_TAKEN +}; + +/**@brief Possible values of ::nrf_app_irq_priority_t. */ +enum NRF_APP_PRIORITIES +{ + NRF_APP_PRIORITY_HIGH = 1, + NRF_APP_PRIORITY_LOW = 3 +}; + +/**@brief Possible values of ::nrf_power_mode_t. */ +enum NRF_POWER_MODES +{ + NRF_POWER_MODE_CONSTLAT, /**< Constant latency mode. See power management in the reference manual. */ + NRF_POWER_MODE_LOWPWR /**< Low power mode. See power management in the reference manual. */ +}; + + +/**@brief Possible values of ::nrf_power_failure_threshold_t */ +enum NRF_POWER_THRESHOLDS +{ + NRF_POWER_THRESHOLD_V21, /**< 2.1 Volts power failure threshold. */ + NRF_POWER_THRESHOLD_V23, /**< 2.3 Volts power failure threshold. */ + NRF_POWER_THRESHOLD_V25, /**< 2.5 Volts power failure threshold. */ + NRF_POWER_THRESHOLD_V27 /**< 2.7 Volts power failure threshold. */ +}; + + +/**@brief Possible values of ::nrf_power_dcdc_mode_t. */ +enum NRF_POWER_DCDC_MODES +{ + NRF_POWER_DCDC_MODE_OFF, /**< The DCDC is always off. */ + NRF_POWER_DCDC_MODE_ON, /**< The DCDC is always on. */ + NRF_POWER_DCDC_MODE_AUTOMATIC /**< The DCDC is automatically managed. */ +}; + +/**@brief Possible values of ::nrf_radio_notification_distance_t. */ +enum NRF_RADIO_NOTIFICATION_DISTANCES +{ + NRF_RADIO_NOTIFICATION_DISTANCE_NONE = 0, /**< The event does not have a notification. */ + NRF_RADIO_NOTIFICATION_DISTANCE_800US, /**< The distance from the active notification to start of radio activity. */ + NRF_RADIO_NOTIFICATION_DISTANCE_1740US, /**< The distance from the active notification to start of radio activity. */ + NRF_RADIO_NOTIFICATION_DISTANCE_2680US, /**< The distance from the active notification to start of radio activity. */ + NRF_RADIO_NOTIFICATION_DISTANCE_3620US, /**< The distance from the active notification to start of radio activity. */ + NRF_RADIO_NOTIFICATION_DISTANCE_4560US, /**< The distance from the active notification to start of radio activity. */ + NRF_RADIO_NOTIFICATION_DISTANCE_5500US /**< The distance from the active notification to start of radio activity. */ +}; + + +/**@brief Possible values of ::nrf_radio_notification_type_t. */ +enum NRF_RADIO_NOTIFICATION_TYPES +{ + NRF_RADIO_NOTIFICATION_TYPE_NONE = 0, /**< The event does not have a radio notification signal. */ + NRF_RADIO_NOTIFICATION_TYPE_INT_ON_ACTIVE, /**< Using interrupt for notification when the radio will be enabled. */ + NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE, /**< Using interrupt for notification when the radio has been disabled. */ + NRF_RADIO_NOTIFICATION_TYPE_INT_ON_BOTH, /**< Using interrupt for notification both when the radio will be enabled and disabled. */ +}; + +/**@brief SoC Events. */ +enum NRF_SOC_EVTS +{ + NRF_EVT_HFCLKSTARTED, /**< Event indicating that the HFCLK has started. */ + NRF_EVT_POWER_FAILURE_WARNING, /**< Event indicating that a power failure warning has occurred. */ + NRF_EVT_FLASH_OPERATION_SUCCESS, /**< Event indicating that the ongoing flash operation has completed successfully. */ + NRF_EVT_FLASH_OPERATION_ERROR, /**< Event indicating that the ongoing flash operation has timed out with an error. */ + NRF_EVT_RESERVED1, + NRF_EVT_RESERVED2, + NRF_EVT_RESERVED3, + NRF_EVT_RESERVED4, + NRF_EVT_RESERVED5, + NRF_EVT_NUMBER_OF_EVTS +}; + +/** @} */ + +/** @addtogroup NRF_SOC_TYPES Types + * @{ */ + +/**@brief Represents a mutex for use with the nrf_mutex functions. + * @note Accessing the value directly is not safe, use the mutex functions! + */ +typedef volatile uint8_t nrf_mutex_t; + +/**@brief The interrupt priorities available to the application while the softdevice is active. */ +typedef uint8_t nrf_app_irq_priority_t; + +/**@brief Represents a power mode, used in power mode functions */ +typedef uint8_t nrf_power_mode_t; + +/**@brief Represents a power failure threshold value. */ +typedef uint8_t nrf_power_failure_threshold_t; + +/**@brief Represents a DCDC mode value. */ +typedef uint32_t nrf_power_dcdc_mode_t; + +/**@brief Radio notification distances. */ +typedef uint8_t nrf_radio_notification_distance_t; + +/**@brief Radio notification types. */ +typedef uint8_t nrf_radio_notification_type_t; + + +/**@brief AES ECB data structure */ +typedef struct +{ + uint8_t key[SOC_ECB_KEY_LENGTH]; /**< Encryption key. */ + uint8_t cleartext[SOC_ECB_CLEARTEXT_LENGTH]; /**< Clear Text data. */ + uint8_t ciphertext[SOC_ECB_CIPHERTEXT_LENGTH]; /**< Cipher Text data. */ +} nrf_ecb_hal_data_t; + +/** @} */ + +/** @addtogroup NRF_SOC_FUNCTIONS Functions + * @{ */ + +/**@brief Initialize a mutex. + * + * @param[in] p_mutex Pointer to the mutex to initialize. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_MUTEX_NEW, uint32_t, sd_mutex_new(nrf_mutex_t * p_mutex)); + +/**@brief Attempt to acquire a mutex. + * + * @param[in] p_mutex Pointer to the mutex to acquire. + * + * @retval ::NRF_SUCCESS The mutex was successfully acquired. + * @retval ::NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN The mutex could not be acquired. + */ +SVCALL(SD_MUTEX_ACQUIRE, uint32_t, sd_mutex_acquire(nrf_mutex_t * p_mutex)); + +/**@brief Release a mutex. + * + * @param[in] p_mutex Pointer to the mutex to release. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_MUTEX_RELEASE, uint32_t, sd_mutex_release(nrf_mutex_t * p_mutex)); + +/**@brief Enable External Interrupt. + * @note Corresponds to NVIC_EnableIRQ in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_EnableIRQ documentation in CMSIS. + * + * @retval ::NRF_SUCCESS The interrupt was enabled. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt has a priority not available for the application. + */ +SVCALL(SD_NVIC_ENABLEIRQ, uint32_t, sd_nvic_EnableIRQ(IRQn_Type IRQn)); + +/**@brief Disable External Interrupt. + * @note Corresponds to NVIC_DisableIRQ in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_DisableIRQ documentation in CMSIS + * + * @retval ::NRF_SUCCESS The interrupt was disabled. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application. + */ +SVCALL(SD_NVIC_DISABLEIRQ, uint32_t, sd_nvic_DisableIRQ(IRQn_Type IRQn)); + +/**@brief Get Pending Interrupt. + * @note Corresponds to NVIC_GetPendingIRQ in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_GetPendingIRQ documentation in CMSIS. + * @param[out] p_pending_irq Return value from NVIC_GetPendingIRQ. + * + * @retval ::NRF_SUCCESS The interrupt is available for the application. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. + */ +SVCALL(SD_NVIC_GETPENDINGIRQ, uint32_t, sd_nvic_GetPendingIRQ(IRQn_Type IRQn, uint32_t * p_pending_irq)); + +/**@brief Set Pending Interrupt. + * @note Corresponds to NVIC_SetPendingIRQ in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_SetPendingIRQ documentation in CMSIS. + * + * @retval ::NRF_SUCCESS The interrupt is set pending. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. + */ +SVCALL(SD_NVIC_SETPENDINGIRQ, uint32_t, sd_nvic_SetPendingIRQ(IRQn_Type IRQn)); + +/**@brief Clear Pending Interrupt. + * @note Corresponds to NVIC_ClearPendingIRQ in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_ClearPendingIRQ documentation in CMSIS. + * + * @retval ::NRF_SUCCESS The interrupt pending flag is cleared. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. + */ +SVCALL(SD_NVIC_CLEARPENDINGIRQ, uint32_t, sd_nvic_ClearPendingIRQ(IRQn_Type IRQn)); + +/**@brief Set Interrupt Priority. + * @note Corresponds to NVIC_SetPriority in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * @pre{priority is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_SetPriority documentation in CMSIS. + * @param[in] priority A valid IRQ priority for use by the application. + * + * @retval ::NRF_SUCCESS The interrupt and priority level is available for the application. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt priority is not available for the application. + */ +SVCALL(SD_NVIC_SETPRIORITY, uint32_t, sd_nvic_SetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t priority)); + +/**@brief Get Interrupt Priority. + * @note Corresponds to NVIC_GetPriority in CMSIS. + * + * @pre{IRQn is valid and not reserved by the stack} + * + * @param[in] IRQn See the NVIC_GetPriority documentation in CMSIS. + * @param[out] p_priority Return value from NVIC_GetPriority. + * + * @retval ::NRF_SUCCESS The interrupt priority is returned in p_priority. + * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE - IRQn is not available for the application. + */ +SVCALL(SD_NVIC_GETPRIORITY, uint32_t, sd_nvic_GetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t * p_priority)); + +/**@brief System Reset. + * @note Corresponds to NVIC_SystemReset in CMSIS. + * + * @retval ::NRF_ERROR_SOC_NVIC_SHOULD_NOT_RETURN + */ +SVCALL(SD_NVIC_SYSTEMRESET, uint32_t, sd_nvic_SystemReset(void)); + +/**@brief Enters critical region. + * + * @post Application interrupts will be disabled. + * @sa sd_nvic_critical_region_exit + * + * @param[out] p_is_nested_critical_region 1: If in a nested critical region. + * 0: Otherwise. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_NVIC_CRITICAL_REGION_ENTER, uint32_t, sd_nvic_critical_region_enter(uint8_t * p_is_nested_critical_region)); + +/**@brief Exit critical region. + * + * @pre Application has entered a critical region using ::sd_nvic_critical_region_enter. + * @post If not in a nested critical region, the application interrupts will restored to the state before ::sd_nvic_critical_region_enter was called. + * + * @param[in] is_nested_critical_region If this is set to 1, the critical region won't be exited. @sa sd_nvic_critical_region_enter. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_NVIC_CRITICAL_REGION_EXIT, uint32_t, sd_nvic_critical_region_exit(uint8_t is_nested_critical_region)); + +/**@brief Query the capacity of the application random pool. + * + * @param[out] p_pool_capacity The capacity of the pool. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_RAND_APPLICATION_POOL_CAPACITY, uint32_t, sd_rand_application_pool_capacity_get(uint8_t * p_pool_capacity)); + +/**@brief Get number of random bytes available to the application. + * + * @param[out] p_bytes_available The number of bytes currently available in the pool. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_RAND_APPLICATION_BYTES_AVAILABLE, uint32_t, sd_rand_application_bytes_available_get(uint8_t * p_bytes_available)); + +/**@brief Get random bytes from the application pool. + + @param[out] p_buff Pointer to unit8_t buffer for storing the bytes. + @param[in] length Number of bytes to take from pool and place in p_buff. + + @retval ::NRF_SUCCESS The requested bytes were written to p_buff. + @retval ::NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES No bytes were written to the buffer, because there were not enough bytes available. +*/ +SVCALL(SD_RAND_APPLICATION_GET_VECTOR, uint32_t, sd_rand_application_vector_get(uint8_t * p_buff, uint8_t length)); + +/**@brief Gets the reset reason register. + * + * @param[out] p_reset_reason Contents of the NRF_POWER->RESETREAS register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_RESET_REASON_GET, uint32_t, sd_power_reset_reason_get(uint32_t * p_reset_reason)); + +/**@brief Clears the bits of the reset reason register. + * + * @param[in] reset_reason_clr_msk Contains the bits to clear from the reset reason register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_RESET_REASON_CLR, uint32_t, sd_power_reset_reason_clr(uint32_t reset_reason_clr_msk)); + +/**@brief Sets the power mode when in CPU sleep. + * + * @param[in] power_mode The power mode to use when in CPU sleep. @sa sd_app_evt_wait + * + * @retval ::NRF_SUCCESS The power mode was set. + * @retval ::NRF_ERROR_SOC_POWER_MODE_UNKNOWN The power mode was unknown. + */ +SVCALL(SD_POWER_MODE_SET, uint32_t, sd_power_mode_set(nrf_power_mode_t power_mode)); + +/**@brief Puts the chip in System OFF mode. + * + * @retval ::NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN + */ +SVCALL(SD_POWER_SYSTEM_OFF, uint32_t, sd_power_system_off(void)); + +/**@brief Enables or disables the power-fail comparator. + * + * Enabling this will give a softdevice event (NRF_EVT_POWER_FAILURE_WARNING) when the power failure warning occurs. + * The event can be retrieved with sd_evt_get(); + * + * @param[in] pof_enable True if the power-fail comparator should be enabled, false if it should be disabled. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_POF_ENABLE, uint32_t, sd_power_pof_enable(uint8_t pof_enable)); + +/**@brief Sets the power-fail threshold value. + * + * @param[in] threshold The power-fail threshold value to use. + * + * @retval ::NRF_SUCCESS The power failure threshold was set. + * @retval ::NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown. + */ +SVCALL(SD_POWER_POF_THRESHOLD_SET, uint32_t, sd_power_pof_threshold_set(nrf_power_failure_threshold_t threshold)); + +/**@brief Sets bits in the NRF_POWER->RAMON register. + * + * @param[in] ramon Contains the bits needed to be set in the NRF_POWER->RAMON register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_RAMON_SET, uint32_t, sd_power_ramon_set(uint32_t ramon)); + +/** @brief Clears bits in the NRF_POWER->RAMON register. + * + * @param ramon Contains the bits needed to be cleared in the NRF_POWER->RAMON register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_RAMON_CLR, uint32_t, sd_power_ramon_clr(uint32_t ramon)); + +/**@brief Get contents of NRF_POWER->RAMON register, indicates power status of ram blocks. + * + * @param[out] p_ramon Content of NRF_POWER->RAMON register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_RAMON_GET, uint32_t, sd_power_ramon_get(uint32_t * p_ramon)); + +/**@brief Set bits in the NRF_POWER->GPREGRET register. + * + * @param[in] gpregret_msk Bits to be set in the GPREGRET register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_GPREGRET_SET, uint32_t, sd_power_gpregret_set(uint32_t gpregret_msk)); + +/**@brief Clear bits in the NRF_POWER->GPREGRET register. + * + * @param[in] gpregret_msk Bits to be clear in the GPREGRET register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_GPREGRET_CLR, uint32_t, sd_power_gpregret_clr(uint32_t gpregret_msk)); + +/**@brief Get contents of the NRF_POWER->GPREGRET register. + * + * @param[out] p_gpregret Contents of the GPREGRET register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_POWER_GPREGRET_GET, uint32_t, sd_power_gpregret_get(uint32_t *p_gpregret)); + +/**@brief Sets the DCDC mode. + * + * Depending on the internal state of the SoftDevice, the mode change may not happen immediately. + * The DCDC mode switch will be blocked when occurring in close proximity to radio transmissions. When + * the radio transmission is done, the last mode will be used. + * + * @param[in] dcdc_mode The mode of the DCDC. + * + * @retval ::NRF_SUCCESS + * @retval ::NRF_ERROR_INVALID_PARAM The DCDC mode is invalid. + */ +SVCALL(SD_POWER_DCDC_MODE_SET, uint32_t, sd_power_dcdc_mode_set(nrf_power_dcdc_mode_t dcdc_mode)); + +/**@brief Request the high frequency crystal oscillator. + * + * Will start the high frequency crystal oscillator, the startup time of the crystal varies + * and the ::sd_clock_hfclk_is_running function can be polled to check if it has started. + * + * @see sd_clock_hfclk_is_running + * @see sd_clock_hfclk_release + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_CLOCK_HFCLK_REQUEST, uint32_t, sd_clock_hfclk_request(void)); + +/**@brief Releases the high frequency crystal oscillator. + * + * Will stop the high frequency crystal oscillator, this happens immediately. + * + * @see sd_clock_hfclk_is_running + * @see sd_clock_hfclk_request + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_CLOCK_HFCLK_RELEASE, uint32_t, sd_clock_hfclk_release(void)); + +/**@brief Checks if the high frequency crystal oscillator is running. + * + * @see sd_clock_hfclk_request + * @see sd_clock_hfclk_release + * + * @param[out] p_is_running 1 if the external crystal oscillator is running, 0 if not. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_CLOCK_HFCLK_IS_RUNNING, uint32_t, sd_clock_hfclk_is_running(uint32_t * p_is_running)); + +/**@brief Waits for an application event. + * + * An application event is either an application interrupt or a pended interrupt when the + * interrupt is disabled. When the interrupt is enabled it will be taken immediately since + * this function will wait in thread mode, then the execution will return in the application's + * main thread. When an interrupt is disabled and gets pended it will return to the application's + * thread main. The application must ensure that the pended flag is cleared using + * ::sd_nvic_ClearPendingIRQ in order to sleep using this function. This is only necessary for + * disabled interrupts, as the interrupt handler will clear the pending flag automatically for + * enabled interrupts. + * + * In order to wake up from disabled interrupts, the SEVONPEND flag has to be set in the Cortex-M0 + * System Control Register (SCR). @sa CMSIS_SCB + * + * @note If an application interrupt has happened since the last time sd_app_evt_wait was + * called this function will return immediately and not go to sleep. This is to avoid race + * conditions that can occur when a flag is updated in the interrupt handler and processed + * in the main loop. + * + * @post An application interrupt has happened or a interrupt pending flag is set. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_APP_EVT_WAIT, uint32_t, sd_app_evt_wait(void)); + +/**@brief Get PPI channel enable register contents. + * + * @param[out] p_channel_enable The contents of the PPI CHEN register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_CHANNEL_ENABLE_GET, uint32_t, sd_ppi_channel_enable_get(uint32_t * p_channel_enable)); + +/**@brief Set PPI channel enable register. + * + * @param[in] channel_enable_set_msk Mask containing the bits to set in the PPI CHEN register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_CHANNEL_ENABLE_SET, uint32_t, sd_ppi_channel_enable_set(uint32_t channel_enable_set_msk)); + +/**@brief Clear PPI channel enable register. + * + * @param[in] channel_enable_clr_msk Mask containing the bits to clear in the PPI CHEN register. + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_CHANNEL_ENABLE_CLR, uint32_t, sd_ppi_channel_enable_clr(uint32_t channel_enable_clr_msk)); + +/**@brief Assign endpoints to a PPI channel. + * + * @param[in] channel_num Number of the PPI channel to assign. + * @param[in] evt_endpoint Event endpoint of the PPI channel. + * @param[in] task_endpoint Task endpoint of the PPI channel. + * + * @retval ::NRF_ERROR_SOC_PPI_INVALID_CHANNEL The channel number is invalid. + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_CHANNEL_ASSIGN, uint32_t, sd_ppi_channel_assign(uint8_t channel_num, const volatile void * evt_endpoint, const volatile void * task_endpoint)); + +/**@brief Task to enable a channel group. + * + * @param[in] group_num Number of the channel group. + * + * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_GROUP_TASK_ENABLE, uint32_t, sd_ppi_group_task_enable(uint8_t group_num)); + +/**@brief Task to disable a channel group. + * + * @param[in] group_num Number of the PPI group. + * + * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid. + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_GROUP_TASK_DISABLE, uint32_t, sd_ppi_group_task_disable(uint8_t group_num)); + +/**@brief Assign PPI channels to a channel group. + * + * @param[in] group_num Number of the channel group. + * @param[in] channel_msk Mask of the channels to assign to the group. + * + * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid. + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_GROUP_ASSIGN, uint32_t, sd_ppi_group_assign(uint8_t group_num, uint32_t channel_msk)); + +/**@brief Gets the PPI channels of a channel group. + * + * @param[in] group_num Number of the channel group. + * @param[out] p_channel_msk Mask of the channels assigned to the group. + * + * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid. + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_PPI_GROUP_GET, uint32_t, sd_ppi_group_get(uint8_t group_num, uint32_t * p_channel_msk)); + +/**@brief Configures the Radio Notification signal. + * + * @note + * - The notification signal latency depends on the interrupt priority settings of SWI used + * for notification signal. + * - In the period between the ACTIVE signal and the start of the Radio Event, the SoftDevice + * will interrupt the application to do Radio Event preparation. + * - Using the Radio Notification feature may limit the bandwidth, as the SoftDevice may have + * to shorten the connection events to have time for the Radio Notification signals. + * + * @param[in] type Type of notification signal. + * @ref NRF_RADIO_NOTIFICATION_TYPE_NONE shall be used to turn off radio + * notification. Using @ref NRF_RADIO_NOTIFICATION_DISTANCE_NONE is + * recommended (but not required) to be used with + * @ref NRF_RADIO_NOTIFICATION_TYPE_NONE. + * + * @param[in] distance Distance between the notification signal and start of radio activity. + * This parameter is ignored when @ref NRF_RADIO_NOTIFICATION_TYPE_NONE or + * @ref NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE is used. + * + * @retval ::NRF_ERROR_INVALID_PARAM The group number is invalid. + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_RADIO_NOTIFICATION_CFG_SET, uint32_t, sd_radio_notification_cfg_set(nrf_radio_notification_type_t type, nrf_radio_notification_distance_t distance)); + +/**@brief Encrypts a block according to the specified parameters. + * + * 128-bit AES encryption. + * + * @param[in, out] p_ecb_data Pointer to the ECB parameters' struct (two input + * parameters and one output parameter). + * + * @retval ::NRF_SUCCESS + */ +SVCALL(SD_ECB_BLOCK_ENCRYPT, uint32_t, sd_ecb_block_encrypt(nrf_ecb_hal_data_t * p_ecb_data)); + +/**@brief Gets any pending events generated by the SoC API. + * + * The application should keep calling this function to get events, until ::NRF_ERROR_NOT_FOUND is returned. + * + * @param[out] p_evt_id Set to one of the values in @ref NRF_SOC_EVTS, if any events are pending. + * + * @retval ::NRF_SUCCESS An event was pending. The event id is written in the p_evt_id parameter. + * @retval ::NRF_ERROR_NOT_FOUND No pending events. + */ +SVCALL(SD_EVT_GET, uint32_t, sd_evt_get(uint32_t * p_evt_id)); + +/**@brief Get the temperature measured on the chip + * + * This function will block until the temperature measurement is done. + * It takes around 50us from call to return. + * + * @note Pan #28 in PAN-028 v 1.6 "Negative measured values are not represented correctly" is corrected by this function. + * + * @param[out] p_temp Result of temperature measurement. Die temperature in 0.25 degrees celsius. + * + * @retval ::NRF_SUCCESS A temperature measurement was done, and the temperature was written to temp + */ +SVCALL(SD_TEMP_GET, uint32_t, sd_temp_get(int32_t * p_temp)); + +/**@brief Flash Write + * + * Commands to write a buffer to flash + * + * This call initiates the flash access command, and its completion will be communicated to the + * application with exactly one of the following events: + * - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed. + * - NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started. + * + * @note + * - This call takes control over the radio and the CPU during flash erase and write to make sure that + * they will not interfere with the flash access. This means that all interrupts will be blocked + * for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual + * and the command parameters). + * + * + * @param[in] p_dst Pointer to start of flash location to be written. + * @param[in] p_src Pointer to buffer with data to be written + * @param[in] size Number of 32-bit words to write. Maximum size is 256 32bit words. + * + * @retval ::NRF_ERROR_INVALID_ADDR Tried to write to a non existing flash address, or p_dst or p_src was unaligned. + * @retval ::NRF_ERROR_BUSY The previous command has not yet completed. + * @retval ::NRF_ERROR_INVALID_LENGTH Size was 0, or more than 256 words. + * @retval ::NRF_ERROR_FORBIDDEN Tried to write to or read from protected location. + * @retval ::NRF_SUCCESS The command was accepted. + */ +SVCALL(SD_FLASH_WRITE, uint32_t, sd_flash_write(uint32_t * const p_dst, uint32_t const * const p_src, uint32_t size)); + + +/**@brief Flash Erase page + * + * Commands to erase a flash page + * + * This call initiates the flash access command, and its completion will be communicated to the + * application with exactly one of the following events: + * - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed. + * - NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started. + * + * @note + * - This call takes control over the radio and the CPU during flash erase and write to make sure that + * they will not interfere with the flash access. This means that all interrupts will be blocked + * for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual + * and the command parameters). + * + * + * @param[in] page_number Pagenumber of the page to erase + * @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error. + * @retval ::NRF_ERROR_INVALID_ADDR Tried to erase to a non existing flash page. + * @retval ::NRF_ERROR_BUSY The previous command has not yet completed. + * @retval ::NRF_ERROR_FORBIDDEN Tried to erase a protected page. + * @retval ::NRF_SUCCESS The command was accepted. + */ +SVCALL(SD_FLASH_ERASE_PAGE, uint32_t, sd_flash_page_erase(uint32_t page_number)); + + +/**@brief Flash Protection set + * + * Commands to set the flash protection registers PROTENSETx + * + * @note To read the values in PROTENSETx you can read them directly. They are only write-protected. + * + * @param[in] protenset0 Value to be written to PROTENSET0 + * @param[in] protenset1 Value to be written to PROTENSET1 + * + * @retval ::NRF_ERROR_FORBIDDEN Tried to protect the SoftDevice + * @retval ::NRF_SUCCESS Values successfully written to PROTENSETx + */ +SVCALL(SD_FLASH_PROTECT, uint32_t, sd_flash_protect(uint32_t protenset0, uint32_t protenset1)); + + +/** @} */ + +#endif // NRF_SOC_H__ + +/** + @} + */