Library version of MPU9250AHRS code.

Fork of MPU9250AHRS by Janek Mann

Committer:
onehorse
Date:
Sun Jun 29 22:02:30 2014 +0000
Revision:
0:2e5e65a6fb30
Child:
2:4e59a37182df
First Commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
onehorse 0:2e5e65a6fb30 1 #ifndef MPU9250_H
onehorse 0:2e5e65a6fb30 2 #define MPU9250_H
onehorse 0:2e5e65a6fb30 3
onehorse 0:2e5e65a6fb30 4 #include "mbed.h"
onehorse 0:2e5e65a6fb30 5 #include "math.h"
onehorse 0:2e5e65a6fb30 6
onehorse 0:2e5e65a6fb30 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
onehorse 0:2e5e65a6fb30 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
onehorse 0:2e5e65a6fb30 9 //
onehorse 0:2e5e65a6fb30 10 //Magnetometer Registers
onehorse 0:2e5e65a6fb30 11 #define AK8963_ADDRESS 0x0C<<1
onehorse 0:2e5e65a6fb30 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
onehorse 0:2e5e65a6fb30 13 #define INFO 0x01
onehorse 0:2e5e65a6fb30 14 #define AK8963_ST1 0x02 // data ready status bit 0
onehorse 0:2e5e65a6fb30 15 #define AK8963_XOUT_L 0x03 // data
onehorse 0:2e5e65a6fb30 16 #define AK8963_XOUT_H 0x04
onehorse 0:2e5e65a6fb30 17 #define AK8963_YOUT_L 0x05
onehorse 0:2e5e65a6fb30 18 #define AK8963_YOUT_H 0x06
onehorse 0:2e5e65a6fb30 19 #define AK8963_ZOUT_L 0x07
onehorse 0:2e5e65a6fb30 20 #define AK8963_ZOUT_H 0x08
onehorse 0:2e5e65a6fb30 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
onehorse 0:2e5e65a6fb30 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
onehorse 0:2e5e65a6fb30 23 #define AK8963_ASTC 0x0C // Self test control
onehorse 0:2e5e65a6fb30 24 #define AK8963_I2CDIS 0x0F // I2C disable
onehorse 0:2e5e65a6fb30 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
onehorse 0:2e5e65a6fb30 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
onehorse 0:2e5e65a6fb30 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
onehorse 0:2e5e65a6fb30 28
onehorse 0:2e5e65a6fb30 29 #define SELF_TEST_X_GYRO 0x00
onehorse 0:2e5e65a6fb30 30 #define SELF_TEST_Y_GYRO 0x01
onehorse 0:2e5e65a6fb30 31 #define SELF_TEST_Z_GYRO 0x02
onehorse 0:2e5e65a6fb30 32
onehorse 0:2e5e65a6fb30 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
onehorse 0:2e5e65a6fb30 34 #define Y_FINE_GAIN 0x04
onehorse 0:2e5e65a6fb30 35 #define Z_FINE_GAIN 0x05
onehorse 0:2e5e65a6fb30 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
onehorse 0:2e5e65a6fb30 37 #define XA_OFFSET_L_TC 0x07
onehorse 0:2e5e65a6fb30 38 #define YA_OFFSET_H 0x08
onehorse 0:2e5e65a6fb30 39 #define YA_OFFSET_L_TC 0x09
onehorse 0:2e5e65a6fb30 40 #define ZA_OFFSET_H 0x0A
onehorse 0:2e5e65a6fb30 41 #define ZA_OFFSET_L_TC 0x0B */
onehorse 0:2e5e65a6fb30 42
onehorse 0:2e5e65a6fb30 43 #define SELF_TEST_X_ACCEL 0x0D
onehorse 0:2e5e65a6fb30 44 #define SELF_TEST_Y_ACCEL 0x0E
onehorse 0:2e5e65a6fb30 45 #define SELF_TEST_Z_ACCEL 0x0F
onehorse 0:2e5e65a6fb30 46
onehorse 0:2e5e65a6fb30 47 #define SELF_TEST_A 0x10
onehorse 0:2e5e65a6fb30 48
onehorse 0:2e5e65a6fb30 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
onehorse 0:2e5e65a6fb30 50 #define XG_OFFSET_L 0x14
onehorse 0:2e5e65a6fb30 51 #define YG_OFFSET_H 0x15
onehorse 0:2e5e65a6fb30 52 #define YG_OFFSET_L 0x16
onehorse 0:2e5e65a6fb30 53 #define ZG_OFFSET_H 0x17
onehorse 0:2e5e65a6fb30 54 #define ZG_OFFSET_L 0x18
onehorse 0:2e5e65a6fb30 55 #define SMPLRT_DIV 0x19
onehorse 0:2e5e65a6fb30 56 #define CONFIG 0x1A
onehorse 0:2e5e65a6fb30 57 #define GYRO_CONFIG 0x1B
onehorse 0:2e5e65a6fb30 58 #define ACCEL_CONFIG 0x1C
onehorse 0:2e5e65a6fb30 59 #define ACCEL_CONFIG2 0x1D
onehorse 0:2e5e65a6fb30 60 #define LP_ACCEL_ODR 0x1E
onehorse 0:2e5e65a6fb30 61 #define WOM_THR 0x1F
onehorse 0:2e5e65a6fb30 62
onehorse 0:2e5e65a6fb30 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
onehorse 0:2e5e65a6fb30 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
onehorse 0:2e5e65a6fb30 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
onehorse 0:2e5e65a6fb30 66
onehorse 0:2e5e65a6fb30 67 #define FIFO_EN 0x23
onehorse 0:2e5e65a6fb30 68 #define I2C_MST_CTRL 0x24
onehorse 0:2e5e65a6fb30 69 #define I2C_SLV0_ADDR 0x25
onehorse 0:2e5e65a6fb30 70 #define I2C_SLV0_REG 0x26
onehorse 0:2e5e65a6fb30 71 #define I2C_SLV0_CTRL 0x27
onehorse 0:2e5e65a6fb30 72 #define I2C_SLV1_ADDR 0x28
onehorse 0:2e5e65a6fb30 73 #define I2C_SLV1_REG 0x29
onehorse 0:2e5e65a6fb30 74 #define I2C_SLV1_CTRL 0x2A
onehorse 0:2e5e65a6fb30 75 #define I2C_SLV2_ADDR 0x2B
onehorse 0:2e5e65a6fb30 76 #define I2C_SLV2_REG 0x2C
onehorse 0:2e5e65a6fb30 77 #define I2C_SLV2_CTRL 0x2D
onehorse 0:2e5e65a6fb30 78 #define I2C_SLV3_ADDR 0x2E
onehorse 0:2e5e65a6fb30 79 #define I2C_SLV3_REG 0x2F
onehorse 0:2e5e65a6fb30 80 #define I2C_SLV3_CTRL 0x30
onehorse 0:2e5e65a6fb30 81 #define I2C_SLV4_ADDR 0x31
onehorse 0:2e5e65a6fb30 82 #define I2C_SLV4_REG 0x32
onehorse 0:2e5e65a6fb30 83 #define I2C_SLV4_DO 0x33
onehorse 0:2e5e65a6fb30 84 #define I2C_SLV4_CTRL 0x34
onehorse 0:2e5e65a6fb30 85 #define I2C_SLV4_DI 0x35
onehorse 0:2e5e65a6fb30 86 #define I2C_MST_STATUS 0x36
onehorse 0:2e5e65a6fb30 87 #define INT_PIN_CFG 0x37
onehorse 0:2e5e65a6fb30 88 #define INT_ENABLE 0x38
onehorse 0:2e5e65a6fb30 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
onehorse 0:2e5e65a6fb30 90 #define INT_STATUS 0x3A
onehorse 0:2e5e65a6fb30 91 #define ACCEL_XOUT_H 0x3B
onehorse 0:2e5e65a6fb30 92 #define ACCEL_XOUT_L 0x3C
onehorse 0:2e5e65a6fb30 93 #define ACCEL_YOUT_H 0x3D
onehorse 0:2e5e65a6fb30 94 #define ACCEL_YOUT_L 0x3E
onehorse 0:2e5e65a6fb30 95 #define ACCEL_ZOUT_H 0x3F
onehorse 0:2e5e65a6fb30 96 #define ACCEL_ZOUT_L 0x40
onehorse 0:2e5e65a6fb30 97 #define TEMP_OUT_H 0x41
onehorse 0:2e5e65a6fb30 98 #define TEMP_OUT_L 0x42
onehorse 0:2e5e65a6fb30 99 #define GYRO_XOUT_H 0x43
onehorse 0:2e5e65a6fb30 100 #define GYRO_XOUT_L 0x44
onehorse 0:2e5e65a6fb30 101 #define GYRO_YOUT_H 0x45
onehorse 0:2e5e65a6fb30 102 #define GYRO_YOUT_L 0x46
onehorse 0:2e5e65a6fb30 103 #define GYRO_ZOUT_H 0x47
onehorse 0:2e5e65a6fb30 104 #define GYRO_ZOUT_L 0x48
onehorse 0:2e5e65a6fb30 105 #define EXT_SENS_DATA_00 0x49
onehorse 0:2e5e65a6fb30 106 #define EXT_SENS_DATA_01 0x4A
onehorse 0:2e5e65a6fb30 107 #define EXT_SENS_DATA_02 0x4B
onehorse 0:2e5e65a6fb30 108 #define EXT_SENS_DATA_03 0x4C
onehorse 0:2e5e65a6fb30 109 #define EXT_SENS_DATA_04 0x4D
onehorse 0:2e5e65a6fb30 110 #define EXT_SENS_DATA_05 0x4E
onehorse 0:2e5e65a6fb30 111 #define EXT_SENS_DATA_06 0x4F
onehorse 0:2e5e65a6fb30 112 #define EXT_SENS_DATA_07 0x50
onehorse 0:2e5e65a6fb30 113 #define EXT_SENS_DATA_08 0x51
onehorse 0:2e5e65a6fb30 114 #define EXT_SENS_DATA_09 0x52
onehorse 0:2e5e65a6fb30 115 #define EXT_SENS_DATA_10 0x53
onehorse 0:2e5e65a6fb30 116 #define EXT_SENS_DATA_11 0x54
onehorse 0:2e5e65a6fb30 117 #define EXT_SENS_DATA_12 0x55
onehorse 0:2e5e65a6fb30 118 #define EXT_SENS_DATA_13 0x56
onehorse 0:2e5e65a6fb30 119 #define EXT_SENS_DATA_14 0x57
onehorse 0:2e5e65a6fb30 120 #define EXT_SENS_DATA_15 0x58
onehorse 0:2e5e65a6fb30 121 #define EXT_SENS_DATA_16 0x59
onehorse 0:2e5e65a6fb30 122 #define EXT_SENS_DATA_17 0x5A
onehorse 0:2e5e65a6fb30 123 #define EXT_SENS_DATA_18 0x5B
onehorse 0:2e5e65a6fb30 124 #define EXT_SENS_DATA_19 0x5C
onehorse 0:2e5e65a6fb30 125 #define EXT_SENS_DATA_20 0x5D
onehorse 0:2e5e65a6fb30 126 #define EXT_SENS_DATA_21 0x5E
onehorse 0:2e5e65a6fb30 127 #define EXT_SENS_DATA_22 0x5F
onehorse 0:2e5e65a6fb30 128 #define EXT_SENS_DATA_23 0x60
onehorse 0:2e5e65a6fb30 129 #define MOT_DETECT_STATUS 0x61
onehorse 0:2e5e65a6fb30 130 #define I2C_SLV0_DO 0x63
onehorse 0:2e5e65a6fb30 131 #define I2C_SLV1_DO 0x64
onehorse 0:2e5e65a6fb30 132 #define I2C_SLV2_DO 0x65
onehorse 0:2e5e65a6fb30 133 #define I2C_SLV3_DO 0x66
onehorse 0:2e5e65a6fb30 134 #define I2C_MST_DELAY_CTRL 0x67
onehorse 0:2e5e65a6fb30 135 #define SIGNAL_PATH_RESET 0x68
onehorse 0:2e5e65a6fb30 136 #define MOT_DETECT_CTRL 0x69
onehorse 0:2e5e65a6fb30 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
onehorse 0:2e5e65a6fb30 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
onehorse 0:2e5e65a6fb30 139 #define PWR_MGMT_2 0x6C
onehorse 0:2e5e65a6fb30 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
onehorse 0:2e5e65a6fb30 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
onehorse 0:2e5e65a6fb30 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
onehorse 0:2e5e65a6fb30 143 #define DMP_REG_1 0x70
onehorse 0:2e5e65a6fb30 144 #define DMP_REG_2 0x71
onehorse 0:2e5e65a6fb30 145 #define FIFO_COUNTH 0x72
onehorse 0:2e5e65a6fb30 146 #define FIFO_COUNTL 0x73
onehorse 0:2e5e65a6fb30 147 #define FIFO_R_W 0x74
onehorse 0:2e5e65a6fb30 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
onehorse 0:2e5e65a6fb30 149 #define XA_OFFSET_H 0x77
onehorse 0:2e5e65a6fb30 150 #define XA_OFFSET_L 0x78
onehorse 0:2e5e65a6fb30 151 #define YA_OFFSET_H 0x7A
onehorse 0:2e5e65a6fb30 152 #define YA_OFFSET_L 0x7B
onehorse 0:2e5e65a6fb30 153 #define ZA_OFFSET_H 0x7D
onehorse 0:2e5e65a6fb30 154 #define ZA_OFFSET_L 0x7E
onehorse 0:2e5e65a6fb30 155
onehorse 0:2e5e65a6fb30 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
onehorse 0:2e5e65a6fb30 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
onehorse 0:2e5e65a6fb30 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
onehorse 0:2e5e65a6fb30 159 #define ADO 0
onehorse 0:2e5e65a6fb30 160 #if ADO
onehorse 0:2e5e65a6fb30 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
onehorse 0:2e5e65a6fb30 162 #else
onehorse 0:2e5e65a6fb30 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
onehorse 0:2e5e65a6fb30 164 #endif
onehorse 0:2e5e65a6fb30 165
onehorse 0:2e5e65a6fb30 166 // Set initial input parameters
onehorse 0:2e5e65a6fb30 167 enum Ascale {
onehorse 0:2e5e65a6fb30 168 AFS_2G = 0,
onehorse 0:2e5e65a6fb30 169 AFS_4G,
onehorse 0:2e5e65a6fb30 170 AFS_8G,
onehorse 0:2e5e65a6fb30 171 AFS_16G
onehorse 0:2e5e65a6fb30 172 };
onehorse 0:2e5e65a6fb30 173
onehorse 0:2e5e65a6fb30 174 enum Gscale {
onehorse 0:2e5e65a6fb30 175 GFS_250DPS = 0,
onehorse 0:2e5e65a6fb30 176 GFS_500DPS,
onehorse 0:2e5e65a6fb30 177 GFS_1000DPS,
onehorse 0:2e5e65a6fb30 178 GFS_2000DPS
onehorse 0:2e5e65a6fb30 179 };
onehorse 0:2e5e65a6fb30 180
onehorse 0:2e5e65a6fb30 181 enum Mscale {
onehorse 0:2e5e65a6fb30 182 MFS_14BITS = 0, // 0.6 mG per LSB
onehorse 0:2e5e65a6fb30 183 MFS_16BITS // 0.15 mG per LSB
onehorse 0:2e5e65a6fb30 184 };
onehorse 0:2e5e65a6fb30 185
onehorse 0:2e5e65a6fb30 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
onehorse 0:2e5e65a6fb30 187 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
onehorse 0:2e5e65a6fb30 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
onehorse 0:2e5e65a6fb30 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
onehorse 0:2e5e65a6fb30 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
onehorse 0:2e5e65a6fb30 191
onehorse 0:2e5e65a6fb30 192 //Set up I2C, (SDA,SCL)
onehorse 0:2e5e65a6fb30 193 I2C i2c(I2C_SDA, I2C_SCL);
onehorse 0:2e5e65a6fb30 194
onehorse 0:2e5e65a6fb30 195 DigitalOut myled(LED1);
onehorse 0:2e5e65a6fb30 196
onehorse 0:2e5e65a6fb30 197 // Pin definitions
onehorse 0:2e5e65a6fb30 198 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
onehorse 0:2e5e65a6fb30 199
onehorse 0:2e5e65a6fb30 200 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
onehorse 0:2e5e65a6fb30 201 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
onehorse 0:2e5e65a6fb30 202 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
onehorse 0:2e5e65a6fb30 203 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
onehorse 0:2e5e65a6fb30 204 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
onehorse 0:2e5e65a6fb30 205 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
onehorse 0:2e5e65a6fb30 206 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
onehorse 0:2e5e65a6fb30 207 float temperature;
onehorse 0:2e5e65a6fb30 208 float SelfTest[6];
onehorse 0:2e5e65a6fb30 209
onehorse 0:2e5e65a6fb30 210 int delt_t = 0; // used to control display output rate
onehorse 0:2e5e65a6fb30 211 int count = 0; // used to control display output rate
onehorse 0:2e5e65a6fb30 212
onehorse 0:2e5e65a6fb30 213 // parameters for 6 DoF sensor fusion calculations
onehorse 0:2e5e65a6fb30 214 float PI = 3.14159265358979323846f;
onehorse 0:2e5e65a6fb30 215 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
onehorse 0:2e5e65a6fb30 216 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
onehorse 0:2e5e65a6fb30 217 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
onehorse 0:2e5e65a6fb30 218 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
onehorse 0:2e5e65a6fb30 219 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
onehorse 0:2e5e65a6fb30 220 #define Ki 0.0f
onehorse 0:2e5e65a6fb30 221
onehorse 0:2e5e65a6fb30 222 float pitch, yaw, roll;
onehorse 0:2e5e65a6fb30 223 float deltat = 0.0f; // integration interval for both filter schemes
onehorse 0:2e5e65a6fb30 224 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
onehorse 0:2e5e65a6fb30 225 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
onehorse 0:2e5e65a6fb30 226 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
onehorse 0:2e5e65a6fb30 227
onehorse 0:2e5e65a6fb30 228 class MPU9250 {
onehorse 0:2e5e65a6fb30 229
onehorse 0:2e5e65a6fb30 230 protected:
onehorse 0:2e5e65a6fb30 231
onehorse 0:2e5e65a6fb30 232 public:
onehorse 0:2e5e65a6fb30 233 //===================================================================================================================
onehorse 0:2e5e65a6fb30 234 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
onehorse 0:2e5e65a6fb30 235 //===================================================================================================================
onehorse 0:2e5e65a6fb30 236
onehorse 0:2e5e65a6fb30 237 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
onehorse 0:2e5e65a6fb30 238 {
onehorse 0:2e5e65a6fb30 239 char data_write[2];
onehorse 0:2e5e65a6fb30 240 data_write[0] = subAddress;
onehorse 0:2e5e65a6fb30 241 data_write[1] = data;
onehorse 0:2e5e65a6fb30 242 i2c.write(address, data_write, 2, 0);
onehorse 0:2e5e65a6fb30 243 }
onehorse 0:2e5e65a6fb30 244
onehorse 0:2e5e65a6fb30 245 char readByte(uint8_t address, uint8_t subAddress)
onehorse 0:2e5e65a6fb30 246 {
onehorse 0:2e5e65a6fb30 247 char data[1]; // `data` will store the register data
onehorse 0:2e5e65a6fb30 248 char data_write[1];
onehorse 0:2e5e65a6fb30 249 data_write[0] = subAddress;
onehorse 0:2e5e65a6fb30 250 i2c.write(address, data_write, 1, 1); // no stop
onehorse 0:2e5e65a6fb30 251 i2c.read(address, data, 1, 0);
onehorse 0:2e5e65a6fb30 252 return data[0];
onehorse 0:2e5e65a6fb30 253 }
onehorse 0:2e5e65a6fb30 254
onehorse 0:2e5e65a6fb30 255 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
onehorse 0:2e5e65a6fb30 256 {
onehorse 0:2e5e65a6fb30 257 char data[14];
onehorse 0:2e5e65a6fb30 258 char data_write[1];
onehorse 0:2e5e65a6fb30 259 data_write[0] = subAddress;
onehorse 0:2e5e65a6fb30 260 i2c.write(address, data_write, 1, 1); // no stop
onehorse 0:2e5e65a6fb30 261 i2c.read(address, data, count, 0);
onehorse 0:2e5e65a6fb30 262 for(int ii = 0; ii < count; ii++) {
onehorse 0:2e5e65a6fb30 263 dest[ii] = data[ii];
onehorse 0:2e5e65a6fb30 264 }
onehorse 0:2e5e65a6fb30 265 }
onehorse 0:2e5e65a6fb30 266
onehorse 0:2e5e65a6fb30 267
onehorse 0:2e5e65a6fb30 268 void getMres() {
onehorse 0:2e5e65a6fb30 269 switch (Mscale)
onehorse 0:2e5e65a6fb30 270 {
onehorse 0:2e5e65a6fb30 271 // Possible magnetometer scales (and their register bit settings) are:
onehorse 0:2e5e65a6fb30 272 // 14 bit resolution (0) and 16 bit resolution (1)
onehorse 0:2e5e65a6fb30 273 case MFS_14BITS:
onehorse 0:2e5e65a6fb30 274 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
onehorse 0:2e5e65a6fb30 275 break;
onehorse 0:2e5e65a6fb30 276 case MFS_16BITS:
onehorse 0:2e5e65a6fb30 277 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
onehorse 0:2e5e65a6fb30 278 break;
onehorse 0:2e5e65a6fb30 279 }
onehorse 0:2e5e65a6fb30 280 }
onehorse 0:2e5e65a6fb30 281
onehorse 0:2e5e65a6fb30 282
onehorse 0:2e5e65a6fb30 283 void getGres() {
onehorse 0:2e5e65a6fb30 284 switch (Gscale)
onehorse 0:2e5e65a6fb30 285 {
onehorse 0:2e5e65a6fb30 286 // Possible gyro scales (and their register bit settings) are:
onehorse 0:2e5e65a6fb30 287 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
onehorse 0:2e5e65a6fb30 288 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
onehorse 0:2e5e65a6fb30 289 case GFS_250DPS:
onehorse 0:2e5e65a6fb30 290 gRes = 250.0/32768.0;
onehorse 0:2e5e65a6fb30 291 break;
onehorse 0:2e5e65a6fb30 292 case GFS_500DPS:
onehorse 0:2e5e65a6fb30 293 gRes = 500.0/32768.0;
onehorse 0:2e5e65a6fb30 294 break;
onehorse 0:2e5e65a6fb30 295 case GFS_1000DPS:
onehorse 0:2e5e65a6fb30 296 gRes = 1000.0/32768.0;
onehorse 0:2e5e65a6fb30 297 break;
onehorse 0:2e5e65a6fb30 298 case GFS_2000DPS:
onehorse 0:2e5e65a6fb30 299 gRes = 2000.0/32768.0;
onehorse 0:2e5e65a6fb30 300 break;
onehorse 0:2e5e65a6fb30 301 }
onehorse 0:2e5e65a6fb30 302 }
onehorse 0:2e5e65a6fb30 303
onehorse 0:2e5e65a6fb30 304
onehorse 0:2e5e65a6fb30 305 void getAres() {
onehorse 0:2e5e65a6fb30 306 switch (Ascale)
onehorse 0:2e5e65a6fb30 307 {
onehorse 0:2e5e65a6fb30 308 // Possible accelerometer scales (and their register bit settings) are:
onehorse 0:2e5e65a6fb30 309 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
onehorse 0:2e5e65a6fb30 310 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
onehorse 0:2e5e65a6fb30 311 case AFS_2G:
onehorse 0:2e5e65a6fb30 312 aRes = 2.0/32768.0;
onehorse 0:2e5e65a6fb30 313 break;
onehorse 0:2e5e65a6fb30 314 case AFS_4G:
onehorse 0:2e5e65a6fb30 315 aRes = 4.0/32768.0;
onehorse 0:2e5e65a6fb30 316 break;
onehorse 0:2e5e65a6fb30 317 case AFS_8G:
onehorse 0:2e5e65a6fb30 318 aRes = 8.0/32768.0;
onehorse 0:2e5e65a6fb30 319 break;
onehorse 0:2e5e65a6fb30 320 case AFS_16G:
onehorse 0:2e5e65a6fb30 321 aRes = 16.0/32768.0;
onehorse 0:2e5e65a6fb30 322 break;
onehorse 0:2e5e65a6fb30 323 }
onehorse 0:2e5e65a6fb30 324 }
onehorse 0:2e5e65a6fb30 325
onehorse 0:2e5e65a6fb30 326
onehorse 0:2e5e65a6fb30 327 void readAccelData(int16_t * destination)
onehorse 0:2e5e65a6fb30 328 {
onehorse 0:2e5e65a6fb30 329 uint8_t rawData[6]; // x/y/z accel register data stored here
onehorse 0:2e5e65a6fb30 330 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
onehorse 0:2e5e65a6fb30 331 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
onehorse 0:2e5e65a6fb30 332 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
onehorse 0:2e5e65a6fb30 333 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
onehorse 0:2e5e65a6fb30 334 }
onehorse 0:2e5e65a6fb30 335
onehorse 0:2e5e65a6fb30 336 void readGyroData(int16_t * destination)
onehorse 0:2e5e65a6fb30 337 {
onehorse 0:2e5e65a6fb30 338 uint8_t rawData[6]; // x/y/z gyro register data stored here
onehorse 0:2e5e65a6fb30 339 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
onehorse 0:2e5e65a6fb30 340 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
onehorse 0:2e5e65a6fb30 341 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
onehorse 0:2e5e65a6fb30 342 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
onehorse 0:2e5e65a6fb30 343 }
onehorse 0:2e5e65a6fb30 344
onehorse 0:2e5e65a6fb30 345 void readMagData(int16_t * destination)
onehorse 0:2e5e65a6fb30 346 {
onehorse 0:2e5e65a6fb30 347 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
onehorse 0:2e5e65a6fb30 348 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
onehorse 0:2e5e65a6fb30 349 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
onehorse 0:2e5e65a6fb30 350 uint8_t c = rawData[6]; // End data read by reading ST2 register
onehorse 0:2e5e65a6fb30 351 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
onehorse 0:2e5e65a6fb30 352 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
onehorse 0:2e5e65a6fb30 353 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
onehorse 0:2e5e65a6fb30 354 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
onehorse 0:2e5e65a6fb30 355 }
onehorse 0:2e5e65a6fb30 356 }
onehorse 0:2e5e65a6fb30 357 }
onehorse 0:2e5e65a6fb30 358
onehorse 0:2e5e65a6fb30 359 int16_t readTempData()
onehorse 0:2e5e65a6fb30 360 {
onehorse 0:2e5e65a6fb30 361 uint8_t rawData[2]; // x/y/z gyro register data stored here
onehorse 0:2e5e65a6fb30 362 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
onehorse 0:2e5e65a6fb30 363 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
onehorse 0:2e5e65a6fb30 364 }
onehorse 0:2e5e65a6fb30 365
onehorse 0:2e5e65a6fb30 366
onehorse 0:2e5e65a6fb30 367 void resetMPU9250() {
onehorse 0:2e5e65a6fb30 368 // reset device
onehorse 0:2e5e65a6fb30 369 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
onehorse 0:2e5e65a6fb30 370 wait(0.1);
onehorse 0:2e5e65a6fb30 371 }
onehorse 0:2e5e65a6fb30 372
onehorse 0:2e5e65a6fb30 373 void initAK8963(float * destination)
onehorse 0:2e5e65a6fb30 374 {
onehorse 0:2e5e65a6fb30 375 // First extract the factory calibration for each magnetometer axis
onehorse 0:2e5e65a6fb30 376 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
onehorse 0:2e5e65a6fb30 377 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
onehorse 0:2e5e65a6fb30 378 wait(0.01);
onehorse 0:2e5e65a6fb30 379 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
onehorse 0:2e5e65a6fb30 380 wait(0.01);
onehorse 0:2e5e65a6fb30 381 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
onehorse 0:2e5e65a6fb30 382 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
onehorse 0:2e5e65a6fb30 383 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
onehorse 0:2e5e65a6fb30 384 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
onehorse 0:2e5e65a6fb30 385 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
onehorse 0:2e5e65a6fb30 386 wait(0.01);
onehorse 0:2e5e65a6fb30 387 // Configure the magnetometer for continuous read and highest resolution
onehorse 0:2e5e65a6fb30 388 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
onehorse 0:2e5e65a6fb30 389 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
onehorse 0:2e5e65a6fb30 390 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
onehorse 0:2e5e65a6fb30 391 wait(0.01);
onehorse 0:2e5e65a6fb30 392 }
onehorse 0:2e5e65a6fb30 393
onehorse 0:2e5e65a6fb30 394
onehorse 0:2e5e65a6fb30 395 void initMPU9250()
onehorse 0:2e5e65a6fb30 396 {
onehorse 0:2e5e65a6fb30 397 // Initialize MPU9250 device
onehorse 0:2e5e65a6fb30 398 // wake up device
onehorse 0:2e5e65a6fb30 399 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
onehorse 0:2e5e65a6fb30 400 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
onehorse 0:2e5e65a6fb30 401
onehorse 0:2e5e65a6fb30 402 // get stable time source
onehorse 0:2e5e65a6fb30 403 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
onehorse 0:2e5e65a6fb30 404
onehorse 0:2e5e65a6fb30 405 // Configure Gyro and Accelerometer
onehorse 0:2e5e65a6fb30 406 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
onehorse 0:2e5e65a6fb30 407 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
onehorse 0:2e5e65a6fb30 408 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
onehorse 0:2e5e65a6fb30 409 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
onehorse 0:2e5e65a6fb30 410
onehorse 0:2e5e65a6fb30 411 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
onehorse 0:2e5e65a6fb30 412 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
onehorse 0:2e5e65a6fb30 413
onehorse 0:2e5e65a6fb30 414 // Set gyroscope full scale range
onehorse 0:2e5e65a6fb30 415 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
onehorse 0:2e5e65a6fb30 416 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
onehorse 0:2e5e65a6fb30 417 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
onehorse 0:2e5e65a6fb30 418 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
onehorse 0:2e5e65a6fb30 419 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
onehorse 0:2e5e65a6fb30 420
onehorse 0:2e5e65a6fb30 421 // Set accelerometer configuration
onehorse 0:2e5e65a6fb30 422 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
onehorse 0:2e5e65a6fb30 423 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
onehorse 0:2e5e65a6fb30 424 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
onehorse 0:2e5e65a6fb30 425 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
onehorse 0:2e5e65a6fb30 426
onehorse 0:2e5e65a6fb30 427 // Set accelerometer sample rate configuration
onehorse 0:2e5e65a6fb30 428 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
onehorse 0:2e5e65a6fb30 429 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
onehorse 0:2e5e65a6fb30 430 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
onehorse 0:2e5e65a6fb30 431 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
onehorse 0:2e5e65a6fb30 432 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
onehorse 0:2e5e65a6fb30 433
onehorse 0:2e5e65a6fb30 434 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
onehorse 0:2e5e65a6fb30 435 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
onehorse 0:2e5e65a6fb30 436
onehorse 0:2e5e65a6fb30 437 // Configure Interrupts and Bypass Enable
onehorse 0:2e5e65a6fb30 438 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
onehorse 0:2e5e65a6fb30 439 // can join the I2C bus and all can be controlled by the Arduino as master
onehorse 0:2e5e65a6fb30 440 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
onehorse 0:2e5e65a6fb30 441 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
onehorse 0:2e5e65a6fb30 442 }
onehorse 0:2e5e65a6fb30 443
onehorse 0:2e5e65a6fb30 444 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
onehorse 0:2e5e65a6fb30 445 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
onehorse 0:2e5e65a6fb30 446 void calibrateMPU9250(float * dest1, float * dest2)
onehorse 0:2e5e65a6fb30 447 {
onehorse 0:2e5e65a6fb30 448 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
onehorse 0:2e5e65a6fb30 449 uint16_t ii, packet_count, fifo_count;
onehorse 0:2e5e65a6fb30 450 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
onehorse 0:2e5e65a6fb30 451
onehorse 0:2e5e65a6fb30 452 // reset device, reset all registers, clear gyro and accelerometer bias registers
onehorse 0:2e5e65a6fb30 453 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
onehorse 0:2e5e65a6fb30 454 wait(0.1);
onehorse 0:2e5e65a6fb30 455
onehorse 0:2e5e65a6fb30 456 // get stable time source
onehorse 0:2e5e65a6fb30 457 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
onehorse 0:2e5e65a6fb30 458 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
onehorse 0:2e5e65a6fb30 459 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
onehorse 0:2e5e65a6fb30 460 wait(0.2);
onehorse 0:2e5e65a6fb30 461
onehorse 0:2e5e65a6fb30 462 // Configure device for bias calculation
onehorse 0:2e5e65a6fb30 463 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
onehorse 0:2e5e65a6fb30 464 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
onehorse 0:2e5e65a6fb30 465 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
onehorse 0:2e5e65a6fb30 466 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
onehorse 0:2e5e65a6fb30 467 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
onehorse 0:2e5e65a6fb30 468 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
onehorse 0:2e5e65a6fb30 469 wait(0.015);
onehorse 0:2e5e65a6fb30 470
onehorse 0:2e5e65a6fb30 471 // Configure MPU9250 gyro and accelerometer for bias calculation
onehorse 0:2e5e65a6fb30 472 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
onehorse 0:2e5e65a6fb30 473 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
onehorse 0:2e5e65a6fb30 474 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
onehorse 0:2e5e65a6fb30 475 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
onehorse 0:2e5e65a6fb30 476
onehorse 0:2e5e65a6fb30 477 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
onehorse 0:2e5e65a6fb30 478 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
onehorse 0:2e5e65a6fb30 479
onehorse 0:2e5e65a6fb30 480 // Configure FIFO to capture accelerometer and gyro data for bias calculation
onehorse 0:2e5e65a6fb30 481 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
onehorse 0:2e5e65a6fb30 482 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
onehorse 0:2e5e65a6fb30 483 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
onehorse 0:2e5e65a6fb30 484
onehorse 0:2e5e65a6fb30 485 // At end of sample accumulation, turn off FIFO sensor read
onehorse 0:2e5e65a6fb30 486 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
onehorse 0:2e5e65a6fb30 487 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
onehorse 0:2e5e65a6fb30 488 fifo_count = ((uint16_t)data[0] << 8) | data[1];
onehorse 0:2e5e65a6fb30 489 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
onehorse 0:2e5e65a6fb30 490
onehorse 0:2e5e65a6fb30 491 for (ii = 0; ii < packet_count; ii++) {
onehorse 0:2e5e65a6fb30 492 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
onehorse 0:2e5e65a6fb30 493 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
onehorse 0:2e5e65a6fb30 494 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
onehorse 0:2e5e65a6fb30 495 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
onehorse 0:2e5e65a6fb30 496 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
onehorse 0:2e5e65a6fb30 497 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
onehorse 0:2e5e65a6fb30 498 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
onehorse 0:2e5e65a6fb30 499 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
onehorse 0:2e5e65a6fb30 500
onehorse 0:2e5e65a6fb30 501 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
onehorse 0:2e5e65a6fb30 502 accel_bias[1] += (int32_t) accel_temp[1];
onehorse 0:2e5e65a6fb30 503 accel_bias[2] += (int32_t) accel_temp[2];
onehorse 0:2e5e65a6fb30 504 gyro_bias[0] += (int32_t) gyro_temp[0];
onehorse 0:2e5e65a6fb30 505 gyro_bias[1] += (int32_t) gyro_temp[1];
onehorse 0:2e5e65a6fb30 506 gyro_bias[2] += (int32_t) gyro_temp[2];
onehorse 0:2e5e65a6fb30 507
onehorse 0:2e5e65a6fb30 508 }
onehorse 0:2e5e65a6fb30 509 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
onehorse 0:2e5e65a6fb30 510 accel_bias[1] /= (int32_t) packet_count;
onehorse 0:2e5e65a6fb30 511 accel_bias[2] /= (int32_t) packet_count;
onehorse 0:2e5e65a6fb30 512 gyro_bias[0] /= (int32_t) packet_count;
onehorse 0:2e5e65a6fb30 513 gyro_bias[1] /= (int32_t) packet_count;
onehorse 0:2e5e65a6fb30 514 gyro_bias[2] /= (int32_t) packet_count;
onehorse 0:2e5e65a6fb30 515
onehorse 0:2e5e65a6fb30 516 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
onehorse 0:2e5e65a6fb30 517 else {accel_bias[2] += (int32_t) accelsensitivity;}
onehorse 0:2e5e65a6fb30 518
onehorse 0:2e5e65a6fb30 519 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
onehorse 0:2e5e65a6fb30 520 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
onehorse 0:2e5e65a6fb30 521 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
onehorse 0:2e5e65a6fb30 522 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
onehorse 0:2e5e65a6fb30 523 data[3] = (-gyro_bias[1]/4) & 0xFF;
onehorse 0:2e5e65a6fb30 524 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
onehorse 0:2e5e65a6fb30 525 data[5] = (-gyro_bias[2]/4) & 0xFF;
onehorse 0:2e5e65a6fb30 526
onehorse 0:2e5e65a6fb30 527 /// Push gyro biases to hardware registers
onehorse 0:2e5e65a6fb30 528 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
onehorse 0:2e5e65a6fb30 529 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
onehorse 0:2e5e65a6fb30 530 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
onehorse 0:2e5e65a6fb30 531 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
onehorse 0:2e5e65a6fb30 532 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
onehorse 0:2e5e65a6fb30 533 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
onehorse 0:2e5e65a6fb30 534 */
onehorse 0:2e5e65a6fb30 535 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
onehorse 0:2e5e65a6fb30 536 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
onehorse 0:2e5e65a6fb30 537 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
onehorse 0:2e5e65a6fb30 538
onehorse 0:2e5e65a6fb30 539 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
onehorse 0:2e5e65a6fb30 540 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
onehorse 0:2e5e65a6fb30 541 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
onehorse 0:2e5e65a6fb30 542 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
onehorse 0:2e5e65a6fb30 543 // the accelerometer biases calculated above must be divided by 8.
onehorse 0:2e5e65a6fb30 544
onehorse 0:2e5e65a6fb30 545 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
onehorse 0:2e5e65a6fb30 546 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
onehorse 0:2e5e65a6fb30 547 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
onehorse 0:2e5e65a6fb30 548 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
onehorse 0:2e5e65a6fb30 549 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
onehorse 0:2e5e65a6fb30 550 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
onehorse 0:2e5e65a6fb30 551 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
onehorse 0:2e5e65a6fb30 552
onehorse 0:2e5e65a6fb30 553 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
onehorse 0:2e5e65a6fb30 554 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
onehorse 0:2e5e65a6fb30 555
onehorse 0:2e5e65a6fb30 556 for(ii = 0; ii < 3; ii++) {
onehorse 0:2e5e65a6fb30 557 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
onehorse 0:2e5e65a6fb30 558 }
onehorse 0:2e5e65a6fb30 559
onehorse 0:2e5e65a6fb30 560 // Construct total accelerometer bias, including calculated average accelerometer bias from above
onehorse 0:2e5e65a6fb30 561 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
onehorse 0:2e5e65a6fb30 562 accel_bias_reg[1] -= (accel_bias[1]/8);
onehorse 0:2e5e65a6fb30 563 accel_bias_reg[2] -= (accel_bias[2]/8);
onehorse 0:2e5e65a6fb30 564
onehorse 0:2e5e65a6fb30 565 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
onehorse 0:2e5e65a6fb30 566 data[1] = (accel_bias_reg[0]) & 0xFF;
onehorse 0:2e5e65a6fb30 567 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 0:2e5e65a6fb30 568 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
onehorse 0:2e5e65a6fb30 569 data[3] = (accel_bias_reg[1]) & 0xFF;
onehorse 0:2e5e65a6fb30 570 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 0:2e5e65a6fb30 571 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
onehorse 0:2e5e65a6fb30 572 data[5] = (accel_bias_reg[2]) & 0xFF;
onehorse 0:2e5e65a6fb30 573 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 0:2e5e65a6fb30 574
onehorse 0:2e5e65a6fb30 575 // Apparently this is not working for the acceleration biases in the MPU-9250
onehorse 0:2e5e65a6fb30 576 // Are we handling the temperature correction bit properly?
onehorse 0:2e5e65a6fb30 577 // Push accelerometer biases to hardware registers
onehorse 0:2e5e65a6fb30 578 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
onehorse 0:2e5e65a6fb30 579 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
onehorse 0:2e5e65a6fb30 580 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
onehorse 0:2e5e65a6fb30 581 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
onehorse 0:2e5e65a6fb30 582 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
onehorse 0:2e5e65a6fb30 583 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
onehorse 0:2e5e65a6fb30 584 */
onehorse 0:2e5e65a6fb30 585 // Output scaled accelerometer biases for manual subtraction in the main program
onehorse 0:2e5e65a6fb30 586 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
onehorse 0:2e5e65a6fb30 587 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
onehorse 0:2e5e65a6fb30 588 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
onehorse 0:2e5e65a6fb30 589 }
onehorse 0:2e5e65a6fb30 590
onehorse 0:2e5e65a6fb30 591
onehorse 0:2e5e65a6fb30 592 // Accelerometer and gyroscope self test; check calibration wrt factory settings
onehorse 0:2e5e65a6fb30 593 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
onehorse 0:2e5e65a6fb30 594 {
onehorse 0:2e5e65a6fb30 595 uint8_t rawData[4] = {0, 0, 0, 0};
onehorse 0:2e5e65a6fb30 596 uint8_t selfTest[6];
onehorse 0:2e5e65a6fb30 597 float factoryTrim[6];
onehorse 0:2e5e65a6fb30 598
onehorse 0:2e5e65a6fb30 599 // Configure the accelerometer for self-test
onehorse 0:2e5e65a6fb30 600 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
onehorse 0:2e5e65a6fb30 601 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
onehorse 0:2e5e65a6fb30 602 wait(0.25); // Delay a while to let the device execute the self-test
onehorse 0:2e5e65a6fb30 603 rawData[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis self-test results
onehorse 0:2e5e65a6fb30 604 rawData[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis self-test results
onehorse 0:2e5e65a6fb30 605 rawData[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis self-test results
onehorse 0:2e5e65a6fb30 606 rawData[3] = readByte(MPU9250_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
onehorse 0:2e5e65a6fb30 607 // Extract the acceleration test results first
onehorse 0:2e5e65a6fb30 608 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
onehorse 0:2e5e65a6fb30 609 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
onehorse 0:2e5e65a6fb30 610 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
onehorse 0:2e5e65a6fb30 611 // Extract the gyration test results first
onehorse 0:2e5e65a6fb30 612 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
onehorse 0:2e5e65a6fb30 613 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
onehorse 0:2e5e65a6fb30 614 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
onehorse 0:2e5e65a6fb30 615 // Process results to allow final comparison with factory set values
onehorse 0:2e5e65a6fb30 616 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
onehorse 0:2e5e65a6fb30 617 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
onehorse 0:2e5e65a6fb30 618 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
onehorse 0:2e5e65a6fb30 619 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
onehorse 0:2e5e65a6fb30 620 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
onehorse 0:2e5e65a6fb30 621 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
onehorse 0:2e5e65a6fb30 622
onehorse 0:2e5e65a6fb30 623 // Output self-test results and factory trim calculation if desired
onehorse 0:2e5e65a6fb30 624 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
onehorse 0:2e5e65a6fb30 625 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
onehorse 0:2e5e65a6fb30 626 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
onehorse 0:2e5e65a6fb30 627 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
onehorse 0:2e5e65a6fb30 628
onehorse 0:2e5e65a6fb30 629 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
onehorse 0:2e5e65a6fb30 630 // To get to percent, must multiply by 100 and subtract result from 100
onehorse 0:2e5e65a6fb30 631 for (int i = 0; i < 6; i++) {
onehorse 0:2e5e65a6fb30 632 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
onehorse 0:2e5e65a6fb30 633 }
onehorse 0:2e5e65a6fb30 634
onehorse 0:2e5e65a6fb30 635 }
onehorse 0:2e5e65a6fb30 636
onehorse 0:2e5e65a6fb30 637
onehorse 0:2e5e65a6fb30 638
onehorse 0:2e5e65a6fb30 639 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
onehorse 0:2e5e65a6fb30 640 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
onehorse 0:2e5e65a6fb30 641 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
onehorse 0:2e5e65a6fb30 642 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
onehorse 0:2e5e65a6fb30 643 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
onehorse 0:2e5e65a6fb30 644 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
onehorse 0:2e5e65a6fb30 645 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
onehorse 0:2e5e65a6fb30 646 {
onehorse 0:2e5e65a6fb30 647 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
onehorse 0:2e5e65a6fb30 648 float norm;
onehorse 0:2e5e65a6fb30 649 float hx, hy, _2bx, _2bz;
onehorse 0:2e5e65a6fb30 650 float s1, s2, s3, s4;
onehorse 0:2e5e65a6fb30 651 float qDot1, qDot2, qDot3, qDot4;
onehorse 0:2e5e65a6fb30 652
onehorse 0:2e5e65a6fb30 653 // Auxiliary variables to avoid repeated arithmetic
onehorse 0:2e5e65a6fb30 654 float _2q1mx;
onehorse 0:2e5e65a6fb30 655 float _2q1my;
onehorse 0:2e5e65a6fb30 656 float _2q1mz;
onehorse 0:2e5e65a6fb30 657 float _2q2mx;
onehorse 0:2e5e65a6fb30 658 float _4bx;
onehorse 0:2e5e65a6fb30 659 float _4bz;
onehorse 0:2e5e65a6fb30 660 float _2q1 = 2.0f * q1;
onehorse 0:2e5e65a6fb30 661 float _2q2 = 2.0f * q2;
onehorse 0:2e5e65a6fb30 662 float _2q3 = 2.0f * q3;
onehorse 0:2e5e65a6fb30 663 float _2q4 = 2.0f * q4;
onehorse 0:2e5e65a6fb30 664 float _2q1q3 = 2.0f * q1 * q3;
onehorse 0:2e5e65a6fb30 665 float _2q3q4 = 2.0f * q3 * q4;
onehorse 0:2e5e65a6fb30 666 float q1q1 = q1 * q1;
onehorse 0:2e5e65a6fb30 667 float q1q2 = q1 * q2;
onehorse 0:2e5e65a6fb30 668 float q1q3 = q1 * q3;
onehorse 0:2e5e65a6fb30 669 float q1q4 = q1 * q4;
onehorse 0:2e5e65a6fb30 670 float q2q2 = q2 * q2;
onehorse 0:2e5e65a6fb30 671 float q2q3 = q2 * q3;
onehorse 0:2e5e65a6fb30 672 float q2q4 = q2 * q4;
onehorse 0:2e5e65a6fb30 673 float q3q3 = q3 * q3;
onehorse 0:2e5e65a6fb30 674 float q3q4 = q3 * q4;
onehorse 0:2e5e65a6fb30 675 float q4q4 = q4 * q4;
onehorse 0:2e5e65a6fb30 676
onehorse 0:2e5e65a6fb30 677 // Normalise accelerometer measurement
onehorse 0:2e5e65a6fb30 678 norm = sqrt(ax * ax + ay * ay + az * az);
onehorse 0:2e5e65a6fb30 679 if (norm == 0.0f) return; // handle NaN
onehorse 0:2e5e65a6fb30 680 norm = 1.0f/norm;
onehorse 0:2e5e65a6fb30 681 ax *= norm;
onehorse 0:2e5e65a6fb30 682 ay *= norm;
onehorse 0:2e5e65a6fb30 683 az *= norm;
onehorse 0:2e5e65a6fb30 684
onehorse 0:2e5e65a6fb30 685 // Normalise magnetometer measurement
onehorse 0:2e5e65a6fb30 686 norm = sqrt(mx * mx + my * my + mz * mz);
onehorse 0:2e5e65a6fb30 687 if (norm == 0.0f) return; // handle NaN
onehorse 0:2e5e65a6fb30 688 norm = 1.0f/norm;
onehorse 0:2e5e65a6fb30 689 mx *= norm;
onehorse 0:2e5e65a6fb30 690 my *= norm;
onehorse 0:2e5e65a6fb30 691 mz *= norm;
onehorse 0:2e5e65a6fb30 692
onehorse 0:2e5e65a6fb30 693 // Reference direction of Earth's magnetic field
onehorse 0:2e5e65a6fb30 694 _2q1mx = 2.0f * q1 * mx;
onehorse 0:2e5e65a6fb30 695 _2q1my = 2.0f * q1 * my;
onehorse 0:2e5e65a6fb30 696 _2q1mz = 2.0f * q1 * mz;
onehorse 0:2e5e65a6fb30 697 _2q2mx = 2.0f * q2 * mx;
onehorse 0:2e5e65a6fb30 698 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
onehorse 0:2e5e65a6fb30 699 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
onehorse 0:2e5e65a6fb30 700 _2bx = sqrt(hx * hx + hy * hy);
onehorse 0:2e5e65a6fb30 701 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
onehorse 0:2e5e65a6fb30 702 _4bx = 2.0f * _2bx;
onehorse 0:2e5e65a6fb30 703 _4bz = 2.0f * _2bz;
onehorse 0:2e5e65a6fb30 704
onehorse 0:2e5e65a6fb30 705 // Gradient decent algorithm corrective step
onehorse 0:2e5e65a6fb30 706 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
onehorse 0:2e5e65a6fb30 707 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
onehorse 0:2e5e65a6fb30 708 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
onehorse 0:2e5e65a6fb30 709 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
onehorse 0:2e5e65a6fb30 710 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
onehorse 0:2e5e65a6fb30 711 norm = 1.0f/norm;
onehorse 0:2e5e65a6fb30 712 s1 *= norm;
onehorse 0:2e5e65a6fb30 713 s2 *= norm;
onehorse 0:2e5e65a6fb30 714 s3 *= norm;
onehorse 0:2e5e65a6fb30 715 s4 *= norm;
onehorse 0:2e5e65a6fb30 716
onehorse 0:2e5e65a6fb30 717 // Compute rate of change of quaternion
onehorse 0:2e5e65a6fb30 718 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
onehorse 0:2e5e65a6fb30 719 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
onehorse 0:2e5e65a6fb30 720 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
onehorse 0:2e5e65a6fb30 721 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
onehorse 0:2e5e65a6fb30 722
onehorse 0:2e5e65a6fb30 723 // Integrate to yield quaternion
onehorse 0:2e5e65a6fb30 724 q1 += qDot1 * deltat;
onehorse 0:2e5e65a6fb30 725 q2 += qDot2 * deltat;
onehorse 0:2e5e65a6fb30 726 q3 += qDot3 * deltat;
onehorse 0:2e5e65a6fb30 727 q4 += qDot4 * deltat;
onehorse 0:2e5e65a6fb30 728 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
onehorse 0:2e5e65a6fb30 729 norm = 1.0f/norm;
onehorse 0:2e5e65a6fb30 730 q[0] = q1 * norm;
onehorse 0:2e5e65a6fb30 731 q[1] = q2 * norm;
onehorse 0:2e5e65a6fb30 732 q[2] = q3 * norm;
onehorse 0:2e5e65a6fb30 733 q[3] = q4 * norm;
onehorse 0:2e5e65a6fb30 734
onehorse 0:2e5e65a6fb30 735 }
onehorse 0:2e5e65a6fb30 736
onehorse 0:2e5e65a6fb30 737
onehorse 0:2e5e65a6fb30 738
onehorse 0:2e5e65a6fb30 739 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
onehorse 0:2e5e65a6fb30 740 // measured ones.
onehorse 0:2e5e65a6fb30 741 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
onehorse 0:2e5e65a6fb30 742 {
onehorse 0:2e5e65a6fb30 743 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
onehorse 0:2e5e65a6fb30 744 float norm;
onehorse 0:2e5e65a6fb30 745 float hx, hy, bx, bz;
onehorse 0:2e5e65a6fb30 746 float vx, vy, vz, wx, wy, wz;
onehorse 0:2e5e65a6fb30 747 float ex, ey, ez;
onehorse 0:2e5e65a6fb30 748 float pa, pb, pc;
onehorse 0:2e5e65a6fb30 749
onehorse 0:2e5e65a6fb30 750 // Auxiliary variables to avoid repeated arithmetic
onehorse 0:2e5e65a6fb30 751 float q1q1 = q1 * q1;
onehorse 0:2e5e65a6fb30 752 float q1q2 = q1 * q2;
onehorse 0:2e5e65a6fb30 753 float q1q3 = q1 * q3;
onehorse 0:2e5e65a6fb30 754 float q1q4 = q1 * q4;
onehorse 0:2e5e65a6fb30 755 float q2q2 = q2 * q2;
onehorse 0:2e5e65a6fb30 756 float q2q3 = q2 * q3;
onehorse 0:2e5e65a6fb30 757 float q2q4 = q2 * q4;
onehorse 0:2e5e65a6fb30 758 float q3q3 = q3 * q3;
onehorse 0:2e5e65a6fb30 759 float q3q4 = q3 * q4;
onehorse 0:2e5e65a6fb30 760 float q4q4 = q4 * q4;
onehorse 0:2e5e65a6fb30 761
onehorse 0:2e5e65a6fb30 762 // Normalise accelerometer measurement
onehorse 0:2e5e65a6fb30 763 norm = sqrt(ax * ax + ay * ay + az * az);
onehorse 0:2e5e65a6fb30 764 if (norm == 0.0f) return; // handle NaN
onehorse 0:2e5e65a6fb30 765 norm = 1.0f / norm; // use reciprocal for division
onehorse 0:2e5e65a6fb30 766 ax *= norm;
onehorse 0:2e5e65a6fb30 767 ay *= norm;
onehorse 0:2e5e65a6fb30 768 az *= norm;
onehorse 0:2e5e65a6fb30 769
onehorse 0:2e5e65a6fb30 770 // Normalise magnetometer measurement
onehorse 0:2e5e65a6fb30 771 norm = sqrt(mx * mx + my * my + mz * mz);
onehorse 0:2e5e65a6fb30 772 if (norm == 0.0f) return; // handle NaN
onehorse 0:2e5e65a6fb30 773 norm = 1.0f / norm; // use reciprocal for division
onehorse 0:2e5e65a6fb30 774 mx *= norm;
onehorse 0:2e5e65a6fb30 775 my *= norm;
onehorse 0:2e5e65a6fb30 776 mz *= norm;
onehorse 0:2e5e65a6fb30 777
onehorse 0:2e5e65a6fb30 778 // Reference direction of Earth's magnetic field
onehorse 0:2e5e65a6fb30 779 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
onehorse 0:2e5e65a6fb30 780 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
onehorse 0:2e5e65a6fb30 781 bx = sqrt((hx * hx) + (hy * hy));
onehorse 0:2e5e65a6fb30 782 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
onehorse 0:2e5e65a6fb30 783
onehorse 0:2e5e65a6fb30 784 // Estimated direction of gravity and magnetic field
onehorse 0:2e5e65a6fb30 785 vx = 2.0f * (q2q4 - q1q3);
onehorse 0:2e5e65a6fb30 786 vy = 2.0f * (q1q2 + q3q4);
onehorse 0:2e5e65a6fb30 787 vz = q1q1 - q2q2 - q3q3 + q4q4;
onehorse 0:2e5e65a6fb30 788 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
onehorse 0:2e5e65a6fb30 789 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
onehorse 0:2e5e65a6fb30 790 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
onehorse 0:2e5e65a6fb30 791
onehorse 0:2e5e65a6fb30 792 // Error is cross product between estimated direction and measured direction of gravity
onehorse 0:2e5e65a6fb30 793 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
onehorse 0:2e5e65a6fb30 794 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
onehorse 0:2e5e65a6fb30 795 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
onehorse 0:2e5e65a6fb30 796 if (Ki > 0.0f)
onehorse 0:2e5e65a6fb30 797 {
onehorse 0:2e5e65a6fb30 798 eInt[0] += ex; // accumulate integral error
onehorse 0:2e5e65a6fb30 799 eInt[1] += ey;
onehorse 0:2e5e65a6fb30 800 eInt[2] += ez;
onehorse 0:2e5e65a6fb30 801 }
onehorse 0:2e5e65a6fb30 802 else
onehorse 0:2e5e65a6fb30 803 {
onehorse 0:2e5e65a6fb30 804 eInt[0] = 0.0f; // prevent integral wind up
onehorse 0:2e5e65a6fb30 805 eInt[1] = 0.0f;
onehorse 0:2e5e65a6fb30 806 eInt[2] = 0.0f;
onehorse 0:2e5e65a6fb30 807 }
onehorse 0:2e5e65a6fb30 808
onehorse 0:2e5e65a6fb30 809 // Apply feedback terms
onehorse 0:2e5e65a6fb30 810 gx = gx + Kp * ex + Ki * eInt[0];
onehorse 0:2e5e65a6fb30 811 gy = gy + Kp * ey + Ki * eInt[1];
onehorse 0:2e5e65a6fb30 812 gz = gz + Kp * ez + Ki * eInt[2];
onehorse 0:2e5e65a6fb30 813
onehorse 0:2e5e65a6fb30 814 // Integrate rate of change of quaternion
onehorse 0:2e5e65a6fb30 815 pa = q2;
onehorse 0:2e5e65a6fb30 816 pb = q3;
onehorse 0:2e5e65a6fb30 817 pc = q4;
onehorse 0:2e5e65a6fb30 818 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
onehorse 0:2e5e65a6fb30 819 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
onehorse 0:2e5e65a6fb30 820 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
onehorse 0:2e5e65a6fb30 821 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
onehorse 0:2e5e65a6fb30 822
onehorse 0:2e5e65a6fb30 823 // Normalise quaternion
onehorse 0:2e5e65a6fb30 824 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
onehorse 0:2e5e65a6fb30 825 norm = 1.0f / norm;
onehorse 0:2e5e65a6fb30 826 q[0] = q1 * norm;
onehorse 0:2e5e65a6fb30 827 q[1] = q2 * norm;
onehorse 0:2e5e65a6fb30 828 q[2] = q3 * norm;
onehorse 0:2e5e65a6fb30 829 q[3] = q4 * norm;
onehorse 0:2e5e65a6fb30 830
onehorse 0:2e5e65a6fb30 831 }
onehorse 0:2e5e65a6fb30 832 };
onehorse 0:2e5e65a6fb30 833 #endif