Proportional, integral, derivative controller library. Ported from the Arduino PID library by Brett Beauregard.
Fork of PID by
PID.cpp
- Committer:
- aberk
- Date:
- 2010-09-02
- Revision:
- 0:6e12a3e5af19
- Child:
- 1:cc91f529df79
File content as of revision 0:6e12a3e5af19:
/** * @author Aaron Berk * * @section LICENSE * * Copyright (c) 2010 ARM Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @section DESCRIPTION * * A PID controller is a widely used feedback controller commonly found in * industry. * * This library is a port of Brett Beauregard's Arduino PID library: * * http://www.arduino.cc/playground/Code/PIDLibrary * * The wikipedia article on PID controllers is a good place to start on * understanding how they work: * * http://en.wikipedia.org/wiki/PID_controller * * For a clear and elegant explanation of how to implement and tune a * controller, the controlguru website by Douglas J. Cooper (who also happened * to be Brett's controls professor) is an excellent reference: * * http://www.controlguru.com/ */ /** * Includes */ #include "PID.h" PID::PID(float Kc, float tauI, float tauD, float interval) { usingFeedForward = false; inAuto = false; //Default the limits to the full range of I/O: 3.3V //Make sure to set these to more appropriate limits for //your application. setInputLimits(0.0, 3.3); setOutputLimits(0.0, 3.3); tSample_ = interval; setTunings(Kc, tauI, tauD); setPoint_ = 0.0; processVariable_ = 0.0; prevProcessVariable_ = 0.0; controllerOutput_ = 0.0; prevControllerOutput_ = 0.0; accError_ = 0.0; bias_ = 0.0; realOutput_ = 0.0; } void PID::setInputLimits(float inMin, float inMax) { //Make sure we haven't been given impossible values. if (inMin >= inMax) { return; } //Rescale the working variables to reflect the changes. prevProcessVariable_ *= (inMax - inMin) / inSpan_; accError_ *= (inMax - inMin) / inSpan_; //Make sure the working variables are within the new limits. if (prevProcessVariable_ > 1) { prevProcessVariable_ = 1; } else if (prevProcessVariable_ < 0) { prevProcessVariable_ = 0; } inMin_ = inMin; inMax_ = inMax; inSpan_ = inMax - inMin; } void PID::setOutputLimits(float outMin, float outMax) { //Make sure we haven't been given impossible values. if (outMin >= outMax) { return; } //Rescale the working variables to reflect the changes. prevControllerOutput_ *= (outMax - outMin) / outSpan_; //Make sure the working variables are within the new limits. if (prevControllerOutput_ > 1) { prevControllerOutput_ = 1; } else if (prevControllerOutput_ < 0) { prevControllerOutput_ = 0; } outMin_ = outMin; outMax_ = outMax; outSpan_ = outMax - outMin; } void PID::setTunings(float Kc, float tauI, float tauD) { //Verify that the tunings make sense. if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) { return; } //Store raw values to hand back to user on request. pParam_ = Kc; iParam_ = tauI; dParam_ = tauD; float tempTauR; if (tauI == 0.0) { tempTauR = 0.0; } else { tempTauR = (1.0 / tauI) * tSample_; } //For "bumpless transfer" we need to rescale the accumulated error. if (inAuto) { if (tempTauR == 0.0) { accError_ = 0.0; } else { accError_ *= (Kc_ * tauR_) / (Kc * tempTauR); } } Kc_ = Kc; tauR_ = tempTauR; tauD_ = tauD / tSample_; } void PID::reset(void) { float scaledBias = 0.0; if (usingFeedForward) { scaledBias = (bias_ - outMin_) / outSpan_; } else { scaledBias = (realOutput_ - outMin_) / outSpan_; } prevControllerOutput_ = scaledBias; prevProcessVariable_ = (processVariable_ - inMin_) / inSpan_; //Clear any error in the integral. accError_ = 0; } void PID::setMode(int mode) { //We were in manual, and we just got set to auto. //Reset the controller internals. if (mode != 0 && !inAuto) { reset(); } inAuto = (mode != 0); } void PID::setInterval(float interval) { if (interval > 0) { //Convert the time-based tunings to reflect this change. tauR_ *= (interval / tSample_); accError_ *= (tSample_ / interval); tauD_ *= (interval / tSample_); tSample_ = interval; } } void PID::setSetPoint(float sp) { setPoint_ = sp; } void PID::setProcessValue(float pv) { processVariable_ = pv; } void PID::setBias(float bias){ bias_ = bias; usingFeedForward = 1; } float PID::compute() { //Pull in the input and setpoint, and scale them into percent span. float scaledPV = (processVariable_ - inMin_) / inSpan_; if (scaledPV > 1.0) { scaledPV = 1.0; } else if (scaledPV < 0.0) { scaledPV = 0.0; } float scaledSP = (setPoint_ - inMin_) / inSpan_; if (scaledSP > 1.0) { scaledSP = 1; } else if (scaledSP < 0.0) { scaledSP = 0; } float error = scaledSP - scaledPV; //Check and see if the output is pegged at a limit and only //integrate if it is not. This is to prevent reset-windup. if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) { accError_ += error; } //Compute the current slope of the input signal. float dMeas = (scaledPV - prevProcessVariable_) / tSample_; float scaledBias = 0.0; if (usingFeedForward) { scaledBias = (bias_ - outMin_) / outSpan_; } //Perform the PID calculation. controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas)); //Make sure the computed output is within output constraints. if (controllerOutput_ < 0.0) { controllerOutput_ = 0.0; } else if (controllerOutput_ > 1.0) { controllerOutput_ = 1.0; } //Remember this output for the windup check next time. prevControllerOutput_ = controllerOutput_; //Remember the input for the derivative calculation next time. prevProcessVariable_ = scaledPV; //Scale the output from percent span back out to a real world number. return ((controllerOutput_ * outSpan_) + outMin_); } float PID::getInMin() { return inMin_; } float PID::getInMax() { return inMax_; } float PID::getOutMin() { return outMin_; } float PID::getOutMax() { return outMax_; } float PID::getInterval() { return tSample_; } float PID::getPParam() { return pParam_; } float PID::getIParam() { return iParam_; } float PID::getDParam() { return dParam_; }