Modified version of the official mbed lib providing a RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos mbed-src

mbed-RtosI2cDriver

This version is obsolete!

Please use this one:
http://mbed.org/users/humlet/code/I2cRtosDriver/

Overview

  • Based on RTOS
    • No busy wait waste of CPU cycles
    • ... but still some waste of CPU cycles by context switches
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
    • Performs fine on the LPC1768, see measurements below
    • OK it works for the LPC11U24, but the performance data doesn't look that promising.
  • Reuses the official I2C implementation
    • Implemented with a few tiny but rather intrusive add-ons to the official I2C C-API
    • Updates of the official I2C lib can be easily merged into this library. Merges should be rather trivial.
    • Requires a rebuild of the mbed library (builds within a few seconds)
    • Official I2C interface not usable in parallel
  • The test and example programs works quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • The declaration has to be done in thread context, i.e. in a thread function or in main. A global declaration does not work.
  • Don't use the original I2C interface classes. They don't work anymore.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the test/example implementations in I2CDriverTest01.h and I2CDriverTest02.h

Design

Basic Idea

Each time the official I2C implementation has requested the I2C controller to perform an action, it enters a central busy wait loop (i2c_wait_SI(...) in i2c_api.c) and simply polls the I2C controller until it reports that it has completed the request. By running the I2C API on a RTOS thread and replacing the busy wait loop by an RTOS signal wait, the wasted CPU time can be made available for other threads ... apart from interrupt latency and task switching overhead.

"Hack" of the I2C-API

Unfortunately this busy wait loop is located down in the i2C-C-API in the platform dependent mbed-NXP lib. Because I was too lazy to clone the whole interface and wanted to be able to easily merge updates of the official implementation to the driver, I decided to simply tweak the official implementation. The changes are rather small. Instead of entering a busy wait loop, the function i2c_wait_SI(...) now enables the I2C interrupt and waits for a RTOS semaphore. This semaphore is given by a tiny ISR. The ISR just releases the semaphore and then immediately disables the i2c interrupt. The disabling is necessary because, before the interrupt is cleared, the I2C controller HW expects new requests, which have not been applied yet. The first implementation utilized RTOS signals, but measurements revealed, that semaphores are slightly faster.
A second busy wait loop in the i2c_stop function has not been touched. It is not entered that frequently and does only take 10µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be any benefit if one triggers the whole interrupt task wait/switch sequence for that short period of time.
BTW: Since the last re-base to the latest version of the mbed-NXP lib (rev 10 by emilmont) the change set of i2c_api.c looks awful. The diff tool reports 900 changed lines, which is nonsense. This seems to be a bug of the diff tool. In fact there are only three additional blocks of code compared to the original revision, one at the top defining two additional local static functions, one in the i2c_wait_SI(..) function replacing the busy wait and one at the bottom behind the i2c_slave_receive(...) function.

Driver interface

The I2CDriver class is the central component of this I2C interface

  • On creation it registers the ISR and starts the high priority driver thread that runs the I2C accesses (if not already running).
  • Communication between the calling user thread and the high priority driver thread is realized by a simple static transfer struct and RTOS signals.
    • All requests are blocking.
    • I did not see much added value for implementing a more complex non-blocking buffered access using the RTOS mail or queue feature.
  • I2CDriver provides "fat" API for I2C master and slave access
    • It supports on the fly changes from master to slave mode and vice versa.
    • It ensures mutual exclusive access to the I2C HW. This is realized by a static RTOS mutex for each I2C channel that is taken by the calling thread on each call of an interface function. Thus accesses are prioritized automatically by the priority of the calling user threads. Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads. In fact the user thread inherits the high priority of the driver thread during I2C access. The user thread does not do very much in the function call, it sends request to the driver thread and then waits for the driver thread to complete the request. The priority inheritance ensures that the I2C device is freed as fast as possible and prevents dead locks.
    • The interface can be locked for other threads, in order to run a sequence of commands without interruption
    • All interface functions are blocking, i.e. they return when the requested I2C transaction is completed.
    • Multiple I2CDriver instances are allowed

I2C Master/Slave Interface Adapters

I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally

  • the constructors provide parameters for defining the frequency and the slave address
  • I2CMasterRtos provides a function to read data from a given slave register
  • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when he master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
  • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead should be negligible.
  • I thought of inheriting from the original interfaces in order to be able to pass the adapters as references of the original I2C/I2CSlave types to I2C access classes or functions. But I have decided against this approach because of the virtual function call overhead.

Performance

The following performance data have been measured with the small test application in I2CDriverTest01.h. In this application a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address/register; read x byte of data). The measurements have been performed with the RTOS wait as used by this driver and with the busy wait approach used by the official mbed I2C implementation. The wait method has been selected by setting #define I2CDRVRTOS in i2c_api.c.

LPC1768
  • SRF08
    • The time for one read cycle is almost the same for both approaches
    • At full load (6byte/100kHz and 25byte@400kHz) the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas it stays at 82% / 61% with the RTOS enabled driver.
    • The SRF08 seems to apply some clock stretching.
  • MPU6050 FIFO read:
    • At 100kz results are compatible with the SRF08
    • At 400kHz the MPU performs much better
      • Busy wait: No clock stretching at all is visible on a scope. The clock signal does not show any gaps.
      • RTOS wait: Between each byte a pause of 6µs shows up. These gaps are probably caused by the ISR->driver thread context switch. Thus the RTOS driver needs some more time to complete a read cycle.
      • When using the RTOS driver at full load (30byte/ms@400kHz), still 56% of the CPU time is available for other threads. This is more than 3.3 times the 16.8% observed with he official i2c implementation.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
  • Comparison: MODI2C claims to achieve an efficiency resulting in a duty cycle of 75% at 400kHz. Sounds much better. OK, it is expected to be more efficient, because it operates completely in interrupt context (25%) and does not suffer from any RTOS overhead. ... and some of the 75% the user might spend for busy wait checking that the non blocking commands have completed.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtosDC[%]88.184.582.189.583.876.761.4
waitt[µs]438734930160334541996
busyDC[%]54.625.15.483.466.145.30.28
waitt[µs]433733930144317530984
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms30byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtosDC[%]81.484.682.389.683.876.956.2
waitt[µs]430712894155298475999
busyDC[%]65.628.410.384.863.159.016.8
waitt[µs]430700880131249389816
LPC11U24
  • Here the results don't look that promising
  • At a bus speed of 100kHz a slightly higher duty cycle can be achieved for the low priority thread
  • At a bus speed of 400kHz the busy wait approach shows better results
  • Keep in mind that the RTOS lib consumes a significant amount of the 11U24's small memory
LPC11U241byte/ms4byte/ms1byte/ms6byte/ms16byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtosDC[%]36.127.735.424.63.0
waitt[µs]525-569836-880256465-512884-935
busyDC[%]32.610.441.034.621.6
waitt[µs]475-517749-790184303542-589

A second test application (I2CDriverTest01.h) makes the mbed LPC1768 talk to itself. The two I2C channels are directly connected and master/slave mode of the two I2C interfaces are changed on the fly. The communication has been tested to work synchronously and stable at 100kHz and 400kHz.

Committer:
humlet
Date:
Tue Apr 30 19:12:57 2013 +0000
Revision:
8:5be85bd4c5ba
Parent:
7:04824382eafb
alpha2

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #include "I2CDriver.h"
humlet 3:967dde37e712 2 #include "i2c_api.h"
humlet 0:13c962fecb13 3 #include "error.h"
humlet 0:13c962fecb13 4
humlet 1:90455d5bdd8c 5 using namespace mbed;
humlet 1:90455d5bdd8c 6 using namespace rtos;
humlet 0:13c962fecb13 7
humlet 8:5be85bd4c5ba 8 extern "C"{
humlet 8:5be85bd4c5ba 9 osSemaphoreId i2cIsrDrvSem_1;
humlet 8:5be85bd4c5ba 10 osSemaphoreDef(i2cIsrDrvSem_1);
humlet 8:5be85bd4c5ba 11 osSemaphoreId i2cIsrDrvSem_2;
humlet 8:5be85bd4c5ba 12 osSemaphoreDef(i2cIsrDrvSem_2);
humlet 8:5be85bd4c5ba 13 }
humlet 7:04824382eafb 14
humlet 1:90455d5bdd8c 15 #define DRV_USR_SIG (1<<6)
humlet 1:90455d5bdd8c 16
humlet 1:90455d5bdd8c 17 const PinName I2CDriver::c_sdas[] = {p9,p28};
humlet 1:90455d5bdd8c 18 const PinName I2CDriver::c_scls[] = {p10,p27};
humlet 1:90455d5bdd8c 19
humlet 1:90455d5bdd8c 20 I2CDriver::Channel* I2CDriver::s_channels[2] = {0,0};
humlet 0:13c962fecb13 21
humlet 6:5b98c902a659 22 #if defined(TARGET_LPC1768)
humlet 0:13c962fecb13 23 void I2CDriver::channel_0_ISR()
humlet 0:13c962fecb13 24 {
humlet 8:5be85bd4c5ba 25 osSemaphoreRelease(i2cIsrDrvSem_1);
humlet 1:90455d5bdd8c 26 NVIC_DisableIRQ(I2C1_IRQn);
humlet 0:13c962fecb13 27 }
humlet 6:5b98c902a659 28 #endif
humlet 0:13c962fecb13 29
humlet 0:13c962fecb13 30 void I2CDriver::channel_1_ISR()
humlet 0:13c962fecb13 31 {
humlet 8:5be85bd4c5ba 32 osSemaphoreRelease(i2cIsrDrvSem_2);
humlet 1:90455d5bdd8c 33 #if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
humlet 1:90455d5bdd8c 34 NVIC_DisableIRQ(I2C2_IRQn);
humlet 1:90455d5bdd8c 35 #elif defined(TARGET_LPC11U24)
humlet 1:90455d5bdd8c 36 NVIC_DisableIRQ(I2C_IRQn);
humlet 1:90455d5bdd8c 37 #endif
humlet 0:13c962fecb13 38 }
humlet 0:13c962fecb13 39
humlet 0:13c962fecb13 40
humlet 3:967dde37e712 41 I2CDriver::I2CDriver(PinName sda, PinName scl, int hz, int slaveAdr):m_freq(hz),m_slaveAdr(slaveAdr)
humlet 3:967dde37e712 42 {
humlet 3:967dde37e712 43 // check pins and determine i2c channel
humlet 3:967dde37e712 44 int channel=0;
humlet 3:967dde37e712 45 #if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
humlet 3:967dde37e712 46 if(sda==c_sdas[0] && scl==c_scls[0]) channel=0; // I2C_1
humlet 3:967dde37e712 47 else
humlet 3:967dde37e712 48 #endif
humlet 3:967dde37e712 49 if (sda==c_sdas[1] && scl==c_scls[1]) channel=1; //I2C_2 or I2C
humlet 3:967dde37e712 50 else error("I2CDriver: Invalid I2C pinns selected");
humlet 3:967dde37e712 51
humlet 8:5be85bd4c5ba 52 if(s_channels[channel]==0){
humlet 6:5b98c902a659 53 new Thread(threadFun,(void *)channel,osPriorityRealtime,256);
humlet 8:5be85bd4c5ba 54 if(channel==0){
humlet 8:5be85bd4c5ba 55 i2cIsrDrvSem_1 = osSemaphoreCreate(osSemaphore(i2cIsrDrvSem_1), 1);
humlet 8:5be85bd4c5ba 56 osSemaphoreWait(i2cIsrDrvSem_1,osWaitForever);
humlet 8:5be85bd4c5ba 57 }else{
humlet 8:5be85bd4c5ba 58 i2cIsrDrvSem_2 = osSemaphoreCreate(osSemaphore(i2cIsrDrvSem_2), 1);
humlet 8:5be85bd4c5ba 59 osSemaphoreWait(i2cIsrDrvSem_2,osWaitForever);
humlet 8:5be85bd4c5ba 60 }
humlet 8:5be85bd4c5ba 61 }
humlet 3:967dde37e712 62 m_channel = s_channels[channel];
humlet 3:967dde37e712 63 }
humlet 3:967dde37e712 64
humlet 3:967dde37e712 65
humlet 1:90455d5bdd8c 66 void I2CDriver::threadFun(void const *args)
humlet 0:13c962fecb13 67 {
humlet 0:13c962fecb13 68 int channelIdx = (int)args;
humlet 0:13c962fecb13 69 Channel channel;
humlet 0:13c962fecb13 70 s_channels[channelIdx] = &channel;
humlet 2:514105beb343 71 channel.driver = Thread::gettid();
humlet 0:13c962fecb13 72
humlet 1:90455d5bdd8c 73 #if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
humlet 0:13c962fecb13 74 if(channelIdx==0)NVIC_SetVector(I2C1_IRQn, (uint32_t)I2CDriver::channel_0_ISR);
humlet 0:13c962fecb13 75 if(channelIdx==1)NVIC_SetVector(I2C2_IRQn, (uint32_t)I2CDriver::channel_1_ISR);
humlet 1:90455d5bdd8c 76 #elif defined(TARGET_LPC11U24)
humlet 1:90455d5bdd8c 77 NVIC_SetVector(I2C_IRQn, (uint32_t)I2CDriver::channel_1_ISR);
humlet 1:90455d5bdd8c 78 #endif
humlet 2:514105beb343 79
humlet 3:967dde37e712 80 int freq = 0;
humlet 3:967dde37e712 81 int adrSlave = 0;
humlet 3:967dde37e712 82 int modeSlave = 0;
humlet 3:967dde37e712 83 i2c_t i2c;
humlet 3:967dde37e712 84 i2c_init(&i2c, c_sdas[channelIdx], c_scls[channelIdx]);
humlet 2:514105beb343 85
humlet 1:90455d5bdd8c 86 volatile Transfer& tr = channel.transfer;
humlet 0:13c962fecb13 87 while(1) {
humlet 1:90455d5bdd8c 88 // wait for requests
humlet 1:90455d5bdd8c 89 osSignalWait(DRV_USR_SIG,osWaitForever);
humlet 3:967dde37e712 90
humlet 1:90455d5bdd8c 91 // check and adapt frequency
humlet 3:967dde37e712 92 if(freq != tr.freq) {
humlet 3:967dde37e712 93 freq = tr.freq;
humlet 3:967dde37e712 94 i2c_frequency(&i2c, tr.freq);
humlet 1:90455d5bdd8c 95 }
humlet 3:967dde37e712 96
humlet 3:967dde37e712 97 // check and adapt slave/master mode
humlet 3:967dde37e712 98 if(modeSlave != tr.slv) {
humlet 3:967dde37e712 99 modeSlave = tr.slv;
humlet 3:967dde37e712 100 i2c_slave_mode(&i2c, tr.slv);
humlet 3:967dde37e712 101 }
humlet 3:967dde37e712 102
humlet 3:967dde37e712 103 // check and adapt slave address
humlet 3:967dde37e712 104 int adr = (tr.adr & 0xFF) | 1;
humlet 3:967dde37e712 105 if(tr.slv && adrSlave != adr) {
humlet 3:967dde37e712 106 adrSlave = adr;
humlet 3:967dde37e712 107 i2c_slave_address(&i2c, 0, adr, 0);
humlet 3:967dde37e712 108 }
humlet 3:967dde37e712 109
humlet 1:90455d5bdd8c 110 // just doit
humlet 1:90455d5bdd8c 111 switch(tr.cmd) {
humlet 0:13c962fecb13 112 case START:
humlet 3:967dde37e712 113 i2c_start(&i2c);
humlet 0:13c962fecb13 114 break;
humlet 0:13c962fecb13 115 case STOP:
humlet 3:967dde37e712 116 i2c_stop(&i2c);
humlet 0:13c962fecb13 117 break;
humlet 3:967dde37e712 118 case READ_MST:
humlet 3:967dde37e712 119 tr.ret = i2c_read(&i2c, tr.adr, tr.dta, tr.len, (tr.rep?0:1));
humlet 1:90455d5bdd8c 120 break;
humlet 3:967dde37e712 121 case READ_MST_REG:
humlet 7:04824382eafb 122 //printf("Disco\n");
humlet 3:967dde37e712 123 tr.ret = i2c_write(&i2c, tr.adr,(const char*)&(tr.reg), 1, 0);
humlet 1:90455d5bdd8c 124 if(tr.ret)break; // error => bail out
humlet 3:967dde37e712 125 tr.ret = i2c_read(&i2c, tr.adr, tr.dta, tr.len, (tr.rep?0:1));
humlet 3:967dde37e712 126 break;
humlet 3:967dde37e712 127 case READ_SLV:
humlet 3:967dde37e712 128 tr.ret = i2c_slave_read(&i2c, tr.dta, tr.len);
humlet 1:90455d5bdd8c 129 break;
humlet 1:90455d5bdd8c 130 case READ_BYTE:
humlet 3:967dde37e712 131 tr.ret = i2c_byte_read(&i2c, (tr.ack?0:1));
humlet 1:90455d5bdd8c 132 break;
humlet 3:967dde37e712 133 case WRITE_MST:
humlet 3:967dde37e712 134 tr.ret = i2c_write(&i2c, tr.adr, tr.wdta, tr.len, (tr.rep?0:1));
humlet 3:967dde37e712 135 break;
humlet 3:967dde37e712 136 case WRITE_SLV:
humlet 3:967dde37e712 137 tr.ret = i2c_slave_write(&i2c, tr.wdta, tr.len);
humlet 1:90455d5bdd8c 138 break;
humlet 1:90455d5bdd8c 139 case WRITE_BYTE:
humlet 3:967dde37e712 140 tr.ret = i2c_byte_write(&i2c, tr.ack);
humlet 1:90455d5bdd8c 141 break;
humlet 3:967dde37e712 142 case RECEIVE:
humlet 3:967dde37e712 143 tr.ret = i2c_slave_receive_rtos(&i2c, tr.tmout);
humlet 4:eafa7efcd771 144 break;
humlet 1:90455d5bdd8c 145 default:
humlet 4:eafa7efcd771 146 error("call 911\n");
humlet 0:13c962fecb13 147 }
humlet 1:90455d5bdd8c 148 // inform the caller
humlet 1:90455d5bdd8c 149 osSignalSet( channel.transfer.caller, DRV_USR_SIG);
humlet 0:13c962fecb13 150 }
humlet 0:13c962fecb13 151 }
humlet 0:13c962fecb13 152
humlet 6:5b98c902a659 153 void I2CDriver::lock()
humlet 6:5b98c902a659 154 {
humlet 6:5b98c902a659 155 // One and the same thread can lock twice, but then it needs also to unlock twice.
humlet 6:5b98c902a659 156 // exactly what we need here
humlet 6:5b98c902a659 157 m_callerID = osThreadGetId();
humlet 6:5b98c902a659 158 m_callerPrio = osThreadGetPriority(m_callerID);
humlet 6:5b98c902a659 159 m_channel->mutex.lock(osWaitForever);
humlet 6:5b98c902a659 160 osThreadSetPriority(m_callerID, c_drvPrio); // hopefully not interrupted since the lock
humlet 6:5b98c902a659 161 }
humlet 6:5b98c902a659 162
humlet 6:5b98c902a659 163 void I2CDriver::unlock()
humlet 6:5b98c902a659 164 {
humlet 6:5b98c902a659 165 // free the mtex and restore original prio
humlet 6:5b98c902a659 166 m_channel->mutex.unlock();
humlet 6:5b98c902a659 167 osThreadSetPriority(m_callerID, m_callerPrio);
humlet 6:5b98c902a659 168 }
humlet 6:5b98c902a659 169
humlet 3:967dde37e712 170 int I2CDriver::sendNwait()
humlet 0:13c962fecb13 171 {
humlet 3:967dde37e712 172 m_channel->transfer.freq = m_freq;
humlet 1:90455d5bdd8c 173 m_channel->transfer.caller = Thread::gettid();
humlet 1:90455d5bdd8c 174 osSignalSet( m_channel->driver, DRV_USR_SIG);
humlet 0:13c962fecb13 175 osSignalWait(DRV_USR_SIG,osWaitForever);
humlet 1:90455d5bdd8c 176 int ret = m_channel->transfer.ret;
humlet 1:90455d5bdd8c 177 unlock();
humlet 1:90455d5bdd8c 178 return ret;
humlet 0:13c962fecb13 179 }
humlet 0:13c962fecb13 180
humlet 3:967dde37e712 181 int I2CDriver::readMaster(int address, char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 182 {
humlet 1:90455d5bdd8c 183 lock();
humlet 3:967dde37e712 184 m_channel->transfer.cmd = READ_MST;
humlet 3:967dde37e712 185 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 186 m_channel->transfer.adr = address;
humlet 1:90455d5bdd8c 187 m_channel->transfer.dta = data;
humlet 1:90455d5bdd8c 188 m_channel->transfer.len = length;
humlet 1:90455d5bdd8c 189 m_channel->transfer.rep = repeated;
humlet 3:967dde37e712 190 return sendNwait();
humlet 1:90455d5bdd8c 191 }
humlet 1:90455d5bdd8c 192
humlet 3:967dde37e712 193 int I2CDriver::readMaster(int address, uint8_t _register, char *data, int length, bool repeated)
humlet 3:967dde37e712 194 {
humlet 3:967dde37e712 195 lock();
humlet 3:967dde37e712 196 m_channel->transfer.cmd = READ_MST_REG;
humlet 3:967dde37e712 197 m_channel->transfer.slv = false;
humlet 3:967dde37e712 198 m_channel->transfer.adr = address;
humlet 3:967dde37e712 199 m_channel->transfer.reg = _register;
humlet 3:967dde37e712 200 m_channel->transfer.dta = data;
humlet 3:967dde37e712 201 m_channel->transfer.len = length;
humlet 3:967dde37e712 202 m_channel->transfer.rep = repeated;
humlet 3:967dde37e712 203 return sendNwait();
humlet 3:967dde37e712 204 }
humlet 3:967dde37e712 205
humlet 3:967dde37e712 206 int I2CDriver::readMaster(int ack)
humlet 1:90455d5bdd8c 207 {
humlet 1:90455d5bdd8c 208 lock();
humlet 1:90455d5bdd8c 209 m_channel->transfer.cmd = READ_BYTE;
humlet 3:967dde37e712 210 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 211 m_channel->transfer.ack = ack;
humlet 3:967dde37e712 212 return sendNwait();
humlet 1:90455d5bdd8c 213 }
humlet 1:90455d5bdd8c 214
humlet 3:967dde37e712 215 int I2CDriver::writeMaster(int address, const char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 216 {
humlet 0:13c962fecb13 217 lock();
humlet 3:967dde37e712 218 m_channel->transfer.cmd = WRITE_MST;
humlet 3:967dde37e712 219 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 220 m_channel->transfer.adr = address;
humlet 1:90455d5bdd8c 221 m_channel->transfer.wdta = data;
humlet 1:90455d5bdd8c 222 m_channel->transfer.len = length;
humlet 1:90455d5bdd8c 223 m_channel->transfer.rep = repeated;
humlet 3:967dde37e712 224 return sendNwait();
humlet 1:90455d5bdd8c 225 }
humlet 1:90455d5bdd8c 226
humlet 3:967dde37e712 227 int I2CDriver::writeMaster(int data)
humlet 1:90455d5bdd8c 228 {
humlet 1:90455d5bdd8c 229 lock();
humlet 1:90455d5bdd8c 230 m_channel->transfer.cmd = WRITE_BYTE;
humlet 3:967dde37e712 231 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 232 m_channel->transfer.ack = data;
humlet 3:967dde37e712 233 return sendNwait();
humlet 0:13c962fecb13 234 }
humlet 1:90455d5bdd8c 235
humlet 3:967dde37e712 236 void I2CDriver::startMaster(void)
humlet 1:90455d5bdd8c 237 {
humlet 1:90455d5bdd8c 238 lock();
humlet 1:90455d5bdd8c 239 m_channel->transfer.cmd = START;
humlet 3:967dde37e712 240 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 241 sendNwait();
humlet 3:967dde37e712 242 }
humlet 3:967dde37e712 243
humlet 3:967dde37e712 244 void I2CDriver::stopMaster(void)
humlet 3:967dde37e712 245 {
humlet 3:967dde37e712 246 lock();
humlet 3:967dde37e712 247 m_channel->transfer.cmd = STOP;
humlet 3:967dde37e712 248 m_channel->transfer.slv = false;
humlet 3:967dde37e712 249 sendNwait();
humlet 3:967dde37e712 250 }
humlet 3:967dde37e712 251
humlet 3:967dde37e712 252 void I2CDriver::stopSlave(void)
humlet 3:967dde37e712 253 {
humlet 3:967dde37e712 254 lock();
humlet 3:967dde37e712 255 m_channel->transfer.cmd = STOP;
humlet 3:967dde37e712 256 m_channel->transfer.slv = true;
humlet 3:967dde37e712 257 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 258 sendNwait();
humlet 3:967dde37e712 259 }
humlet 3:967dde37e712 260
humlet 3:967dde37e712 261 int I2CDriver::receiveSlave(uint32_t timeout_ms)
humlet 3:967dde37e712 262 {
humlet 3:967dde37e712 263 lock();
humlet 3:967dde37e712 264 m_channel->transfer.cmd = RECEIVE;
humlet 3:967dde37e712 265 m_channel->transfer.slv = true;
humlet 3:967dde37e712 266 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 267 m_channel->transfer.tmout = timeout_ms;
humlet 3:967dde37e712 268 return sendNwait();
humlet 3:967dde37e712 269 }
humlet 3:967dde37e712 270
humlet 3:967dde37e712 271 int I2CDriver::readSlave(char* data, int length)
humlet 3:967dde37e712 272 {
humlet 3:967dde37e712 273 lock();
humlet 3:967dde37e712 274 m_channel->transfer.cmd = READ_SLV;
humlet 3:967dde37e712 275 m_channel->transfer.slv = true;
humlet 3:967dde37e712 276 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 277 m_channel->transfer.dta = data;
humlet 3:967dde37e712 278 m_channel->transfer.len = length;
humlet 3:967dde37e712 279 return sendNwait();
humlet 3:967dde37e712 280 }
humlet 3:967dde37e712 281
humlet 3:967dde37e712 282 int I2CDriver::readSlave(void)
humlet 3:967dde37e712 283 {
humlet 3:967dde37e712 284 lock();
humlet 3:967dde37e712 285 m_channel->transfer.cmd = READ_BYTE;
humlet 3:967dde37e712 286 m_channel->transfer.slv = true;
humlet 3:967dde37e712 287 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 288 m_channel->transfer.ack = 1;
humlet 3:967dde37e712 289 return sendNwait();
humlet 3:967dde37e712 290 }
humlet 3:967dde37e712 291
humlet 3:967dde37e712 292 int I2CDriver::writeSlave(const char *data, int length)
humlet 3:967dde37e712 293 {
humlet 3:967dde37e712 294 lock();
humlet 3:967dde37e712 295 m_channel->transfer.cmd = WRITE_SLV;
humlet 3:967dde37e712 296 m_channel->transfer.slv = true;
humlet 3:967dde37e712 297 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 298 m_channel->transfer.wdta = data;
humlet 3:967dde37e712 299 m_channel->transfer.len = length;
humlet 3:967dde37e712 300 return sendNwait();
humlet 3:967dde37e712 301 }
humlet 3:967dde37e712 302
humlet 3:967dde37e712 303 int I2CDriver::writeSlave(int data)
humlet 3:967dde37e712 304 {
humlet 3:967dde37e712 305 lock();
humlet 3:967dde37e712 306 m_channel->transfer.cmd = WRITE_BYTE;
humlet 3:967dde37e712 307 m_channel->transfer.slv = true;
humlet 3:967dde37e712 308 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 309 m_channel->transfer.ack = data;
humlet 3:967dde37e712 310 return sendNwait();
humlet 1:90455d5bdd8c 311 }
humlet 1:90455d5bdd8c 312
humlet 1:90455d5bdd8c 313
humlet 3:967dde37e712 314
humlet 3:967dde37e712 315