RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895

i2cRtos_api.c

Committer:
humlet
Date:
2013-05-19
Revision:
14:352609d395c1
Parent:
13:530968937ccb

File content as of revision 14:352609d395c1:

#include "i2cRtos_api.h"

#if DEVICE_I2C

#include "us_ticker_api.h"
#include "cmsis_os.h"
#include "error.h"

// little helpers cloned from official i2c api
#if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
#define I2C_CONSET(x)       (x->i2c->I2CONSET)
#define I2C_CONCLR(x)       (x->i2c->I2CONCLR)
#define I2C_STAT(x)         (x->i2c->I2STAT)
#define I2C_DAT(x)          (x->i2c->I2DAT)
#elif defined(TARGET_LPC11U24)
#define I2C_CONSET(x)       (x->i2c->CONSET)
#define I2C_CONCLR(x)       (x->i2c->CONCLR)
#define I2C_STAT(x)         (x->i2c->STAT)
#define I2C_DAT(x)          (x->i2c->DAT)
#endif

//#include "gpio_api.h"
//static gpio_t gpio[2]; // evillive

// isr/thread data transfer struct
enum I2cIsrCmd {
    readMst,
    writeMst,
    readSlv,
    writeSlv,
    waitSI
};
struct I2cIsrTransfer {
    i2c_t* obj;
    enum I2cIsrCmd cmd;
    int len;
    int cnt;
    int stat;
    char* rData;
    const char* wData;
};
// one for each channel
// "volatile" has been omitted since ISR and thread do not run simultaneously, hopefully ok
static struct I2cIsrTransfer i2c_transfer[2];

// struct holding IRQ and semaphore ID
// needed for thread<->isr communication/activation
struct IsrIrqSem {
    IRQn_Type irq;
    osSemaphoreId sem;
};
static struct IsrIrqSem isrIrqSem[2]; // one for each channel


// little helpers cloned from official i2c api
static inline void i2c_conclr(i2c_t *obj, int start, int stop, int interrupt, int acknowledge)
{
    I2C_CONCLR(obj) = (start << 5)
                      | (stop << 4)
                      | (interrupt << 3)
                      | (acknowledge << 2);
}
static inline void i2c_conset(i2c_t *obj, int start, int stop, int interrupt, int acknowledge)
{
    I2C_CONSET(obj) = (start << 5)
                      | (stop << 4)
                      | (interrupt << 3)
                      | (acknowledge << 2);
}
static inline void i2c_clear_SI(i2c_t *obj)
{
    i2c_conclr(obj, 0, 0, 1, 0);
}
static inline int i2c_status(i2c_t *obj)
{
    return I2C_STAT(obj);
}

// ISR routines
// implements the same read/write sequences as the official i2c lib
static void i2cRtos_isr(uint32_t ch)
{
    struct I2cIsrTransfer* tr=&(i2c_transfer[ch]);
    if(tr->cmd==waitSI) {
        // just waiting for an interrupt after a byte read/write or slave receive call
        osSemaphoreRelease(isrIrqSem[ch].sem);
        NVIC_DisableIRQ(isrIrqSem[ch].irq);
        return;
    }
    int stat=i2c_status(tr->obj);
    int stay = 0;
    switch(tr->cmd) {
        case readMst:
            switch(stat) {
                case 0x50: // Data byte has been received; ACK has been returned.
                    (tr->rData)[tr->cnt] = (char)(I2C_DAT(tr->obj) & 0xff);
                case 0x40: // SLA+R has been transmitted; ACK has been received.
                    ++(tr->cnt);
                    if(tr->cnt != tr->len-1)
                        i2c_conset(tr->obj, 0, 0, 0, 1);
                    else
                        i2c_conclr(tr->obj, 0, 0, 0, 1); // do not ack the last byte read
                    stay = 1;
                    break;
                case 0x58: // Data byte has been received; NOT ACK has been returned.
                    (tr->rData)[tr->cnt] = (char)(I2C_DAT(tr->obj) & 0xff);
                    stat=0;
                    break;
            }
            break;
        case writeMst:
            switch(stat) {
                case 0x18: // SLA+W has been transmitted; ACK has been received.
                case 0x28: // SLA+W has been transmitted; NOT ACK has been received.
                    if(++(tr->cnt)!=tr->len) {
                        I2C_DAT(tr->obj) = (tr->wData)[tr->cnt];
                        stay=1;
                    } else {
                        stat=0;
                    }
            }
            break;
        case readSlv:
            ++(tr->cnt);
            if(stat==0x80 || stat==0x90) // Previously addressed with own SLA address(0x80) or geberal call (0x90); DATA has been received; ACK has been returned.
                (tr->rData)[tr->cnt] = I2C_DAT(tr->obj) & 0xFF;
            stay = (stat==0x80 || stat==0x90 || stat==0x060 || stat==0x70) && (tr->cnt < tr->len-1);
            // 60: Own SLA+W has been received; ACK has been returned. ... SLV+W???
            // 70: General Call address (0x00) has been received; ACK has been returned.
            break;
        case writeSlv:
            ++(tr->cnt);
            stay = tr->cnt<tr->len && stat==0xb8; // Data byte in I2DAT has been transmitted; ACK has been received.
            if(stay) I2C_DAT(tr->obj) = tr->wData[tr->cnt];
            break;
    }
    if(stay) {
        // sequence not finished => stay in ISR mode and trigger next i2c by clearing he SI bit
        i2c_clear_SI(tr->obj);
    } else {
        // sequence finished or unexpected state has been reported
        // => bail out of isr mode and return last status received
        tr->stat = stat;
        osSemaphoreRelease(isrIrqSem[ch].sem);
        NVIC_DisableIRQ(isrIrqSem[ch].irq);
    }
}
#if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
static void i2cRtos_isr_ch0()
{
    //gpio_write(&gpio[0], 1);
    i2cRtos_isr(0);
    //gpio_write(&gpio[0], 0);
}
#endif
static void i2cRtos_isr_ch1()
{
    //gpio_write(&gpio[1], 1);
    i2cRtos_isr(1);
    //gpio_write(&gpio[1], 0);
}


// determine channel
static inline uint32_t i2c_get_channel(const i2c_t *obj)
{
#if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
    switch((I2CName)(obj->i2c)) {
        case I2C_1:
            return 0;
        case I2C_2:
            return 1;
        default:
            error("Dial911 i2c_get_channel: Invaid I2CName \n");
    }
#endif
    return 1;
}


// Enable IRQ and wait for ISR sequence to be finished
static inline void i2cRtos_wait_and_see(i2c_t *obj, int ch, uint32_t tmOut)  //evillive
{
    struct IsrIrqSem* iis = &(isrIrqSem[ch]);
    __disable_irq(); // evil, but don't want the next three lines to be interrupted
    i2c_clear_SI(obj);
    NVIC_ClearPendingIRQ(iis->irq);
    NVIC_EnableIRQ(iis->irq);
    __enable_irq();
    if(osSemaphoreWait(iis->sem, tmOut)!=1) NVIC_DisableIRQ(iis->irq); // time out => diable the IRQ
}

// just wait for a generic i2c interrupt
static inline void i2cRtos_waitSI(i2c_t *obj, uint32_t tmOut)
{
    int ch = i2c_get_channel(obj);
    i2c_transfer[ch].cmd = waitSI;
    i2cRtos_wait_and_see(obj, ch, tmOut);
}

// master mode read sequence
int i2cRtos_read(i2c_t *obj, int address, char *data, int length, int stop)
{
    //gpio_write(&gpio[1], 1);
    int stat = i2c_start(obj);
    if ((stat != 0x10) && (stat != 0x08)) {
        i2cRtos_stop(obj); // use freeze free stop if the start has failed
        return stat;
    }
    //gpio_write(&gpio[1], 0);
    int ch = i2c_get_channel(obj);
    struct I2cIsrTransfer* tr = &(i2c_transfer[ch]);
    tr->obj=obj;
    tr->cmd=readMst;
    tr->len=length;
    tr->cnt=-1;
    tr->rData=data;
    I2C_DAT(obj) = address | 0x01;  // initiate address+R write and enter isr mode
    i2cRtos_wait_and_see(obj, ch,2+(length>>2));  // timeout (2+len/4)ms
    stat = tr->stat;
    //gpio_write(&gpio[1], 1);
    if(stat || stop) i2cRtos_stop(obj);
    //gpio_write(&gpio[1], 0);
    return stat;
}

// master mode write sequence
int i2cRtos_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
    //gpio_write(&gpio[1], 1);
    int status = i2c_start(obj);
    if ((status != 0x10) && (status != 0x08)) {
        i2cRtos_stop(obj); // use freeze free stop if the start has failed
        return status;
    }
    //gpio_write(&gpio[1], 0);
    int ch = i2c_get_channel(obj);
    struct I2cIsrTransfer* tr = &(i2c_transfer[ch]); // evilive fill it locally and then copy it in one go to (volatile) mem?
    tr->obj = obj;
    tr->cmd = writeMst;
    tr->len = length;
    tr->cnt = -1;
    tr->wData = data;
    I2C_DAT(obj) = address & 0xfe; // initiate address+W write and enter isr mode
    i2cRtos_wait_and_see(obj, ch, 2+(length>>2));  // timeout (2+len/4)ms
    //i2c_clear_SI(obj); // ... why? Also in official lib ... I guess this is the "write instead of start" bug
    status = tr->stat;
    //gpio_write(&gpio[1], 1);
    if(status || stop) i2cRtos_stop(obj);
    //gpio_write(&gpio[1], 0);
    return status;
}

// read single byte from bus (master/slave)
int i2cRtos_byte_read(i2c_t *obj, int last)
{
    if(last) {
        i2c_conclr(obj, 0, 0, 0, 1); // send a NOT ACK
    } else {
        i2c_conset(obj, 0, 0, 0, 1); // send a ACK
    }
    i2cRtos_waitSI(obj, 2);
    return (I2C_DAT(obj) & 0xff);
}

// write single byte to bus (master/slave)
int i2cRtos_byte_write(i2c_t *obj, int data)
{
    I2C_DAT(obj) = (data & 0xff);
    i2cRtos_waitSI(obj, 2);
    int stat=i2c_status(obj);
    return (stat==0x18 || stat==0x28 || stat==0x40 || stat==0xb8);
}

// freeze free i2c stop
// the busy wait without timeout of the official i2c lib
// might freeze the mbed if someone on the bus keeps the clock down
// and prevents LPC's i2c controller to create a stop condition
int i2cRtos_stop(i2c_t *obj)
{
    i2c_conset(obj, 0, 1, 0, 0);
    i2c_clear_SI(obj);
    uint32_t t0=us_ticker_read();
    uint32_t dt=0;
    while((I2C_CONSET(obj) & (1 << 4)) && dt<23) {
        dt = us_ticker_read() - t0;
    }
    return dt<23;
}


#if DEVICE_I2CSLAVE

// determine slave's receive mode. Blocking with timeout
int i2cRtos_slave_receive(i2c_t *obj, uint32_t tmOut)
{
    int retval = i2c_slave_receive(obj);
    //check for pending requests
    if(retval)return retval; // there is one => bail out
    // No request? Wait for it! ... with time out
    i2cRtos_waitSI(obj, tmOut);
    // check again for pending requests
    return i2c_slave_receive(obj);
}

// slave mode read sequence
int i2cRtos_slave_read(i2c_t *obj, char *data, int length)
{
    int ch = i2c_get_channel(obj);
    struct I2cIsrTransfer* tr = &(i2c_transfer[ch]); // evilive fill it locally and then copy it in one go to (volatile) mem?
    tr->obj=obj;
    tr->cmd=readSlv;
    tr->len=length;
    tr->cnt=-1;
    tr->rData=data;
    i2cRtos_wait_and_see(obj, ch, 2+(length>>2));  // timeout (1+len/4)ms
    if(tr->stat != 0xa0) {
        i2cRtos_stop(obj);
    }
    i2c_clear_SI(obj); // stop keeping scl low
    return tr->cnt;    // same weird return as in official lib
}

// slave mode write sequence
int i2cRtos_slave_write(i2c_t *obj, const char *data, int length)
{
    if(length <= 0) {
        return(0);
    }
    int ch = i2c_get_channel(obj);
    struct I2cIsrTransfer* tr = &(i2c_transfer[ch]); // evilive fill it locally and then copy it in one go to (volatile) mem?
    tr->obj=obj;
    tr->cmd=writeSlv;
    tr->len=length;
    tr->cnt=0;
    tr->wData=data;
    I2C_DAT(obj) = data[0];
    i2cRtos_wait_and_see(obj, ch, 2+(length>>2));  // timeout (1+len/4)ms
    int status = tr->stat;
    if(status!=0xC0 && status!=0xC8) {
        i2cRtos_stop(obj);
    }
    i2c_clear_SI(obj); // stops keeping scl low
    return tr->cnt;
}
#endif

// setup semaphores and hook in ISRs
void i2cRtos_init(i2c_t *obj, PinName sda, PinName scl)
{
    /*static int called=0;
    if(!called) {
        gpio_init(&gpio[0], p15, PIN_OUTPUT);
        gpio_init(&gpio[1], p16, PIN_OUTPUT);
    }
    called = 1;
    gpio_write(&gpio[0], 0);
    gpio_write(&gpio[1], 0);*/
    
    i2c_init(obj,sda,scl);
    uint32_t ch = i2c_get_channel(obj);
#if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
    static osSemaphoreDef(i2cIsrDrvSem_ch0);
    static osSemaphoreDef(i2cIsrDrvSem_ch1);
    switch(ch) {
        case 0:
            isrIrqSem[ch].irq = I2C1_IRQn;
            NVIC_SetVector(I2C1_IRQn, (uint32_t)i2cRtos_isr_ch0);
            isrIrqSem[ch].sem = osSemaphoreCreate(osSemaphore(i2cIsrDrvSem_ch0), 1);
            break;
        case 1:
            isrIrqSem[ch].irq = I2C2_IRQn;
            NVIC_SetVector(I2C2_IRQn, (uint32_t)i2cRtos_isr_ch1);
            isrIrqSem[ch].sem = osSemaphoreCreate(osSemaphore(i2cIsrDrvSem_ch1), 1);
            break;
    }
    osSemaphoreWait(isrIrqSem[ch].sem, osWaitForever);
#elif defined(TARGET_LPC11U24)
    static osSemaphoreDef(i2cIsrDrvSem_ch1);
    isrIrqSem[ch].irq = I2C_IRQn;
    NVIC_SetVector(I2C_IRQn, (uint32_t)i2cRtos_isr_ch1);
    isrIrqSem[ch].sem = osSemaphoreCreate(osSemaphore(i2cIsrDrvSem_ch1), 1);
    osSemaphoreWait(isrIrqSem[ch].sem, osWaitForever);
#else
#error "Dial911 i2cRtos_init: Unsupported HW"
#endif
}
#endif