RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Sun May 19 11:21:16 2013 +0000
Revision:
14:352609d395c1
Parent:
13:530968937ccb
almost beta?; ***refactored (removed mbed-NXP and mbed-src hacks/dependencies) ; *** bugs fixed; *** performance improved (read/write sequence now handled in ISR);

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 14:352609d395c1 1 // A high prio thread reads at a rate of 1kHz from a MPU6050 gyro/acc meter's FIFO
humlet 14:352609d395c1 2 // data packets of different size, whereas the lower prio ain thread the CPU time left.
humlet 14:352609d395c1 3
humlet 7:04824382eafb 4 #include "mbed.h"
humlet 7:04824382eafb 5 #include "rtos.h"
humlet 7:04824382eafb 6 #include "I2CMasterRtos.h"
humlet 7:04824382eafb 7 #include "stdint.h"
humlet 7:04824382eafb 8
humlet 14:352609d395c1 9 //#include "DigitalOut.h"
humlet 14:352609d395c1 10 //DigitalOut osci(p8);
humlet 10:e3d6c92ff222 11
humlet 7:04824382eafb 12 volatile int g_disco=0;
humlet 7:04824382eafb 13 volatile int g_len=0;
humlet 7:04824382eafb 14 volatile int g_freq=100000;
humlet 7:04824382eafb 15 const uint32_t i2cAdr = 0x68<<1;
humlet 7:04824382eafb 16
humlet 7:04824382eafb 17 static void config(I2CMasterRtos& i2c);
humlet 7:04824382eafb 18
humlet 14:352609d395c1 19 I2CMasterRtos i2c(p28, p27);
humlet 14:352609d395c1 20
humlet 7:04824382eafb 21 void highPrioCallBck(void const *args)
humlet 7:04824382eafb 22 {
humlet 14:352609d395c1 23 //I2CDriver::osci2.write(0);
humlet 14:352609d395c1 24 const char reg= 0x74;
humlet 14:352609d395c1 25 static char result[64];
humlet 14:352609d395c1 26 //I2CDriver::osci2.write(1);
humlet 14:352609d395c1 27 // read from MPU600's fifo
humlet 14:352609d395c1 28 i2c.frequency(g_freq);
humlet 14:352609d395c1 29 uint32_t t1=us_ticker_read();
humlet 14:352609d395c1 30 //I2CDriver::osci2.write(0);
humlet 14:352609d395c1 31 int stat = i2c.read(i2cAdr, reg, result, g_len);
humlet 14:352609d395c1 32 uint32_t dt=us_ticker_read()-t1;
humlet 14:352609d395c1 33 if(stat!=0) {
humlet 14:352609d395c1 34 printf("\n%x %d %d %d\n",stat,g_freq,g_len,dt);
humlet 14:352609d395c1 35 exit(0);
humlet 14:352609d395c1 36 }
humlet 14:352609d395c1 37 int16_t val=((static_cast<int16_t>(result[0])<<8)|static_cast<int16_t>(result[1]));
humlet 7:04824382eafb 38
humlet 14:352609d395c1 39 if(--g_disco>0)printf("val=%8d dt=%4dus\n",val,dt);
humlet 7:04824382eafb 40 }
humlet 7:04824382eafb 41
humlet 7:04824382eafb 42 int doit()
humlet 7:04824382eafb 43 {
humlet 14:352609d395c1 44 config(i2c);
humlet 14:352609d395c1 45
humlet 7:04824382eafb 46 RtosTimer highPrioTicker(highPrioCallBck, osTimerPeriodic, (void *)0);
humlet 7:04824382eafb 47
humlet 14:352609d395c1 48 Thread::wait(500);
humlet 7:04824382eafb 49 highPrioTicker.start(1);
humlet 10:e3d6c92ff222 50
humlet 7:04824382eafb 51 #if defined(TARGET_LPC1768)
humlet 7:04824382eafb 52 const int nTest=7;
humlet 7:04824382eafb 53 const int freq[nTest]= {1e5, 1e5, 1e5, 4e5, 4e5, 4e5, 4e5};
humlet 14:352609d395c1 54 const int len[nTest]= {1, 4, 7, 1, 6, 12, 36};
humlet 7:04824382eafb 55 #elif defined(TARGET_LPC11U24)
humlet 7:04824382eafb 56 const int nTest=5;
humlet 7:04824382eafb 57 const int freq[nTest]= {1e5, 1e5, 4e5, 4e5, 4e5 };
humlet 13:530968937ccb 58 const int len[nTest]= {1, 6, 1, 6, 32};
humlet 7:04824382eafb 59 #endif
humlet 7:04824382eafb 60 for(int i=0; i<nTest; ++i) {
humlet 7:04824382eafb 61 g_freq = freq[i];
humlet 7:04824382eafb 62 g_len = len[i];
humlet 7:04824382eafb 63 printf("f=%d l=%d\n",g_freq,g_len);
humlet 7:04824382eafb 64 Thread::wait(500);
humlet 14:352609d395c1 65 //highPrioTicker.start(1);
humlet 7:04824382eafb 66 const uint32_t dt=1e6;
humlet 7:04824382eafb 67 uint32_t tStart = us_ticker_read();
humlet 7:04824382eafb 68 uint32_t tLast = tStart;
humlet 7:04824382eafb 69 uint32_t tAct = tStart;
humlet 7:04824382eafb 70 uint32_t tMe=0;
humlet 14:352609d395c1 71 do { // loop an count consecutive µs ticker edges
humlet 14:352609d395c1 72 //osci.write(!osci.read());
humlet 7:04824382eafb 73 tAct=us_ticker_read();
humlet 14:352609d395c1 74 #if defined(TARGET_LPC1768)
humlet 14:352609d395c1 75 if(tAct==tLast+1)++tMe;
humlet 14:352609d395c1 76 #elif defined(TARGET_LPC11U24)
humlet 14:352609d395c1 77 uint32_t delta = tAct-tLast;
humlet 14:352609d395c1 78 if(delta<=2)tMe+=delta; // on the 11U24 this loop takes a bit longer than 1µs (ISR ~3µs, task switch ~8µs)
humlet 14:352609d395c1 79 #endif
humlet 7:04824382eafb 80 tLast=tAct;
humlet 7:04824382eafb 81 } while(tAct-tStart<dt);
humlet 14:352609d395c1 82 //highPrioTicker.stop();
humlet 14:352609d395c1 83 // and calculate the duty cycle from this measurement
humlet 7:04824382eafb 84 printf("dc=%5.2f \n", 100.0*(float)tMe/dt);
humlet 14:352609d395c1 85 g_disco=5;
humlet 7:04824382eafb 86 while(g_disco>0);
humlet 7:04824382eafb 87 }
humlet 7:04824382eafb 88 return 0;
humlet 7:04824382eafb 89 }
humlet 7:04824382eafb 90
humlet 7:04824382eafb 91 void readModWrite(I2CMasterRtos& i2c, uint8_t reg, uint8_t dta)
humlet 10:e3d6c92ff222 92 {
humlet 7:04824382eafb 93 char rd1;
humlet 7:04824382eafb 94 int rStat1 = i2c.read(i2cAdr, reg, &rd1, 1);
humlet 7:04824382eafb 95 char data[2];
humlet 7:04824382eafb 96 data[0]=(char)reg;
humlet 7:04824382eafb 97 data[1]=(char)dta;
humlet 7:04824382eafb 98 char rd2;
humlet 7:04824382eafb 99 int wStat = i2c.write(i2cAdr, data, 2);
humlet 7:04824382eafb 100 osDelay(100);
humlet 7:04824382eafb 101 int rStat2 = i2c.read(i2cAdr, reg, &rd2, 1);
humlet 12:6ddadcbbdca2 102 printf("(%3x%3x%3x) %2x <- %2x => %2x -> %2x \n", rStat1, wStat, rStat2, reg, dta, rd1, rd2);
humlet 7:04824382eafb 103 }
humlet 7:04824382eafb 104
humlet 7:04824382eafb 105 static void config(I2CMasterRtos& i2c)
humlet 7:04824382eafb 106 {
humlet 7:04824382eafb 107 uint8_t ncfg=32;
humlet 7:04824382eafb 108 uint8_t regs[ncfg];
humlet 7:04824382eafb 109 uint8_t vals[ncfg];
humlet 7:04824382eafb 110 int cnt=0;
humlet 7:04824382eafb 111 regs[cnt]=0x6b;
humlet 7:04824382eafb 112 vals[cnt++]=(1<<7); // pwr 1 reg //: device reset
humlet 7:04824382eafb 113 regs[cnt]=0x6b;
humlet 7:04824382eafb 114 vals[cnt++]=1; // pwr 1 reg // clock from x gyro all pwr sav modes off
humlet 7:04824382eafb 115 regs[cnt]=0x19;
humlet 7:04824382eafb 116 vals[cnt++]=0; // sample rate divider reg // sapmle rate = gyro rate / (1+x)
humlet 7:04824382eafb 117 regs[cnt]=0x1a;
humlet 10:e3d6c92ff222 118 vals[cnt++]=0;// conf reg // no ext frame sync / no dig low pass set to 1 => 8kHz Sampling
humlet 7:04824382eafb 119 regs[cnt]=0x1b;
humlet 7:04824382eafb 120 vals[cnt++]=0;// gyro conf reg // no test mode and gyro range 250°/s
humlet 7:04824382eafb 121 regs[cnt]=0x1c;
humlet 7:04824382eafb 122 vals[cnt++]=0;// accl conf reg // no test mode and accl range 2g
humlet 7:04824382eafb 123 regs[cnt]=0x23;
humlet 7:04824382eafb 124 vals[cnt++]=0xf<<3;// fifo conf reg // accl + all gyro -> fifo
humlet 7:04824382eafb 125 regs[cnt]=0x6a;
humlet 7:04824382eafb 126 vals[cnt++]=(1<<2); // pwr 1 reg // fifo reset
humlet 7:04824382eafb 127 regs[cnt]=0x6a;
humlet 7:04824382eafb 128 vals[cnt++]=(1<<6); // pwr 1 reg // fifo on
humlet 7:04824382eafb 129
humlet 7:04824382eafb 130 for(int i=0; i<cnt; i++)
humlet 7:04824382eafb 131 readModWrite(i2c, regs[i], vals[i]);
humlet 7:04824382eafb 132 }