3.5" inch TFT LCD Display Module 480X320 driven with FSMC.
TFT LCD Display Module 480X320 driven with FSMC
I have recently bought a 3.5" inch TFT LCD Touch Screen Display Module 480X320 with a www.mcufriend.com
label on the back side. The display was equipped with an 8bit parallel interface. First I decided to test it with the UniGraphic library using the BUS_8
protocol. The display was very slow but improved when I switched to the PAR_8
protocol. Because I heard about the possibility to use a Flexible Static Memory Controller (FSMC), built into some STM MCU's, to drive LCD's (read/write to LCD's memory rather than to an external SRAM) I thought it would be a fun to try it out.
Below is the brief story of what I did:
- Created a project for my STM32F407VE board in the STM32CubeIDE
- Set the
Clock Configuration
to match the one used by Mbed for the Seeed Arch Max board:
- Selected
FSMC
in theConnectivity
category and configured it as below: - Let the
STM32CubeIDE
generate the code (files). - Created a new program for the Seeed Arch Max target in the Mbed Online Compiler by selecting a
mbed os blinky
template. - Replaced the
main.cpp
with themain.c
content of theSTM32CubeIDE
project. Copy & Pasted
the other files with codes from theSTM32CubeIDE
project to the online compiler project.- Renamed and modified:
"stm32f4xx_it.h" to "stm32f4xx_it_msp.h"
"stm32f4xx_it.c" to "stm32f4xx_it_msp.c" - Added the UniGraphic library to the online compiler project.
- Extended the
UniGraphic
library with aFSMC_8
protocol and replaced theTFT::set_orientation(int orient)
function with the one used bymcufriend
for arduino. - Modified the
main.cpp
as needed.
Wiring
STM32F407VE | TFT LCD module |
---|---|
+3.3V | 3V3 |
GND | GND |
PB_12 | LCD_RST |
GND | LCD_CS |
PD_13 (RS) | LCD_RS |
PD_5 (WR) | LCD_WR |
PD_4 (RD) | LCD_RD |
PD_14 (DB00) | LCD_D0 |
PD_15 (DB01) | LCD_D1 |
PD_0 (DB02) | LCD_D2 |
PD_1 (DB03) | LCD_D3 |
PE_7 (DB04) | LCD_D4 |
PE_8 (DB05) | LCD_D5 |
PE_9 (DB06) | LCD_D6 |
PE_10 (DB07) | LCD_D7 |
Results
Execution times | ||
---|---|---|
Used protocol | BUS_8 | FSMC_8 |
Operation \ Time | ms | ms |
Clear | 2283.980 | 38.454 |
Plot | 192.066 | 11.365 |
8bit BMP | 63.805 | 41.338 |
Large Font | 163.872 | 7.895 |
Sparce pixels | 2072.265/1458.051 | 74.107/52.168 |
16bit BMP | 2288.589 | 59.904 |
UniGraphic/Protocols/SPI16.cpp
- Committer:
- hudakz
- Date:
- 2020-05-10
- Revision:
- 0:fa952828e34c
File content as of revision 0:fa952828e34c:
/* mbed UniGraphic library - SPI16 protocol class * Copyright (c) 2015 Giuliano Dianda * Released under the MIT License: http://mbed.org/license/mit * * Derived work of: * * mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller * Copyright (c) 2013 Peter Drescher - DC2PD * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "SPI16.h" SPI16::SPI16(int Hz, PinName mosi, PinName miso, PinName sclk, PinName CS, PinName reset, PinName DC) : _CS(CS), _spi(mosi, miso, sclk), _reset(reset), _DC(DC) { _reset = 1; _DC=1; _CS=1; _spi.format(16,0); // 8 bit spi mode 0 // _spi.frequency(12000000); // 10 Mhz SPI clock, 12mhz for F411 _spi.frequency(Hz); hw_reset(); } void SPI16::wr_cmd8(unsigned char cmd) { _spi.format(8,0); // it takes time, better use wr_cmd16 with NOP cmd _DC.write(0); // 0=cmd _spi.write(cmd); // write 8bit _spi.format(16,0); _DC.write(1); // 1=data next } void SPI16::wr_data8(unsigned char data) { _spi.format(8,0); // it takes time, check prev cmd parameter, in case use wr_data16 with repeated byte _spi.write(data); // write 8bit _spi.format(16,0); } void SPI16::wr_cmd16(unsigned short cmd) { _DC.write(0); // 0=cmd _spi.write(cmd); // write 16bit _DC.write(1); // 1=data next } void SPI16::wr_data16(unsigned short data) { _spi.write(data); // write 16bit } void SPI16::wr_gram(unsigned short data) { _spi.write(data); // write 16bit } void SPI16::wr_gram(unsigned short data, unsigned int count) { while(count) { _spi.write(data); count--; } } void SPI16::wr_grambuf(unsigned short* data, unsigned int lenght) { while(lenght) { _spi.write(*data); data++; lenght--; } } unsigned short SPI16::rd_gram(bool convert) { unsigned int r=0; r |= _spi.write(0); // 16bit, whole first byte is dummy, second is red r <<= 16; r |= _spi.write(0); if(convert) { // gram is 18bit/pixel, if you set 16bit/pixel (cmd 3A), during writing the 16bits are expanded to 18bit // during reading, you read the raw 18bit gram r = RGB24to16((r&0xFF0000)>>16, (r&0xFF00)>>8, r&0xFF);// 18bit pixel padded to 24bits, rrrrrr00_gggggg00_bbbbbb00, converted to 16bit } else r >>= 8; _CS = 1; // force CS HIG to interupt the "read state" _CS = 0; return (unsigned short)r; } unsigned int SPI16::rd_reg_data32(unsigned char reg) { wr_cmd8(reg); unsigned int r=0; r |= _spi.write(0); // we get only 15bit valid, first bit was the dummy cycle r <<= 16; r |= _spi.write(0); r <<= 1; // 32bits are aligned, now collecting bit_0 r |= (_spi.write(0) >> 15); // we clocked 15 more bit so ILI waiting for 16th, we need to reset spi bus _CS = 1; // force CS HIG to interupt the cmd _CS = 0; return r; } unsigned int SPI16::rd_extcreg_data32(unsigned char reg, unsigned char SPIreadenablecmd) { unsigned int r=0; for(int regparam=1; regparam<4; regparam++) // when reading EXTC regs, first parameter is always dummy, so start with 1 { wr_cmd8(SPIreadenablecmd); // spi-in enable cmd, 0xD9 (ili9341) or 0xFB (ili9488) or don't know wr_data8(0xF0|regparam); // in low nibble specify which reg parameter we want wr_cmd8(reg); // now send cmd (select register we want to read) r <<= 8; r |= (_spi.write(0) >> 8); } _CS = 1; // force CS HIG to interupt the cmd _CS = 0; return r; } // ILI932x specific void SPI16::dummyread() { _spi.write(0); // dummy read } // ILI932x specific void SPI16::reg_select(unsigned char reg, bool forread) { _CS = 1; //fixme: really needed? _CS = 0; //fixme: really needed? _spi.write(0x70); // write 0070 _spi.write(reg); // write 16bit _CS = 1; //fixme: really needed? _CS = 0; //fixme: really needed? if(forread) _spi.write(0x73); else _spi.write(0x72); } // ILI932x specific void SPI16::reg_write(unsigned char reg, unsigned short data) { _CS = 1; //fixme: really needed? _CS = 0; //fixme: really needed? _spi.write(0x70); // write 0070 _spi.write(reg); // write 16bit _CS = 1; //fixme: really needed? _CS = 0; //fixme: really needed? _spi.write(0x72); // write 0072 _spi.write(data); // write 16bit } // ILI932x specific unsigned short SPI16::reg_read(unsigned char reg) { unsigned int r=0; _CS = 1; //fixme: really needed? _CS = 0; //fixme: really needed? _spi.write(0x70); // write 0070 _spi.write(reg); // write 16bit _CS = 1; //fixme: really needed? _CS = 0; //fixme: really needed? _spi.write(0x73); // write 0073 r |= _spi.write(0); // read 16bit, 8bit dummy + 8bit valid r <<= 16; r |= _spi.write(0); // read 16bit _CS = 1; //fixme: to resync, maybe really needed _CS = 0; //fixme: to resync, maybe really needed return (r>>8); } void SPI16::hw_reset() { wait_ms(15); _DC = 1; _CS = 1; _reset = 0; // display reset wait_ms(2); _reset = 1; // end reset wait_ms(100); } void SPI16::BusEnable(bool enable) { _CS = enable ? 0:1; }