Using CAN bus with NUCLEO boards (Demo for the CANnucleo library).

Dependencies:   CANnucleo mbed-dev

Dependents:   BMS_2 Can_sniffer_BMS_GER Can_sniffer_bms ECU_1

Using CAN bus with NUCLEO boards

Demo for the CANnucleo library


Information

Because CAN support has been finally implemented into the mbed library also for the STM boards there is no need to use the CANnucleo library anymore (however you may if you want). See the CAN_Hello example which is trying to demonstrate the mbed built-in CAN API using NUCLEO boards.

Two low cost STM32F103C8T6 boards are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.). CAN transceivers are not part of NUCLEO boards, therefore must be added by you. Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends.

Schematic

Zoom in

/media/uploads/hudakz/can_nucleo_hello.png

Hookup

/media/uploads/hudakz/20150724_080148.jpg Zoom in

The mbed boards in this example are transmitting CAN messages carrying two data items:

uint8_t   counter;  // one byte
float     voltage;  // four bytes

So in this case the total length of payload data is five bytes (must not exceed eight bytes).
For our convenience, the "<<" (append) operator is used to add data to the CAN message.
The usage of "<<" and ">>" operators is similar to the C++ io-streams operators. We can append data one at a time

txMsg << counter;
txMsg << voltage;

or combine all into one expression.

txMsg << counter << voltage;

The actual data length of a CAN message is automatically updated when using "<<" or ">>" operators.
After successful transmission the CAN message is printed to the serial terminal of the connected PC. So we can check the details (ID, type, format, length and raw data). If something goes wrong during transmission a "Transmission error" message is printed to the serial terminal.

On arrival of a CAN message it's also printed to the serial terminal of the connected PC. So we can see the details (ID, type, format, length and raw data). Then its ID is checked. If there is a match with the ID of awaited message then data is extracted from the CAN message (in the same sequence as it was appended before transmitting) using the ">>" (extract) operator one at a time

rxMsg >> counter;
rxMsg >> voltage;

or all in one shot

rxMsg >> counter >> voltage;

Important

Before compiling the project, in the mbed-dev library open the device.h file associated with the selected target board and add #undef DEVICE_CAN as follows:

device.h

#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H

//=======================================
#define DEVICE_ID_LENGTH       24

#undef DEVICE_CAN

#include "objects.h"

#endif

NOTE: Failing to do so will result in compilation errors.

The same source code is used for both boards, but:

  • For board #1 compile the example without any change to main.cpp
  • For board #2 comment out the line #define BOARD1 1 before compiling

Once binaries have been downloaded to the boards, reset board #1.

NOTE:

The code published here was written for the official NUCLEO boards. When using STM32F103C8T6 boards, shown in the picture above (LED1 is connected to pin PC_13 and, via a resistor, to +3.3V),

  • Import the mbed-STM32F103C8T6 library into your project.
  • Include (uncomment) the line #define TARGET_STM32F103C8T6 1
  • Select NUCLEO-F103RB as target platform for the online compiler.

CAN bus related information

Committer:
hudakz
Date:
Sat Jul 23 08:29:31 2016 +0000
Revision:
12:e91e44924194
Parent:
11:07d927da1a94
Child:
13:e741def3e4ff
Updated

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hudakz 0:c5e5d0df6f2a 1 /*
hudakz 0:c5e5d0df6f2a 2 * An example showing how to use the CANnucleo library:
hudakz 0:c5e5d0df6f2a 3 *
hudakz 6:7ff95ce72f6d 4 * Two affordable (less than $4 on ebay) STM32F103C8T6 boards (20kB SRAM, 64kB Flash),
hudakz 6:7ff95ce72f6d 5 * compatible with the NUCLEO-F103RB platform (20kB SRAM, 128kB Flash),
hudakz 6:7ff95ce72f6d 6 * are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.).
hudakz 6:7ff95ce72f6d 7 * CAN transceivers are not part of NUCLEO boards, therefore must be added by you.
hudakz 6:7ff95ce72f6d 8 * Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends.
hudakz 6:7ff95ce72f6d 9 *
hudakz 10:66da8731bdb6 10 * For more details see the wiki page <https://developer.mbed.org/users/hudakz/code/CANnucleo_Hello/>
hudakz 6:7ff95ce72f6d 11 *
hudakz 10:66da8731bdb6 12 * NOTE: If you'd like to use the official NUCLEO boards comment out line 25
hudakz 6:7ff95ce72f6d 13 *
hudakz 6:7ff95ce72f6d 14 * The same code is used for both NUCLEO boards, but:
hudakz 0:c5e5d0df6f2a 15 * For board #1 compile the example without any change.
hudakz 10:66da8731bdb6 16 * For board #2 comment out line 26 before compiling
hudakz 4:ccf4ac2deac8 17 *
hudakz 6:7ff95ce72f6d 18 * Once the binaries have been downloaded to the boards reset board #1.
hudakz 0:c5e5d0df6f2a 19 *
hudakz 0:c5e5d0df6f2a 20 */
hudakz 0:c5e5d0df6f2a 21
hudakz 0:c5e5d0df6f2a 22 #include "mbed.h"
hudakz 12:e91e44924194 23 #include "CANnucleo.h"
hudakz 0:c5e5d0df6f2a 24
hudakz 12:e91e44924194 25 //#define TARGET_STM32F103C8T6 1 // comment out this line when using official NUCLEO boards!
hudakz 10:66da8731bdb6 26 #define BOARD1 1 // comment out this line when compiling for board #2
hudakz 0:c5e5d0df6f2a 27
hudakz 10:66da8731bdb6 28 #if defined(TARGET_STM32F103C8T6)
hudakz 10:66da8731bdb6 29 #define LED_PIN PC_13
hudakz 10:66da8731bdb6 30 const int OFF = 1;
hudakz 10:66da8731bdb6 31 const int ON = 0;
hudakz 0:c5e5d0df6f2a 32 #else
hudakz 10:66da8731bdb6 33 #define LED_PIN LED1
hudakz 10:66da8731bdb6 34 const int OFF = 0;
hudakz 10:66da8731bdb6 35 const int ON = 1;
hudakz 0:c5e5d0df6f2a 36 #endif
hudakz 0:c5e5d0df6f2a 37
hudakz 10:66da8731bdb6 38 #if defined(BOARD1)
hudakz 10:66da8731bdb6 39 const unsigned int RX_ID = 0x100;
hudakz 10:66da8731bdb6 40 const unsigned int TX_ID = 0x101;
hudakz 6:7ff95ce72f6d 41 #else
hudakz 10:66da8731bdb6 42 const unsigned int RX_ID = 0x101;
hudakz 10:66da8731bdb6 43 const unsigned int TX_ID = 0x100;
hudakz 6:7ff95ce72f6d 44 #endif
hudakz 6:7ff95ce72f6d 45
hudakz 11:07d927da1a94 46 DigitalOut led(LED_PIN);
hudakz 11:07d927da1a94 47 int ledState;
hudakz 11:07d927da1a94 48 Timer timer;
hudakz 11:07d927da1a94 49 CAN can(PA_11, PA_12); // CAN Rx pin name, CAN Tx pin name
hudakz 11:07d927da1a94 50 CANMessage rxMsg;
hudakz 11:07d927da1a94 51 CANMessage txMsg;
hudakz 11:07d927da1a94 52 int counter = 0;
hudakz 0:c5e5d0df6f2a 53 volatile bool msgAvailable = false;
hudakz 0:c5e5d0df6f2a 54
hudakz 0:c5e5d0df6f2a 55 /**
hudakz 0:c5e5d0df6f2a 56 * @brief 'CAN receive-complete' interrup handler.
hudakz 0:c5e5d0df6f2a 57 * @note Called on arrival of new CAN message.
hudakz 0:c5e5d0df6f2a 58 * Keep it as short as possible.
hudakz 0:c5e5d0df6f2a 59 * @param
hudakz 0:c5e5d0df6f2a 60 * @retval
hudakz 0:c5e5d0df6f2a 61 */
hudakz 0:c5e5d0df6f2a 62 void onMsgReceived() {
hudakz 0:c5e5d0df6f2a 63 msgAvailable = true;
hudakz 0:c5e5d0df6f2a 64 }
hudakz 0:c5e5d0df6f2a 65
hudakz 0:c5e5d0df6f2a 66 /**
hudakz 0:c5e5d0df6f2a 67 * @brief Main
hudakz 0:c5e5d0df6f2a 68 * @note
hudakz 0:c5e5d0df6f2a 69 * @param
hudakz 0:c5e5d0df6f2a 70 * @retval
hudakz 0:c5e5d0df6f2a 71 */
hudakz 0:c5e5d0df6f2a 72 int main() {
hudakz 5:c6503b7ae971 73 can.frequency(1000000); // set bit rate to 1Mbps
hudakz 12:e91e44924194 74 can.attach(&onMsgReceived); // attach 'CAN receive-complete' interrupt handler
hudakz 6:7ff95ce72f6d 75
hudakz 0:c5e5d0df6f2a 76 #if defined(BOARD1)
hudakz 10:66da8731bdb6 77 led = ON; // turn LED on
hudakz 10:66da8731bdb6 78 timer.start(); // start timer
hudakz 0:c5e5d0df6f2a 79 #else
hudakz 10:66da8731bdb6 80 led = OFF; // turn LED off
hudakz 0:c5e5d0df6f2a 81 #endif
hudakz 0:c5e5d0df6f2a 82
hudakz 0:c5e5d0df6f2a 83 while(1) {
hudakz 4:ccf4ac2deac8 84 if(timer.read() >= 1.0) { // check for timeout
hudakz 0:c5e5d0df6f2a 85 timer.stop(); // stop timer
hudakz 10:66da8731bdb6 86 timer.reset(); // reset timer
hudakz 0:c5e5d0df6f2a 87 counter++; // increment counter
hudakz 10:66da8731bdb6 88 ledState = led.read(); // get led state
hudakz 0:c5e5d0df6f2a 89 txMsg.clear(); // clear Tx message storage
hudakz 0:c5e5d0df6f2a 90 txMsg.id = TX_ID; // set ID
hudakz 10:66da8731bdb6 91 txMsg << counter; // append first data item
hudakz 10:66da8731bdb6 92 txMsg << ledState; // append second data item (total data lenght must be <= 8 bytes!)
hudakz 10:66da8731bdb6 93 led = OFF; // turn LED off
hudakz 10:66da8731bdb6 94 if(can.write(txMsg)) // transmit message
hudakz 10:66da8731bdb6 95 printf("CAN message sent\r\n");
hudakz 10:66da8731bdb6 96 else
hudakz 10:66da8731bdb6 97 printf("Transmission error\r\n");
hudakz 0:c5e5d0df6f2a 98 }
hudakz 0:c5e5d0df6f2a 99 if(msgAvailable) {
hudakz 0:c5e5d0df6f2a 100 msgAvailable = false; // reset flag for next use
hudakz 0:c5e5d0df6f2a 101 can.read(rxMsg); // read message into Rx message storage
hudakz 2:49c9430860d1 102 printf("CAN message received:\r\n");
hudakz 2:49c9430860d1 103 printf(" ID = %#x\r\n", rxMsg.id);
hudakz 2:49c9430860d1 104 printf(" Type = %d\r\n", rxMsg.type);
hudakz 2:49c9430860d1 105 printf(" Format = %d\r\n", rxMsg.format);
hudakz 2:49c9430860d1 106 printf(" Length = %d\r\n", rxMsg.len);
hudakz 2:49c9430860d1 107 printf(" Data =");
hudakz 2:49c9430860d1 108 for(int i = 0; i < rxMsg.len; i++)
hudakz 2:49c9430860d1 109 printf(" %x", rxMsg.data[i]);
hudakz 10:66da8731bdb6 110 printf("\r\n");
hudakz 10:66da8731bdb6 111 // Filtering performed by software:
hudakz 12:e91e44924194 112 if(rxMsg.id == RX_ID) { // See comments in CAN.cpp for filtering performed by hardware
hudakz 0:c5e5d0df6f2a 113 rxMsg >> counter; // extract first data item
hudakz 10:66da8731bdb6 114 rxMsg >> ledState; // extract second data item
hudakz 1:267d6288df33 115 printf("counter = %d\r\n", counter);
hudakz 10:66da8731bdb6 116 led = ledState; // set LED
hudakz 10:66da8731bdb6 117 timer.start(); // transmission lag
hudakz 0:c5e5d0df6f2a 118 }
hudakz 0:c5e5d0df6f2a 119 }
hudakz 0:c5e5d0df6f2a 120 }
hudakz 0:c5e5d0df6f2a 121 }
hudakz 7:2dce8ed51091 122
hudakz 12:e91e44924194 123