Using CAN bus with NUCLEO boards (Demo for the CANnucleo library).

Dependencies:   CANnucleo mbed-dev

Dependents:   BMS_2 Can_sniffer_BMS_GER Can_sniffer_bms ECU_1

Using CAN bus with NUCLEO boards

Demo for the CANnucleo library


Information

Because CAN support has been finally implemented into the mbed library also for the STM boards there is no need to use the CANnucleo library anymore (however you may if you want). See the CAN_Hello example which is trying to demonstrate the mbed built-in CAN API using NUCLEO boards.

Two low cost STM32F103C8T6 boards are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.). CAN transceivers are not part of NUCLEO boards, therefore must be added by you. Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends.

Schematic

Zoom in

/media/uploads/hudakz/can_nucleo_hello.png

Hookup

/media/uploads/hudakz/20150724_080148.jpg Zoom in

The mbed boards in this example are transmitting CAN messages carrying two data items:

uint8_t   counter;  // one byte
float     voltage;  // four bytes

So in this case the total length of payload data is five bytes (must not exceed eight bytes).
For our convenience, the "<<" (append) operator is used to add data to the CAN message.
The usage of "<<" and ">>" operators is similar to the C++ io-streams operators. We can append data one at a time

txMsg << counter;
txMsg << voltage;

or combine all into one expression.

txMsg << counter << voltage;

The actual data length of a CAN message is automatically updated when using "<<" or ">>" operators.
After successful transmission the CAN message is printed to the serial terminal of the connected PC. So we can check the details (ID, type, format, length and raw data). If something goes wrong during transmission a "Transmission error" message is printed to the serial terminal.

On arrival of a CAN message it's also printed to the serial terminal of the connected PC. So we can see the details (ID, type, format, length and raw data). Then its ID is checked. If there is a match with the ID of awaited message then data is extracted from the CAN message (in the same sequence as it was appended before transmitting) using the ">>" (extract) operator one at a time

rxMsg >> counter;
rxMsg >> voltage;

or all in one shot

rxMsg >> counter >> voltage;

Important

Before compiling the project, in the mbed-dev library open the device.h file associated with the selected target board and add #undef DEVICE_CAN as follows:

device.h

#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H

//=======================================
#define DEVICE_ID_LENGTH       24

#undef DEVICE_CAN

#include "objects.h"

#endif

NOTE: Failing to do so will result in compilation errors.

The same source code is used for both boards, but:

  • For board #1 compile the example without any change to main.cpp
  • For board #2 comment out the line #define BOARD1 1 before compiling

Once binaries have been downloaded to the boards, reset board #1.

NOTE:

The code published here was written for the official NUCLEO boards. When using STM32F103C8T6 boards, shown in the picture above (LED1 is connected to pin PC_13 and, via a resistor, to +3.3V),

  • Import the mbed-STM32F103C8T6 library into your project.
  • Include (uncomment) the line #define TARGET_STM32F103C8T6 1
  • Select NUCLEO-F103RB as target platform for the online compiler.

CAN bus related information

Committer:
hudakz
Date:
Thu Dec 01 21:14:59 2016 +0000
Revision:
21:7120a0dcc8ee
Parent:
20:eb1a8042605e
Child:
22:f4682a5ddda6
CAN bus frequency for STM32F103C8T6 board corrected.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hudakz 0:c5e5d0df6f2a 1 /*
hudakz 16:a86f339d1c25 2 * An example showing how to use the CANnucleo library:
hudakz 0:c5e5d0df6f2a 3 *
hudakz 20:eb1a8042605e 4 * Two affordable (less than $3 on ebay) STM32F103C8T6 boards (20kB SRAM, 64kB Flash),
hudakz 20:eb1a8042605e 5 * (see [https://developer.mbed.org/users/hudakz/code/STM32F103C8T6_Hello/] for more details)
hudakz 6:7ff95ce72f6d 6 * are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.).
hudakz 6:7ff95ce72f6d 7 * CAN transceivers are not part of NUCLEO boards, therefore must be added by you.
hudakz 6:7ff95ce72f6d 8 * Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends.
hudakz 6:7ff95ce72f6d 9 *
hudakz 16:a86f339d1c25 10 * For more details see the wiki page <https://developer.mbed.org/users/hudakz/code/CANnucleo_Hello/>
hudakz 6:7ff95ce72f6d 11 *
hudakz 21:7120a0dcc8ee 12 * NOTE: If you'd like to use an STM32F103C8T6 board uncomment line 23
hudakz 6:7ff95ce72f6d 13 *
hudakz 6:7ff95ce72f6d 14 * The same code is used for both NUCLEO boards, but:
hudakz 0:c5e5d0df6f2a 15 * For board #1 compile the example without any change.
hudakz 18:22977a898fe9 16 * For board #2 comment out line 23 before compiling
hudakz 4:ccf4ac2deac8 17 *
hudakz 6:7ff95ce72f6d 18 * Once the binaries have been downloaded to the boards reset board #1.
hudakz 0:c5e5d0df6f2a 19 *
hudakz 0:c5e5d0df6f2a 20 */
hudakz 0:c5e5d0df6f2a 21
hudakz 21:7120a0dcc8ee 22 //#define BOARD1 1 // comment out this line when compiling for board #2
hudakz 21:7120a0dcc8ee 23 #define TARGET_STM32F103C8T6 1 // uncomment this line when using STM32F103C8T6 boards!
hudakz 0:c5e5d0df6f2a 24
hudakz 16:a86f339d1c25 25 #if defined(TARGET_STM32F103C8T6)
hudakz 21:7120a0dcc8ee 26 #include "stm32f103c8t6.h"
hudakz 19:872e304d7e17 27 #define LED_PIN PC_13
hudakz 10:66da8731bdb6 28 const int OFF = 1;
hudakz 10:66da8731bdb6 29 const int ON = 0;
hudakz 0:c5e5d0df6f2a 30 #else
hudakz 19:872e304d7e17 31 #define LED_PIN LED1
hudakz 10:66da8731bdb6 32 const int OFF = 0;
hudakz 10:66da8731bdb6 33 const int ON = 1;
hudakz 0:c5e5d0df6f2a 34 #endif
hudakz 0:c5e5d0df6f2a 35
hudakz 10:66da8731bdb6 36 #if defined(BOARD1)
hudakz 10:66da8731bdb6 37 const unsigned int RX_ID = 0x100;
hudakz 10:66da8731bdb6 38 const unsigned int TX_ID = 0x101;
hudakz 6:7ff95ce72f6d 39 #else
hudakz 10:66da8731bdb6 40 const unsigned int RX_ID = 0x101;
hudakz 10:66da8731bdb6 41 const unsigned int TX_ID = 0x100;
hudakz 6:7ff95ce72f6d 42 #endif
hudakz 6:7ff95ce72f6d 43
hudakz 19:872e304d7e17 44 #include "CANnucleo.h"
hudakz 16:a86f339d1c25 45 #include "mbed.h"
hudakz 16:a86f339d1c25 46
hudakz 17:18d4d0ff26a6 47 /*
hudakz 17:18d4d0ff26a6 48 * To avaoid name collision with the CAN and CANMessage classes built into the mbed library
hudakz 17:18d4d0ff26a6 49 * the CANnucleo's CAN and CANMessage classes have been moved into the CANnucleo namespace.
hudakz 20:eb1a8042605e 50 * Remember to qualify them with the CANnucleo namespace.
hudakz 17:18d4d0ff26a6 51 */
hudakz 21:7120a0dcc8ee 52 CANnucleo::CAN* can;
hudakz 17:18d4d0ff26a6 53 CANnucleo::CANMessage rxMsg;
hudakz 17:18d4d0ff26a6 54 CANnucleo::CANMessage txMsg;
hudakz 19:872e304d7e17 55 DigitalOut led(LED_PIN);
hudakz 18:22977a898fe9 56 int ledState;
hudakz 18:22977a898fe9 57 Timer timer;
hudakz 17:18d4d0ff26a6 58 int counter = 0;
hudakz 17:18d4d0ff26a6 59 volatile bool msgAvailable = false;
hudakz 0:c5e5d0df6f2a 60
hudakz 16:a86f339d1c25 61 /**
hudakz 16:a86f339d1c25 62 * @brief 'CAN receive-complete' interrup handler.
hudakz 16:a86f339d1c25 63 * @note Called on arrival of new CAN message.
hudakz 16:a86f339d1c25 64 * Keep it as short as possible.
hudakz 16:a86f339d1c25 65 * @param
hudakz 16:a86f339d1c25 66 * @retval
hudakz 16:a86f339d1c25 67 */
hudakz 16:a86f339d1c25 68 void onMsgReceived() {
hudakz 16:a86f339d1c25 69 msgAvailable = true;
hudakz 16:a86f339d1c25 70 }
hudakz 16:a86f339d1c25 71
hudakz 16:a86f339d1c25 72 /**
hudakz 16:a86f339d1c25 73 * @brief Main
hudakz 16:a86f339d1c25 74 * @note
hudakz 16:a86f339d1c25 75 * @param
hudakz 16:a86f339d1c25 76 * @retval
hudakz 16:a86f339d1c25 77 */
hudakz 16:a86f339d1c25 78 int main() {
hudakz 21:7120a0dcc8ee 79 #if defined(TARGET_STM32F103C8T6)
hudakz 21:7120a0dcc8ee 80 confSysClock(); //Configure system clock (72MHz HSE clock, 48MHz USB clock)
hudakz 21:7120a0dcc8ee 81 #endif
hudakz 21:7120a0dcc8ee 82 can = new CANnucleo::CAN(PA_11, PA_12); // CAN Rx pin name, CAN Tx pin name
hudakz 21:7120a0dcc8ee 83 can->frequency(1000000); // set bit rate to 1Mbps
hudakz 21:7120a0dcc8ee 84 can->attach(&onMsgReceived); // attach 'CAN receive-complete' interrupt handler
hudakz 16:a86f339d1c25 85
hudakz 0:c5e5d0df6f2a 86 #if defined(BOARD1)
hudakz 10:66da8731bdb6 87 led = ON; // turn LED on
hudakz 10:66da8731bdb6 88 timer.start(); // start timer
hudakz 16:a86f339d1c25 89 printf("CANnucleo_Hello board #1\r\n");
hudakz 0:c5e5d0df6f2a 90 #else
hudakz 10:66da8731bdb6 91 led = OFF; // turn LED off
hudakz 16:a86f339d1c25 92 printf("CANnucleo_Hello board #2\r\n");
hudakz 0:c5e5d0df6f2a 93 #endif
hudakz 0:c5e5d0df6f2a 94
hudakz 0:c5e5d0df6f2a 95 while(1) {
hudakz 21:7120a0dcc8ee 96 if(timer.read_ms() >= 1000) { // check for timeout
hudakz 16:a86f339d1c25 97 timer.stop(); // stop timer
hudakz 16:a86f339d1c25 98 timer.reset(); // reset timer
hudakz 16:a86f339d1c25 99 counter++; // increment counter
hudakz 16:a86f339d1c25 100 ledState = led.read(); // get led state
hudakz 16:a86f339d1c25 101 txMsg.clear(); // clear Tx message storage
hudakz 16:a86f339d1c25 102 txMsg.id = TX_ID; // set ID
hudakz 16:a86f339d1c25 103 txMsg << counter; // append first data item
hudakz 16:a86f339d1c25 104 txMsg << ledState; // append second data item (total data lenght must be <= 8 bytes!)
hudakz 16:a86f339d1c25 105 led = OFF; // turn LED off
hudakz 21:7120a0dcc8ee 106 if(can->write(txMsg)) // transmit message
hudakz 16:a86f339d1c25 107 printf("CAN message sent\r\n");
hudakz 10:66da8731bdb6 108 else
hudakz 16:a86f339d1c25 109 printf("Transmission error\r\n");
hudakz 0:c5e5d0df6f2a 110 }
hudakz 16:a86f339d1c25 111 if(msgAvailable) {
hudakz 16:a86f339d1c25 112 msgAvailable = false; // reset flag for next use
hudakz 21:7120a0dcc8ee 113 can->read(rxMsg); // read message into Rx message storage
hudakz 19:872e304d7e17 114 printf("CAN message received\r\n");
hudakz 19:872e304d7e17 115 printf(" ID = 0x%.3x\r\n", rxMsg.id);
hudakz 19:872e304d7e17 116 printf(" Type = %d\r\n", rxMsg.type);
hudakz 19:872e304d7e17 117 printf(" Format = %d\r\n", rxMsg.format);
hudakz 19:872e304d7e17 118 printf(" Length = %d\r\n", rxMsg.len);
hudakz 19:872e304d7e17 119 printf(" Data =");
hudakz 2:49c9430860d1 120 for(int i = 0; i < rxMsg.len; i++)
hudakz 19:872e304d7e17 121 printf(" %.2x", rxMsg.data[i]);
hudakz 10:66da8731bdb6 122 printf("\r\n");
hudakz 16:a86f339d1c25 123 // Filtering performed by software:
hudakz 21:7120a0dcc8ee 124 if(rxMsg.id == RX_ID) { // See comments in CANnucleo.cpp for filtering performed by hardware
hudakz 16:a86f339d1c25 125 rxMsg >> counter; // extract first data item
hudakz 16:a86f339d1c25 126 rxMsg >> ledState; // extract second data item
hudakz 16:a86f339d1c25 127 printf(" counter = %d\r\n", counter);
hudakz 16:a86f339d1c25 128 led = ON; // turn LED on
hudakz 16:a86f339d1c25 129 timer.start(); // transmission lag
hudakz 0:c5e5d0df6f2a 130 }
hudakz 0:c5e5d0df6f2a 131 }
hudakz 0:c5e5d0df6f2a 132 }
hudakz 0:c5e5d0df6f2a 133 }
hudakz 7:2dce8ed51091 134
hudakz 12:e91e44924194 135
hudakz 17:18d4d0ff26a6 136