M H
/
prijimac-zaloha
prijimac-zaloha
radio22/RF22.cpp
- Committer:
- homzovam
- Date:
- 2015-04-02
- Revision:
- 1:9f3cc092b9aa
File content as of revision 1:9f3cc092b9aa:
// RF22.cpp #include "mbed.h" #include "RF22.h" Serial pc1(USBTX, USBRX); // These are indexed by the values of ModemConfigChoic // Stored in flash (program) memory to save SRAM /*PROGMEM */ static const RF22::ModemConfig MODEM_CONFIG_TABLE[] = { { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5 // All the following enable FIFO with reg 71 // 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72 // FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5 { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36 { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45 { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45 { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6 { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6 { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8 { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125 // GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm // These differ from FSK only in register 71, for the modulation type { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5 { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36 { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45 { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45 { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6 { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6 { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8 { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125 // OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm { 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75 { 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335 { 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335 { 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335 { 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335 { 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335 { 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335 }; RF22::RF22(PinName slaveSelectPin, PinName mosi, PinName miso, PinName sclk, PinName interrupt) : _slaveSelectPin(slaveSelectPin), _spi(mosi, miso, sclk), _interrupt(interrupt) /*, led1(LED1), led2(LED2), led3(LED3), led4(LED4) */ { _idleMode = RF22_XTON; // Default idle state is READY mode _mode = RF22_MODE_IDLE; // We start up in idle mode _rxGood = 0; _rxBad = 0; _txGood = 0; } //moje dopsane metody void RF22::obsluhapreruseni() { handleInterrupt(); } void RF22::vypisfifo() { _slaveSelectPin = 0; _spi.write(RF22_REG_7F_FIFO_ACCESS); pc1.printf("\n\r Obsah FIFA je:"); for(int a = 0; a<10; a++) { uint8_t x = _spi.write(RF22_REG_7F_FIFO_ACCESS); pc1.printf("\t %i", x); } _slaveSelectPin = 1; } boolean RF22::init() { wait_ms(16); _slaveSelectPin = 1; // cip select wait_ms(100); _spi.format(8,0); //konfigurace SPI _spi.frequency(10000000); // Software reset the device reset(); // Get the device type and check it // This also tests whether we are really connected to a device _deviceType = spiRead(RF22_REG_00_DEVICE_TYPE); if ( _deviceType != RF22_DEVICE_TYPE_RX_TRX && _deviceType != RF22_DEVICE_TYPE_TX) return false; _interrupt.fall(this, &RF22::isr0); clearTxBuf(); clearRxBuf(); // Most of these are the POR default spiWrite(RF22_REG_7D_TX_FIFO_CONTROL2, RF22_TXFFAEM_THRESHOLD); spiWrite(RF22_REG_7E_RX_FIFO_CONTROL, RF22_RXFFAFULL_THRESHOLD); spiWrite(RF22_REG_30_DATA_ACCESS_CONTROL, RF22_ENPACRX | RF22_ENPACTX | RF22_ENCRC | RF22_CRC_CRC_16_IBM); // Configure the message headers // Here we set up the standard packet format for use by the RF22 library // 8 nibbles preamble // 2 SYNC words 2d, d4 // Header length 4 (to, from, id, flags) // 1 octet of data length (0 to 255) // 0 to 255 octets data // 2 CRC octets as CRC16(IBM), computed on the header, length and data // On reception the to address is check for validity against RF22_REG_3F_CHECK_HEADER3 // or the broadcast address of 0xff // If no changes are made after this, the transmitted // to address will be 0xff, the from address will be 0xff // and all such messages will be accepted. This permits the out-of the box // RF22 config to act as an unaddresed, unreliable datagram service spiWrite(RF22_REG_32_HEADER_CONTROL1, RF22_BCEN_HEADER3 | RF22_HDCH_HEADER3); spiWrite(RF22_REG_33_HEADER_CONTROL2, RF22_HDLEN_4 | RF22_SYNCLEN_2); setPreambleLength(8); //delka preambule uint8_t syncwords[] = { 0x2d, 0xd4 }; setSyncWords(syncwords, sizeof(syncwords)); setPromiscuous(false); // Check the TO header against RF22_DEFAULT_NODE_ADDRESS spiWrite(RF22_REG_3F_CHECK_HEADER3, RF22_DEFAULT_NODE_ADDRESS); // Set the default transmit header values setHeaderTo(RF22_DEFAULT_NODE_ADDRESS); setHeaderFrom(RF22_DEFAULT_NODE_ADDRESS); setHeaderId(0); setHeaderFlags(0); // Ensure the antenna can be switched automatically according to transmit and receive // This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit // This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive spiWrite (RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state spiWrite (RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state // Enable interrupts spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM |RF22_ENRXFFAFULL | RF22_ENPKSENT |RF22_ENPKVALID| RF22_ENCRCERROR); spiWrite(RF22_REG_06_INTERRUPT_ENABLE2, RF22_ENPREAVAL); // Set some defaults. An innocuous ISM frequency, and reasonable pull-in setFrequency(434.0, 0.05); // setFrequency(900.0); // Some slow, reliable default speed and modulation setModemConfig(FSK_Rb2_4Fd36); // setModemConfig(FSK_Rb125Fd125); // Minimum power setTxPower(RF22_TXPOW_8DBM); // setTxPower(RF22_TXPOW_17DBM); return true; } // C++ level interrupt handler for this instance void RF22::handleInterrupt() { uint8_t _lastInterruptFlags[2]; //led1 = 1; // Read the interrupt flags which clears the interrupt spiBurstRead(RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2); #if 0 // Caution: Serial printing in this interrupt routine can cause mysterious crashes Serial.print("interrupt "); Serial.print(_lastInterruptFlags[0], HEX); Serial.print(" "); Serial.println(_lastInterruptFlags[1], HEX); if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0) Serial.println("FUNNY: no interrupt!"); #endif #if 0 // TESTING: fake an RF22_IFFERROR static int counter = 0; if (_lastInterruptFlags[0] & RF22_IPKSENT && counter++ == 10) { _lastInterruptFlags[0] = RF22_IFFERROR; counter = 0; } #endif if (_lastInterruptFlags[0] & RF22_IFFERROR) { // Serial.println("IFFERROR"); //led4 = !led4; resetFifos(); // Clears the interrupt if (_mode == RF22_MODE_TX) restartTransmit(); else if (_mode == RF22_MODE_RX){ clearRxBuf(); //stop and start Rx setModeIdle(); setModeRx(); } // stop handling the remaining interruppts as something went wrong here return; } // Caution, any delay here may cause a FF underflow or overflow if (_lastInterruptFlags[0] & RF22_ITXFFAEM) { // See if more data has to be loaded into the Tx FIFO //led2 = !led2; sendNextFragment(); // Serial.println("ITXFFAEM"); } if (_lastInterruptFlags[0] & RF22_IRXFFAFULL) { // Caution, any delay here may cause a FF overflow // Read some data from the Rx FIFO //led4 = !led4; readNextFragment(); // Serial.println("IRXFFAFULL"); } if (_lastInterruptFlags[0] & RF22_IEXT) { // This is not enabled by the base code, but users may want to enable it //led2 = !led2; handleExternalInterrupt(); // Serial.println("IEXT"); } if (_lastInterruptFlags[1] & RF22_IWUT) { // This is not enabled by the base code, but users may want to enable it //led2 = !led2; handleWakeupTimerInterrupt(); // Serial.println("IWUT"); } if (_lastInterruptFlags[0] & RF22_IPKSENT) { // Serial.println("IPKSENT"); _txGood++; //led4 = !led4; // Transmission does not automatically clear the tx buffer. // Could retransmit if we wanted // RF22 transitions automatically to Idle _mode = RF22_MODE_IDLE; } if (_lastInterruptFlags[0] & RF22_IPKVALID) { uint8_t len = spiRead(RF22_REG_4B_RECEIVED_PACKET_LENGTH); // Serial.println("IPKVALID"); // Serial.println(len); // Serial.println(_bufLen); // May have already read one or more fragments // Get any remaining unread octets, based on the expected length // First make sure we dont overflow the buffer in the case of a stupid length // or partial bad receives if ( len > RF22_MAX_MESSAGE_LEN || len < _bufLen) //pokud je delka zpravy delsi nez FIFO { _rxBad++; _mode = RF22_MODE_IDLE; clearRxBuf(); return; // Hmmm receiver buffer overflow. } spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen); __disable_irq(); // Disable Interrupts _rxGood++; _bufLen = len; _mode = RF22_MODE_IDLE; _rxBufValid = true; // reset the fifo for next packet?? //resetRxFifo(); __enable_irq(); // Enable Interrupts //led3 = !led3; } if (_lastInterruptFlags[0] & RF22_ICRCERROR) { // Serial.println("ICRCERR"); _rxBad++; //led2 = !led2; clearRxBuf(); resetRxFifo(); _mode = RF22_MODE_IDLE; setModeRx(); // Keep trying } if (_lastInterruptFlags[1] & RF22_IPREAVAL) { // Serial.println("IPREAVAL"); _lastRssi = spiRead(RF22_REG_26_RSSI); // why clear the rx-buf here? charly clearRxBuf(); } //led1 = 0; } // These are low level functions that call the interrupt handler for the correct // instance of RF22. // 2 interrupts allows us to have 2 different devices void RF22::isr0() { //handleInterrupt(); obsluhapreruseni(); } void RF22::reset() { spiWrite(RF22_REG_07_OPERATING_MODE1, RF22_SWRES); //soft reset wait_ms(1); } uint8_t RF22::spiRead(uint8_t reg) { __disable_irq(); // Disable Interrupts _slaveSelectPin=0; _spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the address with the write mask off uint8_t val = _spi.write(0); // The written value is ignored, reg value is read ?????? _slaveSelectPin = 1; __enable_irq(); // Enable Interrupts return val; } void RF22::spiWrite(uint8_t reg, uint8_t val) //zapis hodnot z define { __disable_irq(); // Disable Interrupts _slaveSelectPin = 0; _spi.write(reg | RF22_SPI_WRITE_MASK); // Send the address with the write mask on _spi.write(val); // New value follows _slaveSelectPin = 1; __enable_irq(); // Enable Interrupts } void RF22::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len) //tady se vycitaji data { _slaveSelectPin = 0; _spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the start address with the write mask off if(reg == RF22_REG_7F_FIFO_ACCESS) pc1.printf("\n\r Data primo z bufferu:"); while (len--) { *dest++ = _spi.write(0); if(reg == RF22_REG_7F_FIFO_ACCESS) pc1.printf(" %i", *dest); } _slaveSelectPin = 1; } void RF22::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len) { _slaveSelectPin = 0; _spi.write(reg | RF22_SPI_WRITE_MASK); // Send the start address with the write mask on while (len--) _spi.write(*src++); _slaveSelectPin = 1; } uint8_t RF22::statusRead() { return spiRead(RF22_REG_02_DEVICE_STATUS); } uint8_t RF22::adcRead(uint8_t adcsel, uint8_t adcref , uint8_t adcgain, uint8_t adcoffs) { uint8_t configuration = adcsel | adcref | (adcgain & RF22_ADCGAIN); spiWrite(RF22_REG_0F_ADC_CONFIGURATION, configuration | RF22_ADCSTART); spiWrite(RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs); // Conversion time is nominally 305usec // Wait for the DONE bit while (!(spiRead(RF22_REG_0F_ADC_CONFIGURATION) & RF22_ADCDONE)) ; // Return the value return spiRead(RF22_REG_11_ADC_VALUE); } uint16_t RF22::wutRead() { uint8_t buf[2]; spiBurstRead(RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2); return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order } // RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec void RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd) { uint8_t period[3]; period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3); period[1] = wtm >> 8; period[2] = wtm & 0xff; spiBurstWrite(RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period)); } // Returns true if centre + (fhch * fhs) is within limits // Caution, different versions of the RF22 support different max freq // so YMMV boolean RF22::setFrequency(float centre, float afcPullInRange) { uint8_t fbsel = RF22_SBSEL; uint8_t afclimiter; if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon return false; if (centre >= 480.0) { if (afcPullInRange < 0.0 || afcPullInRange > 0.318750) return false; centre /= 2; fbsel |= RF22_HBSEL; afclimiter = afcPullInRange * 1000000.0 / 1250.0; } else { if (afcPullInRange < 0.0 || afcPullInRange > 0.159375) return false; afclimiter = afcPullInRange * 1000000.0 / 625.0; } centre /= 10.0; float integerPart = floor(centre); float fractionalPart = centre - integerPart; uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23 fbsel |= fb; uint16_t fc = fractionalPart * 64000; spiWrite(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT spiWrite(RF22_REG_74_FREQUENCY_OFFSET2, 0); spiWrite(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel); spiWrite(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8); spiWrite(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff); spiWrite(RF22_REG_2A_AFC_LIMITER, afclimiter); return !(statusRead() & RF22_FREQERR); } // Step size in 10kHz increments // Returns true if centre + (fhch * fhs) is within limits boolean RF22::setFHStepSize(uint8_t fhs) { spiWrite(RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs); return !(statusRead() & RF22_FREQERR); } // Adds fhch * fhs to centre frequency // Returns true if centre + (fhch * fhs) is within limits boolean RF22::setFHChannel(uint8_t fhch) { spiWrite(RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch); return !(statusRead() & RF22_FREQERR); } uint8_t RF22::rssiRead() { return spiRead(RF22_REG_26_RSSI); } uint8_t RF22::ezmacStatusRead() { return spiRead(RF22_REG_31_EZMAC_STATUS); } void RF22::setMode(uint8_t mode) { spiWrite(RF22_REG_07_OPERATING_MODE1, mode); } void RF22::setModeIdle() { if (_mode != RF22_MODE_IDLE) { setMode(_idleMode); _mode = RF22_MODE_IDLE; } } void RF22::setModeRx() { if (_mode != RF22_MODE_RX) { setMode(_idleMode | RF22_RXON); _mode = RF22_MODE_RX; } } void RF22::setModeTx() { if (_mode != RF22_MODE_TX) { setMode(_idleMode | RF22_TXON); _mode = RF22_MODE_TX; // Hmmm, if you dont clear the RX FIFO here, then it appears that going // to transmit mode in the middle of a receive can corrupt the // RX FIFO resetRxFifo(); } } uint8_t RF22::mode() { return _mode; } void RF22::setTxPower(uint8_t power) { spiWrite(RF22_REG_6D_TX_POWER, power); } // Sets registers from a canned modem configuration structure void RF22::setModemRegisters(const ModemConfig* config) { spiWrite(RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c); spiWrite(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f); spiBurstWrite(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6); spiBurstWrite(RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3); spiWrite(RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58); spiWrite(RF22_REG_69_AGC_OVERRIDE1, config->reg_69); spiBurstWrite(RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5); } // Set one of the canned FSK Modem configs // Returns true if its a valid choice boolean RF22::setModemConfig(ModemConfigChoice index) { if (index > (sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig))) return false; RF22::ModemConfig cfg; memcpy(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig)); setModemRegisters(&cfg); return true; } // REVISIT: top bit is in Header Control 2 0x33 void RF22::setPreambleLength(uint8_t nibbles) { spiWrite(RF22_REG_34_PREAMBLE_LENGTH, nibbles); } // Caution doesnt set sync word len in Header Control 2 0x33 void RF22::setSyncWords(const uint8_t* syncWords, uint8_t len) { spiBurstWrite(RF22_REG_36_SYNC_WORD3, syncWords, len); } void RF22::clearRxBuf() { __disable_irq(); // Disable Interrupts _bufLen = 0; _rxBufValid = false; __enable_irq(); // Enable Interrupts } boolean RF22::available() { if (!_rxBufValid) setModeRx(); // Make sure we are receiving return _rxBufValid; } // Blocks until a valid message is received void RF22::waitAvailable() { while (!available()) ; } // Blocks until a valid message is received or timeout expires // Return true if there is a message available bool RF22::waitAvailableTimeout(uint16_t timeout) { Timer t; t.start(); unsigned long endtime = t.read_ms() + timeout; while (t.read_ms() < endtime) if (available()) return true; return false; } void RF22::waitPacketSent() { while (_mode == RF22_MODE_TX) ; // Wait for any previous transmit to finish } // Diagnostic help void RF22::printBuffer(const uint8_t *buf, uint8_t len) { uint8_t i; pc1.printf("\n\rObsah Bufferu "); for (i = 0; i < len; i++) { if (i % 16 == 15) pc1.printf("%d", buf[i]); else { pc1.printf("%d", buf[i]); pc1.printf(" "); } } pc1.printf(" "); } boolean RF22::recv(uint8_t* buf, uint8_t* len) { if (!available()) return false; __disable_irq(); // Disable Interrupts if (*len > _bufLen) *len = _bufLen; memcpy(buf, _buf, *len); printBuffer(_buf, *len); clearRxBuf(); __enable_irq(); // Enable Interrupts printBuffer( buf, *len); return true; } void RF22::clearTxBuf() { __disable_irq(); // Disable Interrupts _bufLen = 0; _txBufSentIndex = 0; _txPacketSent = false; __enable_irq(); // Enable Interrupts } void RF22::startTransmit() { sendNextFragment(); // Actually the first fragment spiWrite(RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent setModeTx(); // Start the transmitter, turns off the receiver } // Restart the transmission of a packet that had a problem void RF22::restartTransmit() { _mode = RF22_MODE_IDLE; _txBufSentIndex = 0; // Serial.println("Restart"); startTransmit(); } boolean RF22::send(const uint8_t* data, uint8_t len) //pocka, nez se odesle paket a potom odesle data { waitPacketSent(); { if (!fillTxBuf(data, len)) return false; startTransmit(); } // printBuffer("send:", data, len); return true; } boolean RF22::fillTxBuf(const uint8_t* data, uint8_t len) { clearTxBuf(); if (!len) return false; return appendTxBuf(data, len); } boolean RF22::appendTxBuf(const uint8_t* data, uint8_t len) { if (((uint16_t)_bufLen + len) > RF22_MAX_MESSAGE_LEN) return false; __disable_irq(); // Disable Interrupts memcpy(_buf + _bufLen, data, len); _bufLen += len; __enable_irq(); // Enable Interrupts // printBuffer("txbuf:", _buf, _bufLen); return true; } // Assumption: there is currently <= RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO void RF22::sendNextFragment() { if (_txBufSentIndex < _bufLen) { // Some left to send? uint8_t len = _bufLen - _txBufSentIndex; // But dont send too much if (len > (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1)) len = (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1); spiBurstWrite(RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len); _txBufSentIndex += len; } } // Assumption: there are at least RF22_RXFFAFULL_THRESHOLD in the RX FIFO // That means it should only be called after a RXFFAFULL interrupt void RF22::readNextFragment() { if (((uint16_t)_bufLen + RF22_RXFFAFULL_THRESHOLD) > RF22_MAX_MESSAGE_LEN) return; // Hmmm receiver overflow. Should never occur // Read the RF22_RXFFAFULL_THRESHOLD octets that should be there spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RF22_RXFFAFULL_THRESHOLD); _bufLen += RF22_RXFFAFULL_THRESHOLD; } // Clear the FIFOs void RF22::resetFifos() { spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX | RF22_FFCLRTX); spiWrite(RF22_REG_08_OPERATING_MODE2, 0); } // Clear the Rx FIFO void RF22::resetRxFifo() { spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX); spiWrite(RF22_REG_08_OPERATING_MODE2, 0); } // CLear the TX FIFO void RF22::resetTxFifo() { spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRTX); spiWrite(RF22_REG_08_OPERATING_MODE2, 0); } // Default implmentation does nothing. Override if you wish void RF22::handleExternalInterrupt() { } // Default implmentation does nothing. Override if you wish void RF22::handleWakeupTimerInterrupt() { } void RF22::setHeaderTo(uint8_t to) { spiWrite(RF22_REG_3A_TRANSMIT_HEADER3, to); } void RF22::setHeaderFrom(uint8_t from) { spiWrite(RF22_REG_3B_TRANSMIT_HEADER2, from); } void RF22::setHeaderId(uint8_t id) { spiWrite(RF22_REG_3C_TRANSMIT_HEADER1, id); } void RF22::setHeaderFlags(uint8_t flags) { spiWrite(RF22_REG_3D_TRANSMIT_HEADER0, flags); } uint8_t RF22::headerTo() { return spiRead(RF22_REG_47_RECEIVED_HEADER3); } uint8_t RF22::headerFrom() { return spiRead(RF22_REG_48_RECEIVED_HEADER2); } uint8_t RF22::headerId() { return spiRead(RF22_REG_49_RECEIVED_HEADER1); } uint8_t RF22::headerFlags() { return spiRead(RF22_REG_4A_RECEIVED_HEADER0); } uint8_t RF22::lastRssi() { return _lastRssi; } void RF22::setPromiscuous(boolean promiscuous) { spiWrite(RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff); }