Fork of https://developer.mbed.org/users/bscott/code/STM32_USBDevice/

Fork of STM32_USBDevice by Bradley Scott

USBDevice/USBHAL_STM32L1.cpp

Committer:
va009039
Date:
2015-06-17
Revision:
60:04a69c36260e
Parent:
59:5d5e3685bd60
Child:
61:5f4f01a06669

File content as of revision 60:04a69c36260e:

/* Copyright (c) 2010-2015 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#if defined(TARGET_STM32L1)
#include "USBDevice.h"

static PCD_HandleTypeDef hpcd_USB_FS;
static volatile int epComplete = 0;

USBHAL * USBHAL::instance;
uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {return 0;}

extern "C" void USB_LP_IRQHandler(void) {
    HAL_PCD_IRQHandler(&hpcd_USB_FS);
}

USBHAL::USBHAL(void) {
    hpcd_USB_FS.pData = this;
    hpcd_USB_FS.Instance = USB;
    hpcd_USB_FS.Init.dev_endpoints = 8;
    hpcd_USB_FS.Init.speed = PCD_SPEED_FULL;
    hpcd_USB_FS.Init.ep0_mps = DEP0CTL_MPS_8;
    hpcd_USB_FS.Init.phy_itface = PCD_PHY_EMBEDDED;
    hpcd_USB_FS.Init.Sof_enable = DISABLE;
    hpcd_USB_FS.Init.low_power_enable = DISABLE;
    hpcd_USB_FS.Init.battery_charging_enable = DISABLE;
    HAL_PCD_Init(&hpcd_USB_FS);
}

void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd) {
    __SYSCFG_CLK_ENABLE(); // for SYSCFG_PMC_USB_PU
    __USB_CLK_ENABLE();
    HAL_NVIC_SetPriority(USB_LP_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(USB_LP_IRQn);
}

void HAL_PCD_MspDeInit(PCD_HandleTypeDef* hpcd) {
    MBED_ASSERT(hpcd->Instance == USB);
    __USB_CLK_DISABLE(); // Peripheral clock disable
    HAL_NVIC_DisableIRQ(USB_LP_IRQn); // Peripheral interrupt Deinit
}

void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state) {
    MBED_ASSERT(READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN));
    if (state == 1) {
        __HAL_SYSCFG_USBPULLUP_ENABLE();
    } else {
        __HAL_SYSCFG_USBPULLUP_DISABLE();
    } 
}

USBHAL::~USBHAL(void) {
    HAL_PCD_DeInit(&hpcd_USB_FS);
}

void USBHAL::connect(void) {
    MBED_ASSERT(hpcd_USB_FS.Instance == USB);
    HAL_PCD_DevConnect(&hpcd_USB_FS);
}

void USBHAL::disconnect(void) {
    HAL_PCD_DevDisconnect(&hpcd_USB_FS);
}

void USBHAL::configureDevice(void) {
    // Not needed
}
void USBHAL::unconfigureDevice(void) {
    // Not needed
}

void USBHAL::setAddress(uint8_t address) {
    HAL_PCD_SetAddress(&hpcd_USB_FS, address);
}

class PacketBufferAreaManager {
public:
    PacketBufferAreaManager(int bufsize_):bufsize(bufsize_) {
        reset();
    }
    void reset() { 
        head = 0; 
        tail = bufsize; 
    }
    int allocBuf(int maxPacketSize) {
        head += 4;
        tail -= maxPacketSize;
        if (tail < head) {
            return 0;
        }
        return tail;
    }
private:
    int head,tail;
    int bufsize;
} PktBufArea(512);

bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
    int pmaadress = PktBufArea.allocBuf(maxPacket);
    MBED_ASSERT(pmaadress != 0);
    if (pmaadress == 0) {
        return false;
    }
    PCD_HandleTypeDef *hpcd = &hpcd_USB_FS;
    uint8_t ep_type;
    switch(endpoint) {
        case EP0OUT:
            HAL_PCDEx_PMAConfig(hpcd, 0x00, PCD_SNG_BUF, pmaadress);
            HAL_PCD_EP_Open(hpcd, 0x00, maxPacket, PCD_EP_TYPE_CTRL);
            break;
        case EP0IN:
            HAL_PCDEx_PMAConfig(hpcd, 0x80, PCD_SNG_BUF, pmaadress);
            HAL_PCD_EP_Open(hpcd, 0x80, maxPacket, PCD_EP_TYPE_CTRL);
            break;
        case EPINT_OUT:
            HAL_PCDEx_PMAConfig(hpcd, 0x01, PCD_SNG_BUF, pmaadress);
            HAL_PCD_EP_Open(hpcd, 0x01, maxPacket, PCD_EP_TYPE_INTR);
            break;
        case EPINT_IN:
            HAL_PCDEx_PMAConfig(hpcd, 0x81, PCD_SNG_BUF, pmaadress);
            HAL_PCD_EP_Open(hpcd, 0x81, maxPacket, PCD_EP_TYPE_INTR);
            break;
        case EPBULK_OUT:
            HAL_PCDEx_PMAConfig(hpcd, 0x02, PCD_SNG_BUF, pmaadress);
            HAL_PCD_EP_Open(hpcd, 0x02, maxPacket, PCD_EP_TYPE_BULK);
            break;
        case EPBULK_IN:
            HAL_PCDEx_PMAConfig(hpcd, 0x82, PCD_SNG_BUF, pmaadress);
            HAL_PCD_EP_Open(hpcd, 0x82, maxPacket, PCD_EP_TYPE_BULK);
            break;
        case EP3OUT:
            HAL_PCDEx_PMAConfig(hpcd, 0x03, PCD_SNG_BUF, pmaadress);
            ep_type = (flags & ISOCHRONOUS) ? PCD_EP_TYPE_ISOC : PCD_EP_TYPE_BULK;
            HAL_PCD_EP_Open(hpcd, 0x03, maxPacket, ep_type);
            break;
        case EP3IN:
            HAL_PCDEx_PMAConfig(hpcd, 0x83, PCD_SNG_BUF, pmaadress);
            ep_type = (flags & ISOCHRONOUS) ? PCD_EP_TYPE_ISOC : PCD_EP_TYPE_BULK;
            HAL_PCD_EP_Open(hpcd, 0x83, maxPacket, ep_type);
            break;
        default:
            MBED_ASSERT(0);
            return false;
    }
    return true;
}

// read setup packet
void USBHAL::EP0setup(uint8_t *buffer) {
    memcpy(buffer, hpcd_USB_FS.Setup, 8);
}

void USBHAL::EP0readStage(void) {
}

void USBHAL::EP0read(void) {
    endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
}

class rxTempBufferManager {
    uint8_t buf0[MAX_PACKET_SIZE_EP0];
    uint8_t buf1[MAX_PACKET_SIZE_EP1];
    uint8_t buf2[MAX_PACKET_SIZE_EP2];
    uint8_t buf3[MAX_PACKET_SIZE_EP3_ISO];
public:
    uint8_t* ptr(uint8_t endpoint, int maxPacketSize) {
        switch(endpoint) {
            case EP0OUT:
                MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP0);
                break;
            case EP1OUT:
                MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP1);
                break;
            case EP2OUT:
                MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP2);
                break;
            case EP3OUT:
                MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP3_ISO);
                break;
        }
        return ptr(endpoint);
    }
    uint8_t* ptr(uint8_t endpoint) {
        switch(endpoint) {
            case EP0OUT: return buf0;
            case EP1OUT: return buf1;
            case EP2OUT: return buf2;
            case EP3OUT: return buf3;
        }
        MBED_ASSERT(0);
        return NULL;
    }
} rxtmp;

uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
    const uint8_t endpoint = EP0OUT;
    uint32_t length = HAL_PCD_EP_GetRxCount(&hpcd_USB_FS, endpoint>>1);
    memcpy(buffer, rxtmp.ptr(endpoint), length);
    return length;
}

void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
    endpointWrite(EP0IN, buffer, size);
}

void USBHAL::EP0getWriteResult(void) {
}

void USBHAL::EP0stall(void) {
    // If we stall the out endpoint here then we have problems transferring
    // and setup requests after the (stalled) get device qualifier requests.
    // TODO: Find out if this is correct behavior, or whether we are doing
    // something else wrong
    stallEndpoint(EP0IN);
//    stallEndpoint(EP0OUT);
}

EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
    HAL_PCD_EP_Receive(&hpcd_USB_FS, endpoint>>1, rxtmp.ptr(endpoint, maximumSize), maximumSize);
    epComplete &= ~(1 << endpoint);
    return EP_PENDING;
}

EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
    if (!(epComplete & (1 << endpoint))) {
        return EP_PENDING;
    }
    int len = HAL_PCD_EP_GetRxCount(&hpcd_USB_FS, endpoint>>1);
    MBED_ASSERT(len <= 64);
    memcpy(buffer, rxtmp.ptr(endpoint), len);
    *bytesRead = len;
    return EP_COMPLETED;
}

EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
    HAL_PCD_EP_Transmit(&hpcd_USB_FS, endpoint>>1, data, size);
    epComplete &= ~(1 << endpoint);
    return EP_PENDING;
}

EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
    if (epComplete & (1 << endpoint)) {
        epComplete &= ~(1 << endpoint);
        return EP_COMPLETED;
    }
    return EP_PENDING;
}

void USBHAL::stallEndpoint(uint8_t endpoint) {
    PCD_HandleTypeDef *hpcd = &hpcd_USB_FS;
    switch(endpoint) {
        case EP0IN:
            HAL_PCD_EP_SetStall(hpcd, 0x80);
            break;
        case EP0OUT:
            HAL_PCD_EP_SetStall(hpcd, 0x00);
            break;
        default:
            break;
    }
}

void USBHAL::unstallEndpoint(uint8_t endpoint) {
}

bool USBHAL::getEndpointStallState(uint8_t endpoint) {
    return false;
}

void USBHAL::remoteWakeup(void) {}
void USBHAL::_usbisr(void) {}
void USBHAL::usbisr(void) {}

void USBHAL::SetupStageCallback() {
    EP0setupCallback();
}

void USBHAL::DataInStageCallback(uint8_t epnum) {
    switch(epnum) {
        case 0: // EP0IN
            EP0in();
            break;
        case 1: 
            epComplete |= (1<<EP1IN);
            if (EP1_IN_callback()) {
                epComplete &= ~(1<<EP1IN);
            }
            break;
        case 2:
            epComplete |= (1<<EP2IN);
            if (EP2_IN_callback()) {
                epComplete &= ~(1<<EP2IN);
            }
            break;
        case 3: 
            epComplete |= (1<<EP3IN);
            if (EP3_IN_callback()) {
                epComplete &= ~(1<<EP3IN);
            }
            break;
        default:
            MBED_ASSERT(0);
            break;
    }
}

void USBHAL::DataOutStageCallback(uint8_t epnum) {
    switch(epnum) {
        case 0: // EP0OUT
            if ((hpcd_USB_FS.Setup[0]&0x80) == 0x00) { // host to device ?
                EP0out();
            }
            break;
        case 1:
            epComplete |= (1<<EP1OUT);
            if (EP1_OUT_callback()) {
                epComplete &= ~(1<<EP1OUT);
            }
            break;
        case 2:
            epComplete |= (1<<EP2OUT);
            if (EP2_OUT_callback()) {
                epComplete &= ~(1<<EP2OUT);
            }
            break;
        case 3:
            epComplete |= (1<<EP3OUT);
            if (EP3_OUT_callback()) {
                epComplete &= ~(1<<EP3OUT);
            }
            break;
        default:
            MBED_ASSERT(0);
            break;
    }
}

void USBHAL::ResetCallback() {
    PktBufArea.reset();
    realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
    realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
}

void USBHAL::SOFCallback() {
    SOF(hpcd_USB_FS.Instance->FNR & 0x7fff);
}

void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) {
    reinterpret_cast<USBHAL*>(hpcd->pData)->SetupStageCallback();
}

void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) {
    reinterpret_cast<USBHAL*>(hpcd->pData)->DataInStageCallback(epnum);
}

void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) {
    reinterpret_cast<USBHAL*>(hpcd->pData)->DataOutStageCallback(epnum);
}

void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) {
    reinterpret_cast<USBHAL*>(hpcd->pData)->ResetCallback();
}

void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) {
    reinterpret_cast<USBHAL*>(hpcd->pData)->SOFCallback();
}

void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) {
    if (hpcd->Init.low_power_enable) {
        SCB->SCR |= (uint32_t)((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));
    }
}


void L152RE_SystemClock_Config(void) {
    RCC_OscInitTypeDef RCC_OscInitStruct;
    RCC_ClkInitTypeDef RCC_ClkInitStruct;

    __PWR_CLK_ENABLE();

    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
    RCC_OscInitStruct.HSIState = RCC_HSI_ON;
    RCC_OscInitStruct.HSICalibrationValue = 16;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
    RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);

    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);
}

uint32_t L152RE_getUSBclock() {
    RCC_OscInitTypeDef cfg;
    HAL_RCC_GetOscConfig(&cfg);
    MBED_ASSERT(cfg.PLL.PLLState == RCC_PLL_ON);
    uint32_t src = (cfg.PLL.PLLSource == RCC_PLLSOURCE_HSI) ? HSI_VALUE : HSE_VALUE;
    MBED_ASSERT(src == 16000000 || src == 8000000);
    switch(cfg.PLL.PLLMUL) {
        case RCC_PLL_MUL3: src *= 3; break;
        case RCC_PLL_MUL4: src *= 4; break;
        case RCC_PLL_MUL6: src *= 6; break;
        case RCC_PLL_MUL8: src *= 8; break;
        case RCC_PLL_MUL12: src *= 12; break;
        case RCC_PLL_MUL16: src *= 16; break;
        case RCC_PLL_MUL24: src *= 24; break;
        case RCC_PLL_MUL32: src *= 32; break;
        case RCC_PLL_MUL48: src *= 48; break;
    }
    return src / 2;
}

void L152RE_USBclock_setup() {
    if (L152RE_getUSBclock() != 48000000) {
        HAL_RCC_DeInit();
        L152RE_SystemClock_Config();
    }
}

#endif