Utility library for HSP SPo2 HR demo including user interface, board support adn accelerometer.

Revision:
0:a12d6976d64c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/demoAccelerometer/bmi160.cpp	Mon Dec 17 13:58:56 2018 +0300
@@ -0,0 +1,723 @@
+/**********************************************************************
+* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
+*
+* Permission is hereby granted, free of charge, to any person obtaining a
+* copy of this software and associated documentation files (the "Software"),
+* to deal in the Software without restriction, including without limitation
+* the rights to use, copy, modify, merge, publish, distribute, sublicense,
+* and/or sell copies of the Software, and to permit persons to whom the
+* Software is furnished to do so, subject to the following conditions:
+*
+* The above copyright notice and this permission notice shall be included
+* in all copies or substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
+* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+* OTHER DEALINGS IN THE SOFTWARE.
+*
+* Except as contained in this notice, the name of Maxim Integrated
+* Products, Inc. shall not be used except as stated in the Maxim Integrated
+* Products, Inc. Branding Policy.
+*
+* The mere transfer of this software does not imply any licenses
+* of trade secrets, proprietary technology, copyrights, patents,
+* trademarks, maskwork rights, or any other form of intellectual
+* property whatsoever. Maxim Integrated Products, Inc. retains all
+* ownership rights.
+**********************************************************************/
+
+
+#include "bmi160.h"
+
+
+const struct BMI160::AccConfig BMI160::DEFAULT_ACC_CONFIG = {SENS_2G,
+                                                             ACC_US_OFF,
+                                                             ACC_BWP_2,
+                                                             ACC_ODR_8};
+
+const struct BMI160::GyroConfig BMI160::DEFAULT_GYRO_CONFIG = {DPS_2000,
+                                                               GYRO_BWP_2,
+                                                               GYRO_ODR_8};
+
+
+//*****************************************************************************
+int32_t BMI160::setSensorPowerMode(Sensors sensor, PowerModes pwrMode)
+{
+    int32_t rtnVal = -1;
+
+    switch(sensor)
+    {
+        case MAG:
+            rtnVal = writeRegister(CMD, (MAG_SET_PMU_MODE | pwrMode));
+        break;
+
+        case GYRO:
+            rtnVal = writeRegister(CMD, (GYR_SET_PMU_MODE | pwrMode));
+        break;
+
+        case ACC:
+            rtnVal = writeRegister(CMD, (ACC_SET_PMU_MODE | pwrMode));
+        break;
+
+        default:
+            rtnVal = -1;
+        break;
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::setSensorConfig(const AccConfig &config)
+{
+    uint8_t data[2];
+
+    data[0] = ((config.us << ACC_US_POS) | (config.bwp << ACC_BWP_POS) |
+               (config.odr << ACC_ODR_POS));
+    data[1] = config.range;
+
+    return writeBlock(ACC_CONF, ACC_RANGE, data);
+}
+
+
+//*****************************************************************************
+int32_t BMI160::setSensorConfig(const GyroConfig &config)
+{
+    uint8_t data[2];
+
+    data[0] = ((config.bwp << GYRO_BWP_POS) | (config.odr << GYRO_ODR_POS));
+    data[1] = config.range;
+
+    return writeBlock(GYR_CONF, GYR_RANGE, data);
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorConfig(AccConfig &config)
+{
+    uint8_t data[2];
+    int32_t rtnVal = readBlock(ACC_CONF, ACC_RANGE, data);
+
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        config.range = static_cast<BMI160::AccRange>(
+        (data[1] & ACC_RANGE_MASK));
+        config.us = static_cast<BMI160::AccUnderSampling>(
+        ((data[0] & ACC_US_MASK) >> ACC_US_POS));
+        config.bwp = static_cast<BMI160::AccBandWidthParam>(
+        ((data[0] & ACC_BWP_MASK) >> ACC_BWP_POS));
+        config.odr = static_cast<BMI160::AccOutputDataRate>(
+        ((data[0] & ACC_ODR_MASK) >> ACC_ODR_POS));
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorConfig(GyroConfig &config)
+{
+    uint8_t data[2];
+    int32_t rtnVal = readBlock(GYR_CONF, GYR_RANGE, data);
+
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        config.range = static_cast<BMI160::GyroRange>(
+        (data[1] & GYRO_RANGE_MASK));
+        config.bwp = static_cast<BMI160::GyroBandWidthParam>(
+        ((data[0] & GYRO_BWP_MASK) >> GYRO_BWP_POS));
+        config.odr = static_cast<BMI160::GyroOutputDataRate>(
+        ((data[0] & GYRO_ODR_MASK) >> GYRO_ODR_POS));
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorAxis(SensorAxis axis, AxisData &data, AccRange range)
+{
+    uint8_t localData[2];
+    int32_t rtnVal;
+
+    switch(axis)
+    {
+        case X_AXIS:
+            rtnVal = readBlock(DATA_14, DATA_15, localData);
+        break;
+
+        case Y_AXIS:
+            rtnVal = readBlock(DATA_16, DATA_17, localData);
+        break;
+
+        case Z_AXIS:
+            rtnVal = readBlock(DATA_18, DATA_19, localData);
+        break;
+
+        default:
+            rtnVal = -1;
+        break;
+    }
+
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        data.raw = ((localData[1] << 8) | localData[0]);
+        switch(range)
+        {
+            case SENS_2G:
+                data.scaled = (data.raw/SENS_2G_LSB_PER_G);
+            break;
+
+            case SENS_4G:
+                data.scaled = (data.raw/SENS_4G_LSB_PER_G);
+            break;
+
+            case SENS_8G:
+                data.scaled = (data.raw/SENS_8G_LSB_PER_G);
+            break;
+
+            case SENS_16G:
+                data.scaled = (data.raw/SENS_16G_LSB_PER_G);
+            break;
+        }
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorAxis(SensorAxis axis, AxisData &data, GyroRange range)
+{
+    uint8_t localData[2];
+    int32_t rtnVal;
+
+    switch(axis)
+    {
+        case X_AXIS:
+            rtnVal = readBlock(DATA_8, DATA_9, localData);
+        break;
+
+        case Y_AXIS:
+            rtnVal = readBlock(DATA_10, DATA_11, localData);
+        break;
+
+        case Z_AXIS:
+            rtnVal = readBlock(DATA_12, DATA_13, localData);
+        break;
+
+        default:
+            rtnVal = -1;
+        break;
+    }
+
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        data.raw = ((localData[1] << 8) | localData[0]);
+        switch(range)
+        {
+            case DPS_2000:
+                data.scaled = (data.raw/SENS_2000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_1000:
+                data.scaled = (data.raw/SENS_1000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_500:
+                data.scaled = (data.raw/SENS_500_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_250:
+                data.scaled = (data.raw/SENS_250_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_125:
+                data.scaled = (data.raw/SENS_125_DPS_LSB_PER_DPS);
+            break;
+        }
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorXYZ(SensorData &data, AccRange range)
+{
+    uint8_t localData[6];
+    int32_t rtnVal = readBlock(DATA_14, DATA_19, localData);
+
+	if (m_use_irq == true && bmi160_irq_asserted == false)
+		return -1;
+
+	bmi160_irq_asserted = false;
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        data.xAxis.raw = ((localData[1] << 8) | localData[0]);
+        data.yAxis.raw = ((localData[3] << 8) | localData[2]);
+        data.zAxis.raw = ((localData[5] << 8) | localData[4]);
+
+        switch(range)
+        {
+            case SENS_2G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_2G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_2G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_2G_LSB_PER_G);
+            break;
+
+            case SENS_4G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_4G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_4G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_4G_LSB_PER_G);
+            break;
+
+            case SENS_8G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_8G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_8G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_8G_LSB_PER_G);
+            break;
+
+            case SENS_16G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_16G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_16G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_16G_LSB_PER_G);
+            break;
+        }
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorXYZ(SensorData &data, GyroRange range)
+{
+    uint8_t localData[6];
+    int32_t rtnVal = readBlock(DATA_8, DATA_13, localData);
+
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        data.xAxis.raw = ((localData[1] << 8) | localData[0]);
+        data.yAxis.raw = ((localData[3] << 8) | localData[2]);
+        data.zAxis.raw = ((localData[5] << 8) | localData[4]);
+
+        switch(range)
+        {
+            case DPS_2000:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_1000:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_500:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_250:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_125:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+            break;
+        }
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorXYZandSensorTime(SensorData &data,
+                                          SensorTime &sensorTime,
+                                          AccRange range)
+{
+    uint8_t localData[9];
+    int32_t rtnVal = readBlock(DATA_14, SENSORTIME_2, localData);
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        data.xAxis.raw = ((localData[1] << 8) | localData[0]);
+        data.yAxis.raw = ((localData[3] << 8) | localData[2]);
+        data.zAxis.raw = ((localData[5] << 8) | localData[4]);
+
+        switch(range)
+        {
+            case SENS_2G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_2G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_2G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_2G_LSB_PER_G);
+            break;
+
+            case SENS_4G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_4G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_4G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_4G_LSB_PER_G);
+            break;
+
+            case SENS_8G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_8G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_8G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_8G_LSB_PER_G);
+            break;
+
+            case SENS_16G:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_16G_LSB_PER_G);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_16G_LSB_PER_G);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_16G_LSB_PER_G);
+            break;
+        }
+
+        sensorTime.raw = ((localData[8] << 16) | (localData[7] << 8) |
+                           localData[6]);
+        sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorXYZandSensorTime(SensorData &data,
+                                          SensorTime &sensorTime,
+                                          GyroRange range)
+{
+    uint8_t localData[16];
+    int32_t rtnVal = readBlock(DATA_8, SENSORTIME_2, localData);
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        data.xAxis.raw = ((localData[1] << 8) | localData[0]);
+        data.yAxis.raw = ((localData[3] << 8) | localData[2]);
+        data.zAxis.raw = ((localData[5] << 8) | localData[4]);
+
+        switch(range)
+        {
+            case DPS_2000:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_1000:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_500:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_250:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_125:
+                data.xAxis.scaled = (data.xAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+                data.yAxis.scaled = (data.yAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+                data.zAxis.scaled = (data.zAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+            break;
+        }
+
+        sensorTime.raw = ((localData[14] << 16) | (localData[13] << 8) |
+                           localData[12]);
+        sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getGyroAccXYZandSensorTime(SensorData &accData,
+                                           SensorData &gyroData,
+                                           SensorTime &sensorTime,
+                                           AccRange accRange,
+                                           GyroRange gyroRange)
+{
+    uint8_t localData[16];
+    int32_t rtnVal = readBlock(DATA_8, SENSORTIME_2, localData);
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        gyroData.xAxis.raw = ((localData[1] << 8) | localData[0]);
+        gyroData.yAxis.raw = ((localData[3] << 8) | localData[2]);
+        gyroData.zAxis.raw = ((localData[5] << 8) | localData[4]);
+
+        accData.xAxis.raw = ((localData[7] << 8) | localData[6]);
+        accData.yAxis.raw = ((localData[9] << 8) | localData[8]);
+        accData.zAxis.raw = ((localData[11] << 8) | localData[10]);
+
+        switch(gyroRange)
+        {
+            case DPS_2000:
+                gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+                gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+                gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_1000:
+                gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+                gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+                gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_500:
+                gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+                gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+                gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_500_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_250:
+                gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+                gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+                gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_250_DPS_LSB_PER_DPS);
+            break;
+
+            case DPS_125:
+                gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+                gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+                gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_125_DPS_LSB_PER_DPS);
+            break;
+        }
+
+        switch(accRange)
+        {
+            case SENS_2G:
+                accData.xAxis.scaled = (accData.xAxis.raw/SENS_2G_LSB_PER_G);
+                accData.yAxis.scaled = (accData.yAxis.raw/SENS_2G_LSB_PER_G);
+                accData.zAxis.scaled = (accData.zAxis.raw/SENS_2G_LSB_PER_G);
+            break;
+
+            case SENS_4G:
+                accData.xAxis.scaled = (accData.xAxis.raw/SENS_4G_LSB_PER_G);
+                accData.yAxis.scaled = (accData.yAxis.raw/SENS_4G_LSB_PER_G);
+                accData.zAxis.scaled = (accData.zAxis.raw/SENS_4G_LSB_PER_G);
+            break;
+
+            case SENS_8G:
+                accData.xAxis.scaled = (accData.xAxis.raw/SENS_8G_LSB_PER_G);
+                accData.yAxis.scaled = (accData.yAxis.raw/SENS_8G_LSB_PER_G);
+                accData.zAxis.scaled = (accData.zAxis.raw/SENS_8G_LSB_PER_G);
+            break;
+
+            case SENS_16G:
+                accData.xAxis.scaled = (accData.xAxis.raw/SENS_16G_LSB_PER_G);
+                accData.yAxis.scaled = (accData.yAxis.raw/SENS_16G_LSB_PER_G);
+                accData.zAxis.scaled = (accData.zAxis.raw/SENS_16G_LSB_PER_G);
+            break;
+        }
+
+        sensorTime.raw = ((localData[14] << 16) | (localData[13] << 8) |
+                           localData[12]);
+        sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
+    }
+
+    return rtnVal;
+}
+
+int32_t BMI160::setSampleRate(int sample_rate)
+{
+	int sr_reg_val = -1;
+	int i;
+	const uint16_t odr_table[][2] = {
+	    {25, GYRO_ODR_6}, ///<25Hz
+        {50, GYRO_ODR_7}, ///<50Hz
+        {100, GYRO_ODR_8}, ///<100Hz
+        {200, GYRO_ODR_9}, ///<200Hz
+        {400, GYRO_ODR_10}, ///<400Hz
+        {800, GYRO_ODR_11}, ///<800Hz
+        {1600, GYRO_ODR_12}, ///<1600Hz
+        {3200, GYRO_ODR_13}, ///<3200Hz
+	};
+
+	int num_sr = sizeof(odr_table)/sizeof(odr_table[0]);
+	for (i = 0; i < num_sr; i++) {
+		if (sample_rate == odr_table[i][0]) {
+			sr_reg_val = odr_table[i][1];
+			break;
+		}
+	}
+
+	if (sr_reg_val == -1)
+		return -2;
+
+	AccConfig accConfigRead;
+	if (getSensorConfig(accConfigRead) == BMI160::RTN_NO_ERROR) {
+	accConfigRead.odr = (AccOutputDataRate)sr_reg_val;
+		return setSensorConfig(accConfigRead) == BMI160::RTN_NO_ERROR ? 0 : -1;
+	} else
+		return -1;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getSensorTime(SensorTime &sensorTime)
+{
+    uint8_t localData[3];
+    int32_t rtnVal = readBlock(SENSORTIME_0, SENSORTIME_2, localData);
+
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        sensorTime.raw = ((localData[2] << 16) | (localData[1] << 8) |
+                           localData[0]);
+        sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
+    }
+
+    return rtnVal;
+}
+
+
+//*****************************************************************************
+int32_t BMI160::getTemperature(float *temp)
+{
+    uint8_t data[2];
+    uint16_t rawTemp;
+
+    int32_t rtnVal = readBlock(TEMPERATURE_0, TEMPERATURE_1, data);
+    if(rtnVal == RTN_NO_ERROR)
+    {
+        rawTemp = ((data[1] << 8) | data[0]);
+        if(rawTemp & 0x8000)
+        {
+            *temp = (23.0F - ((0x10000 - rawTemp)/512.0F));
+        }
+        else
+        {
+            *temp = ((rawTemp/512.0F) + 23.0F);
+        }
+    }
+
+    return rtnVal;
+}
+
+//***********************************************************************************
+int32_t BMI160::BMI160_DefaultInitalize(){
+
+		//soft reset the accelerometer
+		writeRegister(CMD ,SOFT_RESET);
+		wait(0.1);
+
+	    //Power up sensors in normal mode
+	    if(setSensorPowerMode(BMI160::GYRO, BMI160::SUSPEND) != BMI160::RTN_NO_ERROR){
+	        printf("Failed to set gyroscope power mode\n");
+	    }
+
+	    wait(0.1);
+
+	    if(setSensorPowerMode(BMI160::ACC, BMI160::NORMAL) != BMI160::RTN_NO_ERROR){
+	        printf("Failed to set accelerometer power mode\n");
+	    }
+	    wait(0.1);
+
+	    BMI160::AccConfig accConfig;
+	    BMI160::AccConfig accConfigRead;
+	    accConfig.range = BMI160::SENS_2G;
+	    accConfig.us = BMI160::ACC_US_OFF;
+	    accConfig.bwp = BMI160::ACC_BWP_2;
+	    accConfig.odr = BMI160::ACC_ODR_6;
+	    if(setSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
+	    {
+	        if(getSensorConfig(accConfigRead) == BMI160::RTN_NO_ERROR)
+	        {
+	            if((accConfig.range != accConfigRead.range) ||
+	                    (accConfig.us != accConfigRead.us) ||
+	                    (accConfig.bwp != accConfigRead.bwp) ||
+	                    (accConfig.odr != accConfigRead.odr))
+	            {
+	                printf("ACC read data desn't equal set data\n\n");
+	                printf("ACC Set Range = %d\n", accConfig.range);
+	                printf("ACC Set UnderSampling = %d\n", accConfig.us);
+	                printf("ACC Set BandWidthParam = %d\n", accConfig.bwp);
+	                printf("ACC Set OutputDataRate = %d\n\n", accConfig.odr);
+	                printf("ACC Read Range = %d\n", accConfigRead.range);
+	                printf("ACC Read UnderSampling = %d\n", accConfigRead.us);
+	                printf("ACC Read BandWidthParam = %d\n", accConfigRead.bwp);
+	                printf("ACC Read OutputDataRate = %d\n\n", accConfigRead.odr);
+	            }
+
+	        }
+	        else
+	        {
+	             printf("Failed to read back accelerometer configuration\n");
+	        }
+	    }
+	    else
+	    {
+	        printf("Failed to set accelerometer configuration\n");
+	    }
+	    return 0;
+}
+
+//***********************************************************************************
+int32_t BMI160::enable_data_ready_interrupt() {
+	uint8_t data = 0;
+	uint8_t temp = 0;
+	int32_t result;
+
+	result = readRegister(INT_EN_1, &data);
+	temp = data & ~0x10;
+	data = temp | ((1 << 4) & 0x10);
+	/* Writing data to INT ENABLE 1 Address */
+	result |= writeRegister(INT_EN_1, data);
+
+	// configure in_out ctrl
+	//bmi160_get_regs(BMI160_INT_OUT_CTRL_ADDR, &data, 1, dev);
+	result |= readRegister(INT_OUT_CTRL, &data);
+	data = 0x09;
+	result |= writeRegister(INT_OUT_CTRL,data);
+
+	//config int latch
+	//bmi160_get_regs(BMI160_INT_LATCH_ADDR, &data, 1, dev);
+	result |= readRegister(INT_LATCH, &data);
+	data = 0x0F;
+	result |= writeRegister(INT_LATCH, data);
+
+	//bmi160_get_regs(BMI160_INT_MAP_1_ADDR, &data, 1, dev);
+	result |= readRegister(INT_MAP_1, &data);
+	data = 0x80;
+	result |= writeRegister(INT_MAP_1, data);
+
+	if(result != 0){
+		printf("BMI160::%s failed.\r\n", __func__);
+		return -1;
+	}
+
+	m_bmi160_irq->disable_irq();
+	m_bmi160_irq->mode(PullUp);
+	m_bmi160_irq->fall(this, &BMI160::irq_handler);
+	m_bmi160_irq->enable_irq();
+	return 0;
+}
+
+void BMI160::irq_handler() {
+	bmi160_irq_asserted = true;
+}
+
+int32_t BMI160::reset() {
+	if (m_use_irq)
+		m_bmi160_irq->disable_irq();
+	bmi160_irq_asserted = false;
+	writeRegister(CMD, SOFT_RESET);
+	return 0;
+}