Navigate to a given point using the OGM and virtual forces

Dependencies:   ISR_Mini-explorer mbed

Fork of VirtualForces by Georgios Tsamis

Committer:
geotsam
Date:
Mon Mar 27 16:31:41 2017 +0000
Revision:
10:a7fd80e79e80
Parent:
9:b7138acdf4ac
deleted theta from function inputs

Who changed what in which revision?

UserRevisionLine numberNew contents of line
geotsam 0:8bffb51cc345 1 #include "mbed.h"
geotsam 0:8bffb51cc345 2 #include "robot.h" // Initializes the robot. This include should be used in all main.cpp!
geotsam 0:8bffb51cc345 3 #include "math.h"
AurelienBernier 6:afde4b08166b 4
AurelienBernier 6:afde4b08166b 5 Timer t;
AurelienBernier 4:8c56c3ba6e54 6
geotsam 0:8bffb51cc345 7 float dist(float robot_x, float robot_y, float target_x, float target_y);
geotsam 10:a7fd80e79e80 8 int goToPointWithAngle(float target_x, float target_y, float target_angle);
AurelienBernier 8:109314be5b68 9
AurelienBernier 8:109314be5b68 10 float alpha; //angle error
AurelienBernier 8:109314be5b68 11 float rho; //distance from target
AurelienBernier 8:109314be5b68 12 float beta;
AurelienBernier 8:109314be5b68 13 //float k_linear=10, k_angular=200;
AurelienBernier 8:109314be5b68 14 //kb = -15 and ka = 30 tabom
AurelienBernier 8:109314be5b68 15 float kRho=12, ka=30, kb=-13;
AurelienBernier 8:109314be5b68 16 float linear, angular, angular_left, angular_right;
AurelienBernier 8:109314be5b68 17 float dt=0.5;
AurelienBernier 8:109314be5b68 18 float temp;
AurelienBernier 8:109314be5b68 19 float d2;
AurelienBernier 8:109314be5b68 20
geotsam 10:a7fd80e79e80 21 float map[40][40];
geotsam 10:a7fd80e79e80 22
AurelienBernier 8:109314be5b68 23 //Diameter of a wheel and distance between the 2
AurelienBernier 8:109314be5b68 24 float r=3.25, b=7.2;
AurelienBernier 8:109314be5b68 25
AurelienBernier 8:109314be5b68 26 int speed=999; // Max speed at beggining of movement
AurelienBernier 8:109314be5b68 27
AurelienBernier 8:109314be5b68 28 //Target example x,y values
AurelienBernier 8:109314be5b68 29 float target_x=46.8, target_y=78.6, target_angle=1.7;
AurelienBernier 8:109314be5b68 30
AurelienBernier 4:8c56c3ba6e54 31 //Timeout time;
geotsam 0:8bffb51cc345 32 int main(){
AurelienBernier 2:ea61e801e81f 33 initRobot(); //Initializing the robot
geotsam 0:8bffb51cc345 34 pc.baud(9600); // baud for the pc communication
geotsam 0:8bffb51cc345 35
AurelienBernier 2:ea61e801e81f 36 //Resetting coordinates before moving
AurelienBernier 2:ea61e801e81f 37 theta=0;
geotsam 0:8bffb51cc345 38 X=0;
geotsam 0:8bffb51cc345 39 Y=0;
geotsam 0:8bffb51cc345 40
AurelienBernier 4:8c56c3ba6e54 41 alpha = atan2((target_y-Y),(target_x-X))-theta;
AurelienBernier 4:8c56c3ba6e54 42 alpha = atan(sin(alpha)/cos(alpha));
AurelienBernier 4:8c56c3ba6e54 43 rho = dist(X, Y, target_x, target_y);
AurelienBernier 6:afde4b08166b 44
AurelienBernier 4:8c56c3ba6e54 45 beta = -alpha-theta+target_angle;
AurelienBernier 6:afde4b08166b 46 //beta = atan(sin(beta)/cos(beta));
AurelienBernier 8:109314be5b68 47
AurelienBernier 8:109314be5b68 48 goToPointWithAngle(target_x, target_y, target_angle);
AurelienBernier 8:109314be5b68 49
AurelienBernier 8:109314be5b68 50 //Stop at the end
AurelienBernier 8:109314be5b68 51 leftMotor(1,0);
AurelienBernier 8:109314be5b68 52 rightMotor(1,0);
AurelienBernier 8:109314be5b68 53
AurelienBernier 8:109314be5b68 54 pc.printf("\n\r %f -- arrived!", rho);
AurelienBernier 8:109314be5b68 55 }
AurelienBernier 8:109314be5b68 56
AurelienBernier 8:109314be5b68 57 //Distance computation function
AurelienBernier 8:109314be5b68 58 float dist(float robot_x, float robot_y, float target_x, float target_y){
AurelienBernier 8:109314be5b68 59 return sqrt(pow(target_y-robot_y,2) + pow(target_x-robot_x,2));
AurelienBernier 8:109314be5b68 60 }
AurelienBernier 8:109314be5b68 61
geotsam 10:a7fd80e79e80 62 int goToPointWithAngle(float target_x, float target_y, float target_angle) {
AurelienBernier 8:109314be5b68 63 do {
geotsam 0:8bffb51cc345 64 pc.printf("\n\n\r entered while");
AurelienBernier 2:ea61e801e81f 65
AurelienBernier 6:afde4b08166b 66 //Timer stuff
AurelienBernier 6:afde4b08166b 67 dt = t.read();
AurelienBernier 6:afde4b08166b 68 t.reset();
AurelienBernier 6:afde4b08166b 69 t.start();
AurelienBernier 6:afde4b08166b 70
AurelienBernier 2:ea61e801e81f 71 //Updating X,Y and theta with the odometry values
geotsam 0:8bffb51cc345 72 Odometria();
geotsam 3:1e0f4cb93eda 73
AurelienBernier 4:8c56c3ba6e54 74 alpha = atan2((target_y-Y),(target_x-X))-theta;
AurelienBernier 4:8c56c3ba6e54 75 alpha = atan(sin(alpha)/cos(alpha));
AurelienBernier 4:8c56c3ba6e54 76 rho = dist(X, Y, target_x, target_y);
AurelienBernier 6:afde4b08166b 77 d2 = rho;
AurelienBernier 5:dea05b8f30d0 78 beta = -alpha-theta+target_angle;
AurelienBernier 6:afde4b08166b 79 //beta = atan(sin(beta)/cos(beta));
AurelienBernier 6:afde4b08166b 80
AurelienBernier 6:afde4b08166b 81
AurelienBernier 2:ea61e801e81f 82 //Computing angle error and distance towards the target value
AurelienBernier 4:8c56c3ba6e54 83 rho += dt*(-kRho*cos(alpha)*rho);
AurelienBernier 4:8c56c3ba6e54 84 temp = alpha;
AurelienBernier 6:afde4b08166b 85 alpha += dt*(kRho*sin(alpha)-ka*alpha-kb*beta);
AurelienBernier 6:afde4b08166b 86 beta += dt*(-kRho*sin(temp));
AurelienBernier 6:afde4b08166b 87 pc.printf("\n\r d2=%f", d2);
AurelienBernier 6:afde4b08166b 88 pc.printf("\n\r dt=%f", dt);
geotsam 0:8bffb51cc345 89
AurelienBernier 2:ea61e801e81f 90 //Computing linear and angular velocities
AurelienBernier 4:8c56c3ba6e54 91 if(alpha>=-1.5708 && alpha<=1.5708){
AurelienBernier 4:8c56c3ba6e54 92 linear=kRho*rho;
AurelienBernier 4:8c56c3ba6e54 93 angular=ka*alpha+kb*beta;
geotsam 3:1e0f4cb93eda 94 }
geotsam 3:1e0f4cb93eda 95 else{
AurelienBernier 4:8c56c3ba6e54 96 linear=-kRho*rho;
AurelienBernier 4:8c56c3ba6e54 97 angular=-ka*alpha-kb*beta;
geotsam 3:1e0f4cb93eda 98 }
geotsam 0:8bffb51cc345 99 angular_left=(linear-0.5*b*angular)/r;
geotsam 0:8bffb51cc345 100 angular_right=(linear+0.5*b*angular)/r;
geotsam 0:8bffb51cc345 101
AurelienBernier 2:ea61e801e81f 102 //Slowing down at the end for more precision
AurelienBernier 6:afde4b08166b 103 if (d2<25) {
AurelienBernier 6:afde4b08166b 104 speed = d2*30;
geotsam 0:8bffb51cc345 105 }
AurelienBernier 2:ea61e801e81f 106
AurelienBernier 2:ea61e801e81f 107 //Normalize speed for motors
geotsam 0:8bffb51cc345 108 if(angular_left>angular_right) {
geotsam 0:8bffb51cc345 109 angular_right=speed*angular_right/angular_left;
geotsam 0:8bffb51cc345 110 angular_left=speed;
geotsam 0:8bffb51cc345 111 } else {
geotsam 0:8bffb51cc345 112 angular_left=speed*angular_left/angular_right;
geotsam 0:8bffb51cc345 113 angular_right=speed;
geotsam 0:8bffb51cc345 114 }
geotsam 0:8bffb51cc345 115
geotsam 0:8bffb51cc345 116 pc.printf("\n\r X=%f", X);
geotsam 0:8bffb51cc345 117 pc.printf("\n\r Y=%f", Y);
geotsam 0:8bffb51cc345 118
AurelienBernier 2:ea61e801e81f 119 //Updating motor velocities
AurelienBernier 1:f0807d5c5a4b 120 leftMotor(1,angular_left);
AurelienBernier 1:f0807d5c5a4b 121 rightMotor(1,angular_right);
geotsam 0:8bffb51cc345 122
AurelienBernier 7:c94070f9af78 123 wait(0.2);
AurelienBernier 6:afde4b08166b 124 //Timer stuff
AurelienBernier 6:afde4b08166b 125 t.stop();
AurelienBernier 7:c94070f9af78 126 } while(d2>1);
AurelienBernier 8:109314be5b68 127
AurelienBernier 8:109314be5b68 128 return 0;
AurelienBernier 6:afde4b08166b 129 }