ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more

ROSSerial_mbed for Melodic Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_melodic

rosserial_mbed Hello World example for Melodic Morenia distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

sensor_msgs/JointState.h

Committer:
Gary Servin
Date:
2019-11-08
Revision:
1:da82487f547e
Parent:
0:04ac6be8229a

File content as of revision 1:da82487f547e:

#ifndef _ROS_sensor_msgs_JointState_h
#define _ROS_sensor_msgs_JointState_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "std_msgs/Header.h"

namespace sensor_msgs
{

  class JointState : public ros::Msg
  {
    public:
      typedef std_msgs::Header _header_type;
      _header_type header;
      uint32_t name_length;
      typedef char* _name_type;
      _name_type st_name;
      _name_type * name;
      uint32_t position_length;
      typedef double _position_type;
      _position_type st_position;
      _position_type * position;
      uint32_t velocity_length;
      typedef double _velocity_type;
      _velocity_type st_velocity;
      _velocity_type * velocity;
      uint32_t effort_length;
      typedef double _effort_type;
      _effort_type st_effort;
      _effort_type * effort;

    JointState():
      header(),
      name_length(0), name(NULL),
      position_length(0), position(NULL),
      velocity_length(0), velocity(NULL),
      effort_length(0), effort(NULL)
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      offset += this->header.serialize(outbuffer + offset);
      *(outbuffer + offset + 0) = (this->name_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->name_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->name_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->name_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->name_length);
      for( uint32_t i = 0; i < name_length; i++){
      uint32_t length_namei = strlen(this->name[i]);
      varToArr(outbuffer + offset, length_namei);
      offset += 4;
      memcpy(outbuffer + offset, this->name[i], length_namei);
      offset += length_namei;
      }
      *(outbuffer + offset + 0) = (this->position_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->position_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->position_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->position_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->position_length);
      for( uint32_t i = 0; i < position_length; i++){
      union {
        double real;
        uint64_t base;
      } u_positioni;
      u_positioni.real = this->position[i];
      *(outbuffer + offset + 0) = (u_positioni.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_positioni.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_positioni.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_positioni.base >> (8 * 3)) & 0xFF;
      *(outbuffer + offset + 4) = (u_positioni.base >> (8 * 4)) & 0xFF;
      *(outbuffer + offset + 5) = (u_positioni.base >> (8 * 5)) & 0xFF;
      *(outbuffer + offset + 6) = (u_positioni.base >> (8 * 6)) & 0xFF;
      *(outbuffer + offset + 7) = (u_positioni.base >> (8 * 7)) & 0xFF;
      offset += sizeof(this->position[i]);
      }
      *(outbuffer + offset + 0) = (this->velocity_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->velocity_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->velocity_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->velocity_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->velocity_length);
      for( uint32_t i = 0; i < velocity_length; i++){
      union {
        double real;
        uint64_t base;
      } u_velocityi;
      u_velocityi.real = this->velocity[i];
      *(outbuffer + offset + 0) = (u_velocityi.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_velocityi.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_velocityi.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_velocityi.base >> (8 * 3)) & 0xFF;
      *(outbuffer + offset + 4) = (u_velocityi.base >> (8 * 4)) & 0xFF;
      *(outbuffer + offset + 5) = (u_velocityi.base >> (8 * 5)) & 0xFF;
      *(outbuffer + offset + 6) = (u_velocityi.base >> (8 * 6)) & 0xFF;
      *(outbuffer + offset + 7) = (u_velocityi.base >> (8 * 7)) & 0xFF;
      offset += sizeof(this->velocity[i]);
      }
      *(outbuffer + offset + 0) = (this->effort_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->effort_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->effort_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->effort_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->effort_length);
      for( uint32_t i = 0; i < effort_length; i++){
      union {
        double real;
        uint64_t base;
      } u_efforti;
      u_efforti.real = this->effort[i];
      *(outbuffer + offset + 0) = (u_efforti.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_efforti.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_efforti.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_efforti.base >> (8 * 3)) & 0xFF;
      *(outbuffer + offset + 4) = (u_efforti.base >> (8 * 4)) & 0xFF;
      *(outbuffer + offset + 5) = (u_efforti.base >> (8 * 5)) & 0xFF;
      *(outbuffer + offset + 6) = (u_efforti.base >> (8 * 6)) & 0xFF;
      *(outbuffer + offset + 7) = (u_efforti.base >> (8 * 7)) & 0xFF;
      offset += sizeof(this->effort[i]);
      }
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      offset += this->header.deserialize(inbuffer + offset);
      uint32_t name_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      name_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      name_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      name_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->name_length);
      if(name_lengthT > name_length)
        this->name = (char**)realloc(this->name, name_lengthT * sizeof(char*));
      name_length = name_lengthT;
      for( uint32_t i = 0; i < name_length; i++){
      uint32_t length_st_name;
      arrToVar(length_st_name, (inbuffer + offset));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_st_name; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_st_name-1]=0;
      this->st_name = (char *)(inbuffer + offset-1);
      offset += length_st_name;
        memcpy( &(this->name[i]), &(this->st_name), sizeof(char*));
      }
      uint32_t position_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      position_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      position_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      position_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->position_length);
      if(position_lengthT > position_length)
        this->position = (double*)realloc(this->position, position_lengthT * sizeof(double));
      position_length = position_lengthT;
      for( uint32_t i = 0; i < position_length; i++){
      union {
        double real;
        uint64_t base;
      } u_st_position;
      u_st_position.base = 0;
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 3))) << (8 * 3);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 4))) << (8 * 4);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 5))) << (8 * 5);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 6))) << (8 * 6);
      u_st_position.base |= ((uint64_t) (*(inbuffer + offset + 7))) << (8 * 7);
      this->st_position = u_st_position.real;
      offset += sizeof(this->st_position);
        memcpy( &(this->position[i]), &(this->st_position), sizeof(double));
      }
      uint32_t velocity_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      velocity_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      velocity_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      velocity_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->velocity_length);
      if(velocity_lengthT > velocity_length)
        this->velocity = (double*)realloc(this->velocity, velocity_lengthT * sizeof(double));
      velocity_length = velocity_lengthT;
      for( uint32_t i = 0; i < velocity_length; i++){
      union {
        double real;
        uint64_t base;
      } u_st_velocity;
      u_st_velocity.base = 0;
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 3))) << (8 * 3);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 4))) << (8 * 4);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 5))) << (8 * 5);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 6))) << (8 * 6);
      u_st_velocity.base |= ((uint64_t) (*(inbuffer + offset + 7))) << (8 * 7);
      this->st_velocity = u_st_velocity.real;
      offset += sizeof(this->st_velocity);
        memcpy( &(this->velocity[i]), &(this->st_velocity), sizeof(double));
      }
      uint32_t effort_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      effort_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      effort_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      effort_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->effort_length);
      if(effort_lengthT > effort_length)
        this->effort = (double*)realloc(this->effort, effort_lengthT * sizeof(double));
      effort_length = effort_lengthT;
      for( uint32_t i = 0; i < effort_length; i++){
      union {
        double real;
        uint64_t base;
      } u_st_effort;
      u_st_effort.base = 0;
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 3))) << (8 * 3);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 4))) << (8 * 4);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 5))) << (8 * 5);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 6))) << (8 * 6);
      u_st_effort.base |= ((uint64_t) (*(inbuffer + offset + 7))) << (8 * 7);
      this->st_effort = u_st_effort.real;
      offset += sizeof(this->st_effort);
        memcpy( &(this->effort[i]), &(this->st_effort), sizeof(double));
      }
     return offset;
    }

    const char * getType(){ return "sensor_msgs/JointState"; };
    const char * getMD5(){ return "3066dcd76a6cfaef579bd0f34173e9fd"; };

  };

}
#endif