cc3000 hostdriver with the mbed socket interface
Fork of cc3000_hostdriver_mbedsocket by
cc3000.cpp
- Committer:
- frankvnk
- Date:
- 2015-04-06
- Revision:
- 51:897cfc2c7e8c
- Parent:
- 48:192e2fde71e9
File content as of revision 51:897cfc2c7e8c:
/*****************************************************************************
*
* C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to
* Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and
* provided help.
*
* This version of "host driver" uses CC3000 Host Driver Implementation. Thus
* read the following copyright:
*
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include "cc3000.h"
#include "cc3000_event.h"
namespace mbed_cc3000 {
/* TODO this prefix remove? verify */
static uint8_t cc3000_prefix[] = {'T', 'T', 'T'};
cc3000 *cc3000::_inst;
cc3000::cc3000(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, uint32_t max_tx_size, uint32_t max_rx_size)
: _event(_simple_link, _hci, _spi, *this), _socket(_simple_link, _hci, _event),
_spi(cc3000_irq, cc3000_en, cc3000_cs, cc3000_spi, _event, _simple_link, max_tx_size, max_rx_size), _hci(_spi),
_nvmem(_hci, _event, _simple_link), _netapp(_simple_link, _nvmem, _hci, _event),
_wlan(_simple_link, _event, _spi, _hci) {
_simple_link.create_txrx_buffers(max_tx_size, max_rx_size);
_simple_link.set_tx_complete_signal(1);
memset(&_status, 0, sizeof(_status));
_inst = this;
}
cc3000::~cc3000() {
}
#if (CC3000_ETH_COMPAT == 1)
cc3000::cc3000(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, const char *ssid,
const char *phrase, Security sec, bool smart_config, uint32_t max_tx_size, uint32_t max_rx_size)
: _event(_simple_link, _hci, _spi, *this), _socket(_simple_link, _hci, _event),
_spi(cc3000_irq, cc3000_en, cc3000_cs, cc3000_spi, _event, _simple_link, max_tx_size, max_rx_size), _hci(_spi),
_nvmem(_hci, _event, _simple_link), _netapp(_simple_link, _nvmem, _hci, _event),
_wlan(_simple_link, _event, _spi, _hci), _sec(sec), _smart_config(smart_config) {
_simple_link.create_txrx_buffers(max_tx_size, max_rx_size);
_simple_link.set_tx_complete_signal(1);
memset(&_status, 0, sizeof(_status));
strcpy((char *)_ssid, ssid);
strcpy((char *)_phrase, phrase);
_inst = this;
}
// Ethernet library compatible, functions return strings
// Caches the ipconfig from the usync callback
static char mac_addr[19]= "\0";
static char ip_addr[17] = "\0";
static char gateway[17] = "\0";
static char networkmask[17] = "\0";
void cc3000::init() {
_wlan.start(0);
uint32_t subnet[4] = {0};
uint32_t ip[4] = {0};
uint32_t getway[4] = {0};
uint32_t dns[4] = {0};
_netapp.dhcp(ip, subnet, getway, dns);
_wlan.stop();
wait(1);
_wlan.start(0);
_status.enabled = 1;
_wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE);
}
void cc3000::init(const char *ip, const char *mask, const char *gateway) {
_wlan.start(0);
_netapp.dhcp((uint32_t *)ip, (uint32_t *)mask, (uint32_t *)gateway, (uint32_t *)ip); //dns = ip
_wlan.stop();
wait(1);
_wlan.start(0);
_status.enabled = 1;
_wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE);
}
int cc3000::connect(unsigned int timeout_ms) {
Timer t;
int ret = 0;
if (_smart_config == false) {
_wlan.ioctl_set_connection_policy(0, 0, 0);
} else {
tUserFS user_info;
get_user_file_info((uint8_t *)&user_info, sizeof(user_info));
if (user_info.FTC == 1) {
_wlan.ioctl_set_connection_policy(0, 1, 1);
} else {
DBG_CC("Smart config is not set. Please run the first time configuration.");
return -1;
}
}
t.start();
while (is_connected() == false) {
if (strlen((const char *)_phrase) < 8) {
if (connect_open(_ssid)) {
break;
}
} else {
#ifndef CC3000_TINY_DRIVER
if (connect_secure(_ssid,_phrase, _sec)) {
break;
}
#else
return -1; /* secure connection not supported with TINY_DRIVER */
#endif
}
if (t.read_ms() > timeout_ms) {
ret = -1;
DBG_CC("Connection to AP failed");
break;
}
}
while (is_dhcp_configured() == false)
{
if (t.read_ms() > timeout_ms) {
ret = -1;
DBG_CC("Connection to AP failed");
break;
}
}
return ret;
}
char* cc3000::getMACAddress() {
return mac_addr;
}
char* cc3000::getIPAddress() {
return ip_addr;
}
char* cc3000::getGateway() {
return gateway;
}
char* cc3000::getNetworkMask() {
return networkmask;
}
int cc3000::disconnect(void){
if (_wlan.disconnect()) {
return -1;
} else {
return 0;
}
}
#endif
void cc3000::usync_callback(int32_t event_type, uint8_t *data, uint8_t length) {
if (event_type == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE) {
DBG_CC("Callback : HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE");
_status.smart_config_complete = 1;
_status.stop_smart_config = 1;
}
if (event_type == HCI_EVNT_WLAN_UNSOL_CONNECT) {
DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_CONNECT");
_status.connected = 1;
// Connect message is always followed by a DHCP message, connection is not useable until then
_status.dhcp = 0;
}
if (event_type == HCI_EVNT_WLAN_UNSOL_DISCONNECT) {
DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_DISCONNECT");
_status.connected = 0;
_status.dhcp = 0;
_status.dhcp_configured = 0;
}
if (event_type == HCI_EVNT_WLAN_UNSOL_DHCP) {
#if (CC3000_ETH_COMPAT == 1)
_socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_IP_OFFSET]))), ip_addr, 17);
_socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_GW_OFFSET]))), gateway, 17);
_socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_SUBNET_OFFSET]))), networkmask, 17);
_socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_MAC_OFFSET]))), mac_addr, 19);
#endif
if (*(data + NETAPP_IPCONFIG_MAC_OFFSET) == 0) {
_status.dhcp = 1;
DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_DHCP %i.%i.%i.%i", data[3], data[2], data[1], data[0]);
} else {
DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_DHCP - Disconnecting");
_status.dhcp = 0;
}
}
if (event_type == HCI_EVENT_CC3000_CAN_SHUT_DOWN) {
// Note this means the modules is idle, so it could be shutdown..
//DBG_CC("Callback : HCI_EVENT_CC3000_CAN_SHUT_DOWN");
_status.ok_to_shut_down = 1;
}
if (event_type == HCI_EVNT_WLAN_ASYNC_PING_REPORT) {
DBG_CC("Callback : HCI_EVNT_WLAN_ASYNC_PING_REPORT");
memcpy(&_ping_report, data, length);
}
if (event_type == HCI_EVNT_BSD_TCP_CLOSE_WAIT) {
uint8_t socketnum = data[0];
DBG_CC("Callback : HCI_EVNT_BSD_TCP_CLOSE_WAIT - Socket : %d", socketnum);
if (socketnum < MAX_SOCKETS) {
_closed_sockets[socketnum] = true; /* clients socket is closed */
}
}
}
void cc3000::start_smart_config(const uint8_t *smart_config_key) {
_status.smart_config_complete = 0;
_wlan.ioctl_set_connection_policy(0, 0, 0);
if (_status.connected == 1) {
disconnect();
}
//Wait until CC3000 is disconected
while (_status.connected == 1) {
wait_us(5);
_event.hci_unsolicited_event_handler();
}
// Trigger the Smart Config process
_wlan.smart_config_set_prefix(cc3000_prefix);
// Start the Smart Config process with AES disabled
_wlan.smart_config_start(0);
DBG_CC("Waiting for smartconfig to be completed");
// Wait for Smart config finished
while (_status.smart_config_complete == 0) {
wait_ms(100);
}
DBG_CC("Smartconfig finished");
#ifndef CC3000_UNENCRYPTED_SMART_CONFIG
// create new entry for AES encryption key
_nvmem.create_entry(NVMEM_AES128_KEY_FILEID, 16);
// write AES key to NVMEM
_security.aes_write_key((uint8_t *)(&smart_config_key[0]));
// Decrypt configuration information and add profile
_wlan.smart_config_process();
#endif
// Configure to connect automatically to the AP retrieved in the
// Smart config process
_wlan.ioctl_set_connection_policy(0, 0, 1);
// reset the CC3000
_wlan.stop();
_status.enabled = 0;
wait(5);
_wlan.start(0);
_status.enabled = 1;
// Mask out all non-required events
_wlan.set_event_mask(HCI_EVNT_WLAN_KEEPALIVE | HCI_EVNT_WLAN_UNSOL_INIT);
}
bool cc3000::connect_secure(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) {
#ifdef CC3000_TINY_DRIVER
return false; /* not supported*/
#else
uint32_t ret;
//_wlan.disconnect();
wait_ms(3);
ret = _wlan.connect(security_mode, ssid, strlen((const char *)ssid), 0, (uint8_t *)key, strlen((const char *)key));
if (ret == 0) { /* TODO static internal cc3000 state 0 to TRUE */
ret = true;
} else {
ret = false;
}
return ret;
#endif
}
bool cc3000::connect_non_blocking(const uint8_t *ssid, const uint8_t *key, int32_t security_mode)
{
bool ret = false;
if (key == 0) {
if (connect_open(ssid)) {
ret = true;
}
} else {
#ifndef CC3000_TINY_DRIVER
if (connect_secure(ssid,key,security_mode)) {
ret = true;
}
#else
/* secure connection not supported with TINY_DRIVER */
#endif
}
return ret;
}
bool cc3000::connect_to_AP(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) {
Timer t;
bool ret = true;
t.start();
while (is_connected() == false) {
if (key == 0) {
if (connect_open(ssid)) {
break;
}
} else {
#ifndef CC3000_TINY_DRIVER
if (connect_secure(ssid,key,security_mode)) {
break;
}
#else
return false; /* secure connection not supported with TINY_DRIVER */
#endif
}
/* timeout 10 seconds */
if (t.read_ms() > 10000) {
ret = false;
DBG_CC("Connection to AP failed");
break;
}
}
return ret;
}
void cc3000::start(uint8_t patch) {
_wlan.start(patch);
_status.enabled = 1;
_wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE);
}
void cc3000::stop(void) {
_wlan.stop();
_status.enabled = 0;
}
void cc3000::restart(uint8_t patch) {
_wlan.stop();
_status.enabled = 0;
wait_ms(500);
_wlan.start(patch);
_status.enabled = 1;
}
bool cc3000::connect_open(const uint8_t *ssid) {
_wlan.disconnect();
wait_ms(3);
uint32_t ret;
#ifndef CC3000_TINY_DRIVER
ret = _wlan.connect(0,ssid, strlen((const char *)ssid), 0, 0, 0);
#else
ret = _wlan.connect(ssid, strlen((const char *)ssid));
#endif
if (ret == 0) {
ret = true;
} else {
ret = false;
}
return ret;
}
bool cc3000::is_enabled()
{
return _status.enabled;
}
bool cc3000::is_connected() {
if (( _status.connected ) && ( _status.dhcp )) {
return 1;
} else {
return 0;
}
}
bool cc3000::is_dhcp_configured() {
return _status.dhcp;
}
bool cc3000::is_smart_confing_completed() {
return _status.smart_config_complete;
}
uint8_t cc3000::get_mac_address(uint8_t address[6]) {
return _nvmem.get_mac_address(address);
}
uint8_t cc3000::set_mac_address(uint8_t address[6]) {
return _nvmem.set_mac_address(address);
}
void cc3000::get_user_file_info(uint8_t *info_file, size_t size) {
_nvmem.read( NVMEM_USER_FILE_1_FILEID, size, 0, info_file);
}
uint8_t cc3000::read_sp_version(uint8_t firmware[2]){
return _nvmem.read_sp_version(firmware);
}
uint8_t cc3000::write_patch(uint32_t file_id, uint32_t length, const uint8_t *data){
if(file_id == NVMEM_WLAN_DRIVER_SP_FILEID || file_id == NVMEM_WLAN_FW_SP_FILEID){
return _nvmem.write_patch(file_id, length, data);
}
else return (1); // error
}
#ifndef CC3000_TINY_DRIVER
bool cc3000::get_ip_config(tNetappIpconfigRetArgs *ip_config) {
if ((_status.dhcp == false) || (_status.connected == false)) {
return false;
}
_netapp.ipconfig(ip_config);
return true;
}
#endif
void cc3000::delete_profiles(void) {
_wlan.ioctl_set_connection_policy(0, 0, 0);
_wlan.ioctl_del_profile(255);
tUserFS user_info;
get_user_file_info((uint8_t *)&user_info, sizeof(user_info));
user_info.FTC = 0;
set_user_file_info((uint8_t *)&user_info, sizeof(user_info));
}
void cc3000::set_user_file_info(uint8_t *info_file, size_t size) {
_nvmem.write( NVMEM_USER_FILE_1_FILEID, size, 0, info_file);
}
uint32_t cc3000::ping(uint32_t ip, uint8_t attempts, uint16_t timeout, uint8_t size) {
#ifndef CC3000_TINY_DRIVER
uint32_t reversed_ip = (ip >> 24) | ((ip >> 8) & 0xFF00) | ((ip << 8) & 0xFF0000) | (ip << 24);
_ping_report.packets_received = 0;
if (_netapp.ping_send(&reversed_ip, attempts, size, timeout) == -1) {
DBG_CC("Failed to send ping");
return 0;
}
wait_ms(timeout*attempts*2);
/* known issue of cc3000 - sent number is send + received */
// TODO : Remove the Sent/recv'd counts until ti fix the firmware issue?
DBG_CC("Sent: %d",_ping_report.packets_sent);
DBG_CC("Received: %d",_ping_report.packets_received);
DBG_CC("Min time: %d",_ping_report.min_round_time);
DBG_CC("Max time: %d",_ping_report.max_round_time);
DBG_CC("Avg time: %d",_ping_report.avg_round_time);
return _ping_report.packets_received;
#else
return 0;
#endif
}
/* Conversion between uint types and C strings */
uint8_t* UINT32_TO_STREAM_f (uint8_t *p, uint32_t u32)
{
*(p)++ = (uint8_t)(u32);
*(p)++ = (uint8_t)((u32) >> 8);
*(p)++ = (uint8_t)((u32) >> 16);
*(p)++ = (uint8_t)((u32) >> 24);
return p;
}
uint8_t* UINT16_TO_STREAM_f (uint8_t *p, uint16_t u16)
{
*(p)++ = (uint8_t)(u16);
*(p)++ = (uint8_t)((u16) >> 8);
return p;
}
uint16_t STREAM_TO_UINT16_f(uint8_t *p, uint16_t offset)
{
return (uint16_t)((uint16_t)((uint16_t)
(*(p + offset + 1)) << 8) + (uint16_t)(*(p + offset)));
}
uint32_t STREAM_TO_UINT32_f(uint8_t *p, uint16_t offset)
{
return (uint32_t)((uint32_t)((uint32_t)
(*(p + offset + 3)) << 24) + (uint32_t)((uint32_t)
(*(p + offset + 2)) << 16) + (uint32_t)((uint32_t)
(*(p + offset + 1)) << 8) + (uint32_t)(*(p + offset)));
}
} // mbed_cc3000 namespace
