Energy harvesting mobile robot. Developed at Institute of Systems and Robotics — University of Coimbra.

Fork of ISR_Mini-explorer by ISR UC

robot.h

Committer:
fabiofaria
Date:
2017-07-27
Revision:
1:d1443589406e
Parent:
0:15a30802e719

File content as of revision 1:d1443589406e:

/** @file */
//AUTOR: Fernando Pais
//MAIL:  ferpais2508@gmail.com
//DATA: 6/6/2016
// VERSÃO 6.4.0
//
//Alterações: Problema de compatibilidade entre encoder e infravermelho resolvido
//            Odometria actualizada automaticamente
//            Valor da bateria verificado na inicialização
//            Motores movem-se de 0 a 1000 para melhor difrenciação
//

//#include "mbed.h"
//#include "init.h"
//#define _USE_MATH_DEFINES
# define M_PI           3.14159265358979323846  /* pi */
#include <math.h>
#include <string.h>
#include "VCNL40x0.h"

void Odometria();

// classes adicionais

VCNL40x0 VCNL40x0_Device (PTC9, PTC8, VCNL40x0_ADDRESS);
Timeout timeout;

Serial pc(PTE0,PTE1);
I2C i2c(PTC9,PTC8);
I2C i2c1(PTC11,PTC10);

// Variables needed by the lib
unsigned int  ProxiValue=0;
short int prev_R=0;
short int prev_L=0;
long int total_R=0;
long int total_L=0;
long int ticks2d=0;
long int ticks2e=0;
float X=20;
float Y=20;
float AtractX = 0;
float AtractY = 0;
float theta=0;
int sensor_left=0;
int sensor_front=0;
int sensor_right=0;
short int flag=0;
int IRobot=0;
int JRobot=0;

//SAIDAS DIGITAIS (normal)
DigitalOut  q_pha_mot_rig       (PTE4,0);     //Phase Motor Right
DigitalOut  q_sleep_mot_rig     (PTE3,0);     //Nano Sleep Motor Right
DigitalOut  q_pha_mot_lef       (PTA17,0);    //Phase Motor Left
DigitalOut  q_sleep_mot_lef     (PTB11,0);    //Nano Sleep Motor Left
DigitalOut  q_pow_ena_i2c_p     (PTE2,0);     //Power Enable i2c FET P (0- enable 1-disable)
DigitalOut  q_pow_ena_mic_p     (PTA14,0);    //Power enable Micro FET P (0- enable 1-disable)
DigitalOut  q_pow_as5600_n      (PTC6,1);     //AS5600 Power MOSFET N (1- enable 0-disable)
DigitalOut  q_pow_as5600_p      (PTC5,0);     //AS5600 Power MOSFET P (0- enable 1-disable)
DigitalOut  q_pow_spi           (PTC4,0);     //SPI Power MOSFET P (0- enable 1-disable)
DigitalOut  q_ena_mppt          (PTC0,0);     //Enable MPPT Control (0- enable 1-disable)
DigitalOut  q_boost_ps          (PTC7,1);     //Boost Power Save (1- enable 0-disable)
DigitalOut  q_tca9548_reset     (PTC3,1);     //Reset TCA9548 (1- enable 0-disable)
DigitalOut  power_36khz         (PTD0,0);     //Power enable pic12f - 36khz (0- enable 1-disable)


// ********************************************************************
// ********************************************************************
//DEFINIÇÃO DE ENTRADAS E SAIDAS DO ROBOT
//ENTRADAS DIGITAIS (normal input)
DigitalIn   i_enc_dir_rig       (PTB8);     //Encoder Right Direction
DigitalIn   i_enc_dir_lef       (PTB9);     //Encoder Left Direction
DigitalIn   i_micro_sd_det      (PTC16);    //MICRO SD Card Detect
DigitalIn   i_mppt_fail         (PTE5);     //Fail MPPT Signal
DigitalIn   i_usb_volt          (PTB10);    //USB Voltage detect
DigitalIn   i_sup_cap_est       (PTB19);    //Supercap State Charger
DigitalIn   i_li_ion_est        (PTB18);    //Li-ion State Charger


// ********************************************************************
//ENTRADAS DIGITAIS (external interrupt)
InterruptIn i_int_mpu9250       (PTA15);    //Interrupt MPU9250
InterruptIn i_int_isl29125      (PTA16);    //Interrupt ISL29125 Color S.
InterruptIn i_mic_f_l           (PTD7);     //Interrupt Comp Micro F L
InterruptIn i_mic_f_r           (PTD6);     //Interrupt Comp Micro F R
InterruptIn i_mic_r_c           (PTD5);     //Interrupt Comp Micro R C


// ********************************************************************
//ENTRADAS ANALOGICAS
AnalogIn    a_enc_rig           (PTC2);     //Encoder Left Output_AS_MR
AnalogIn    a_enc_lef           (PTC1);     //Encoder Right Output_AS_ML
AnalogIn    a_mic_f_l           (PTB0);     //Analog microphone F L
AnalogIn    a_mic_f_r           (PTB1);     //Analog microphone F R
AnalogIn    a_mic_r_c           (PTB2);     //Analog microphone R C
AnalogIn    a_temp_bat          (PTB3);     //Temperature Battery


// ********************************************************************

//PWM OR DIGITAL OUTPUT NORMAL
//DigitalOut    q_led_whi         (PTE29);    //Led white pwm
DigitalOut    q_led_red_fro     (PTA4);     //Led Red Front
DigitalOut    q_led_gre_fro     (PTA5);     //Led Green Front
DigitalOut    q_led_blu_fro     (PTA12);    //Led Blue Front
DigitalOut    q_led_red_rea     (PTD4);     //Led Red Rear
DigitalOut    q_led_gre_rea     (PTA1);     //Led Green Rear
DigitalOut    q_led_blu_rea     (PTA2);     //Led Blue Rear


//SAIDAS DIGITAIS (pwm)
PwmOut      pwm_mot_rig         (PTE20);    //PWM Enable Motor Right
PwmOut      pwm_mot_lef         (PTE31);    //PWM Enable Motor Left
PwmOut      pwm_buzzer          (PTE21);    //Buzzer PWM
PwmOut      pwm_led_whi         (PTE29);    //Led white pwm

// ********************************************************************
//SAIDAS ANALOGICAS
AnalogOut   dac_comp_mic        (PTE30);        //Dac_Comparator MIC


/* Powers up all the VCNL4020. */
void init_Infrared()
{
    VCNL40x0_Device.SetCurrent (20);     // Set current to 200mA
}

/**
 * Selects the wich infrared to comunicate.
 *
 * @param ch - Infrared to read (1..5)
 */
void tca9548_select_ch(char ch)
{
    char ch_f[1];
    char addr=0xE0;

    if(ch==0)
        ch_f[0]=1;

    if(ch>=1)
        ch_f[0]=1<<ch;

    i2c.start();
    i2c.write(addr,ch_f,1);
    i2c.stop();
}


/**
 * Get ADC value of the chosen infrared.
 *
 * @param ch - Infrared to read (1..5)
 *
 * Note: for the values of ch it reads (0-right, ... ,4-left, 5-back)
 */
long int read_Infrared(char ch) // 0-direita 4-esquerda 5-tras
{
    tca9548_select_ch(ch);
    VCNL40x0_Device.ReadProxiOnDemand (&ProxiValue);    // read prox value on demand

    return ProxiValue;
}

///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////     MOTOR       ///////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////

// Calculo do Duty tem de ser revisto, o motor aguenta 6 V e o max definido aqui ronda os 4.2 V
// consultar pag 39 e 95

/**
 * Sets speed and direction of the left motor.
 *
 * @param Dir - Direction of movement, 0 for back, or 1 for fron
 * @param Speed - Percentage of speed of the motor (1..100)
 *
 * Note: Because of differences in the motors they need to be calibrated, test the robot going front and back
 *  at different speeds and see if it makes a straigth line
 */
void leftMotor(short int Dir,short int Speed)
{
    float Duty;

    if(Dir==1) {
        q_pha_mot_lef=0;            //Andar em frente
        if(Speed>1000)                   //limite de segurança
            Speed=1000;
        if(Speed>0) {
            Duty=Speed*.082 +35;         // 35 = minimo para o motor rodar
            q_sleep_mot_lef=1;          //Nano Sleep Motor Left
            pwm_mot_lef.pulsewidth_us(Duty*5);
        } else {
            q_sleep_mot_lef=0;
        }
    }
    if(Dir==0) {
        q_pha_mot_lef=1;            //Andar para tras

        if(Speed>1000)                   //limite de segurança
            Speed=1000;
        if(Speed>0) {
            Duty=Speed*.082 +35;         // 35 = minimo para o motor rodar
            q_sleep_mot_lef=1;          //Nano Sleep Motor Left
            pwm_mot_lef.pulsewidth_us(Duty*5);
        } else {
            q_sleep_mot_lef=0;
        }
    }
}


/**
 * Sets speed and direction of the right motor.
 *
 * @param Dir - Direction of movement, 0 for back, or 1 for fron
 * @param Speed - Percentage of speed of the motor (1..100)
 *
 * Note: Because of differences in the motors they need to be calibrated, test the robot going front and back
 *  at different speeds and see if it makes a straigth line
 */
void rightMotor(short int Dir,short int Speed)
{
    float Duty;

    if(Dir==1) {
        q_pha_mot_rig=0;            //Andar em frente

        if(Speed>1000)                   //limite de segurança
            Speed=1000;
        if(Speed>0) {
            Duty=Speed*.082 +35;         // 35 = minimo para o motor rodar
            q_sleep_mot_rig=1;          //Nano Sleep Motor Right
            pwm_mot_rig.pulsewidth_us(Duty*5);
        } else {
            q_sleep_mot_rig=0;
        }
    }
    if(Dir==0) {
        q_pha_mot_rig=1;            //Andar para tras


        if(Speed>1000)                   //limite de segurança
            Speed=1000;
        if(Speed>0) {
            Duty=Speed*.082 +35;         // 35 = minimo para o motor rodar
            q_sleep_mot_rig=1;          //Nano Sleep Motor Right
            pwm_mot_rig.pulsewidth_us(Duty*5);
        } else {
            q_sleep_mot_rig=0;
        }
    }
}


///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////     ENCODER     ///////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////

/**
 * Reads Position of left magnetic encoder.
 *
 * @return The absolute position of the left wheel encoder (0..4095)
 */
long int read_L_encoder()
{

    char data_r_2[5];

    i2c.start();
    i2c.write(0x6C);
    i2c.write(0x0C);
    i2c.read(0x6D,data_r_2,4,0);
    i2c.stop();

    short int val1=data_r_2[0];
    short int val2=data_r_2[1];
    val1=(val1&0xf)*256;
    long int final=(val2+val1);

    return  final;
}


/**
 * Reads Position of right magnetic encoder.
 *
 * @return The absolute position of the right wheel encoder (0..4095)
 */
long int read_R_encoder()
{

    char data_r_2[5];

    i2c1.start();
    i2c1.write(0x6C);
    i2c1.write(0x0C);
    i2c1.read(0x6D,data_r_2,4,0);
    i2c1.stop();

    short int val1=data_r_2[0];
    short int val2=data_r_2[1];
    val1=(val1&0xf)*256;
    long int final=(val2+val1);

    return  final;
}


/**
 * Calculates and returns the value of the  right "incremental" encoder.
 *
 * @return The value of "tics" of the right encoder since it was initialized
 */
long int incremental_R_encoder()
{
    short int next_R=read_R_encoder(); // Reads curent value of the encoder
    short int dif=next_R-prev_R;       // Calculates the diference from last reading

    if(dif>3000) {                     // Going back and pass zero
        total_R=total_R-4096+dif;
    }
    if(dif<3000&&dif>0) {              // Going front
        total_R=total_R+dif;
    }
    if(dif<-3000) {                    // Going front and pass zero
        total_R=total_R+4096+dif;
    }
    if(dif>-3000&&dif<0) {             // going back
        total_R=total_R+dif;
    }
    prev_R=next_R;                     // Sets last reading for next iteration

    return  total_R;
}


/**
 * Calculates and returns the value of the  left "incremental" encoder.
 *
 * @return The value of "tics" of the left encoder since it was initialized
 */
long int incremental_L_encoder()
{
    short int next_L=read_L_encoder(); // Reads curent value of the encoder
    short int dif=-next_L+prev_L;      // Calculates the diference from last reading

    if(dif>3000) {                     // Going back and pass zero
        total_L=total_L-4096+dif;
    }
    if(dif<3000&&dif>0) {              // Going front
        total_L=total_L+dif;
    }
    if(dif<-3000) {                    // Going front and pass zero
        total_L=total_L+4096+dif;
    }
    if(dif>-3000&&dif<0) {             // going back
        total_L=total_L+dif;
    }
    prev_L=next_L;                     // Sets last reading for next iteration

    return  total_L;
}


/**
 * Calculate the value of both encoder "incremental" every 10 ms.
 */
void timer_event()  //10ms interrupt
{
    timeout.attach(&timer_event,0.01);
    if(flag==0) {
        incremental_R_encoder();
        incremental_L_encoder();
    }
    Odometria();

    return;
}


/**
 * Set the initial position for the "incremental" enconder and "starts" them.
 */
void initEncoders()
{
    prev_R=read_R_encoder();
    prev_L=read_L_encoder();
    timeout.attach(&timer_event,0.01);
}


/**
 * Returns to the user the value of the right "incremental" encoder.
 *
 * @return The value of "tics" of the right encoder since it was initialized
 */
long int R_encoder()
{
    wait(0.0001);

    return total_R;
}

/**
 * Returns to the user the value of the right "incremental" encoder.
 *
 * @return The value of "tics" of the right encoder since it was initialized
 */
long int L_encoder()
{
    wait(0.0001);

    return total_L;
}


///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////     BATTERY     ///////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////

/**
 * Reads adc of the battery.
 *
 * @param addr - Address to read
 * @return The voltage of the batery
 */
long int read16_mcp3424(char addr)
{
    char data[4];
    i2c1.start();
    i2c1.read(addr,data,3);
    i2c1.stop();

    return(((data[0]&127)*256)+data[1]);
}

/**
 * Reads adc of the battery.
 *
 * @param n_bits - Resolution of measure
 * @param ch - Chose value to read, if voltage or current of solar or batery
 * @param gain -
 * @param addr - Address to write to
 */
void write_mcp3424(int n_bits, int  ch, int gain, char  addr)  //chanel 1-4    write -> 0xD0
{

    int chanel_end=(ch-1)<<5; //shift left
    char n_bits_end=0;

    if(n_bits==12) {
        n_bits_end=0;
    } else if(n_bits==14) {
        n_bits_end=1;
    } else if(n_bits==16) {
        n_bits_end=2;
    } else {
        n_bits_end=3;
    }
    n_bits_end=n_bits_end<<2; //shift left

    char data[1];
    data[0]= (char)chanel_end | (char)n_bits_end | (char)(gain-1) | 128;
    i2c1.start();
    i2c1.write(addr,data,1);
    i2c1.stop();
}


/**
 * Reads adc of the battery.
 *
 * @return The voltage of the batery
 */
float value_of_Batery()
{
    float   R1=75000.0;
    float   R2=39200.0;
    float   R3=178000.0;
    float   Gain=1.0;
    write_mcp3424(16,3,1,0xd8);
    float cha3_v2=read16_mcp3424(0xd9); //read  voltage
    float Vin_v_battery=(((cha3_v2*2.048)/32767))/Gain;
    float Vin_b_v_battery=(-((-Vin_v_battery)*(R1*R2 + R1*R3 + R2*R3))/(R1*R2));
    Vin_b_v_battery=(Vin_b_v_battery-0.0)*1.00268;

    return Vin_b_v_battery;
}


///////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////      Sonar     ////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////
//      Commands of operation with ultrasonic module

//    WRITE OPTION:
//        ENABLE DC DC CONVERTER          - 0x0C;
//        DISABLE DC DC CONVERTER         - 0x0B;
//        START MEASURE LEFT SENSOR       - 0x0A;
//        START MEASURE FRONT SENSOR      - 0x09;
//        START MEASURE RIGHT SENSOR      - 0x08;
//        SENSORS ALWAYS MEASURE ON       - 0x07;
//        SENSORS ALWAYS MEASURE OFF      - 0x06;

// READ OPTION:
//        GET MEASURE OF LEFT SENSOR          - 0x05;
//        GET MEASURE OF FRONT SENSOR         - 0x04;
//        GET MEASURE OF IGHT SENSOR          - 0x03;
//        GET STATUS SENSORS ALWAYS MEASURE   - 0x02;
//        GET STATUS DC DC CONVERTER          - 0x01;

void enable_dc_dc_boost()
{
    char data[1];
    data[0]= 0x0C;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}


void disable_dc_dc_boost()
{
    char data[1];
    data[0]= 0x0B;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}


void start_read_left_sensor()
{
    char data[1];
    data[0]= 0x0A;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}


void start_read_front_sensor()
{
    char data[1];
    data[0]= 0x09;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}


void start_read_right_sensor()
{
    char data[1];
    data[0]= 0x08;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}


void measure_always_on()  // left, front, right
{
    char data[1];
    data[0]= 0x07;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}


void measure_always_off()
{
    char data[1];
    data[0]= 0x06;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data,1);
    i2c1.stop();
}

/**
 * Returns left sensor value
 */
static unsigned int get_distance_left_sensor()
{

    static char data_r[3];
    static unsigned int aux;
    flag=1;

    data_r[0]= 0x05;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data_r,1);
    i2c1.stop();
    wait_ms(10);
    i2c1.start();
    i2c1.read(0x31,data_r,2,0);
    i2c1.stop();

    aux=(data_r[0]*256)+data_r[1];
    flag=0;
    return aux;
    // sensor_left=aux;
    // pc.printf("\nDistance Left Sensor: %u mm",aux); //0 - 2500mm

}


/**
 * Returns front sensor value
 */
static unsigned int get_distance_front_sensor()
{

    static char data_r[3];
    static unsigned int aux;
    flag=1;
    data_r[0]= 0x04;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data_r,1);
    i2c1.stop();
    wait_ms(10);
    i2c1.start();
    i2c1.read(0x31,data_r,2,0);
    i2c1.stop();

    aux=(data_r[0]*256)+data_r[1];
    flag=0;
    return aux;
    // sensor_front=aux;
    // pc.printf("\nDistance Front Sensor: %u mm",aux); //0 - 2500mm

}


/**
 * Returns right sensor value
 */
static unsigned int get_distance_right_sensor()
{

    static char data_r[3];
    static unsigned int aux;
    flag=1;

    data_r[0]= 0x03;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data_r,1);
    i2c1.stop();
    wait_ms(10);
    i2c1.start();
    i2c1.read(0x31,data_r,2,0);
    i2c1.stop();

    aux=(data_r[0]*256)+data_r[1];
    flag=0;
    return aux;
    // sensor_right=aux;
    // pc.printf("\nDistance Right Sensor: %u \r",aux); //0 - 2500mm

}


void get_status_always_measure()
{

    static char data_r[3];
    static unsigned int aux;

    data_r[0]= 0x02;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data_r,1);
    i2c1.stop();
    wait_ms(10);
    i2c1.start();
    i2c1.read(0x31,data_r,2,0);
    i2c1.stop();

    aux=data_r[0];
    pc.printf("\nStatus of read always on/off: %u ",aux); //0 (off) - 1 (on)

}


void get_status_dcdc_converter()
{

    static char data_r[3];
    static unsigned int aux;

    data_r[0]= 0x01;
    wait_ms(1);
    i2c1.start();
    i2c1.write(0x30,data_r,1);
    i2c1.stop();
    wait_ms(10);
    i2c1.start();
    i2c1.read(0x31,data_r,2,0);
    i2c1.stop();

    aux=data_r[0];
    pc.printf("\nStatus of DC/DC Converter: %u ",aux); //0 (off) - 1 (on)

}


///////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////      MISC.      ////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////


/**
 * Initializes the necessary robot pins
 */
void init_robot_pins()
{

    //SAIDAS DIGITAIS (normal)
    //q_pha_mot_rig=0;            //Phase Motor Right
    //q_sleep_mot_rig=0;          //Nano Sleep Motor Right
    //q_pha_mot_lef=0;            //Phase Motor Left
    //q_sleep_mot_lef=0;          //Nano Sleep Motor Left
    //q_pow_ena_i2c_p=0;          //Power Enable i2c FET P
    //q_pow_ena_mic_p=0;          //Power enable Micro FET P
    //q_pow_as5600_n=1;           //AS5600 Power MOSFET N
    //q_pow_as5600_p=0;           //AS5600 Power MOSFET P
    //q_pow_spi=0;                //SPI Power MOSFET P
    //q_ena_mppt=0;               //Enable MPPT Control
    //q_boost_ps=1;               //Boost Power Save
    //q_tca9548_reset=1;          //Reset TCA9548

    //SAIDAS DIGITAIS (normal)
    q_pha_mot_rig=0;            //Phase Motor Right
    q_sleep_mot_rig=0;          //Nano Sleep Motor Right
    q_pha_mot_lef=0;            //Phase Motor Left
    q_sleep_mot_lef=0;          //Nano Sleep Motor Left

    q_pow_ena_i2c_p=0;         //Power Enable i2c FET P
    q_pow_ena_mic_p=0;          //Power enable Micro FET P
    q_pow_as5600_p=0;           //AS5600 Power MOSFET P
    // q_pow_spi=0;                //SPI Power MOSFET P
    q_pow_as5600_n=1;           //AS5600 Power MOSFET N


    q_ena_mppt=0;               //Enable MPPT Control
    q_boost_ps=1;               //Boost Power Save
    q_tca9548_reset=1;          //Reset TCA9548

    //Leds caso seja saida digital:
    q_led_red_fro=1;          //Led Red Front (led off)
    q_led_gre_fro=1;          //Led Green Front (led off)
    q_led_blu_fro=1;          //Led Blue Front (led off)
    q_led_red_rea=1;          //Led Red Rear (led off)
    q_led_gre_rea=1;          //Led Green Rear (led off)
    q_led_blu_rea=1;          //Led Blue Rear (led off)r


//********************************************************************
    //SAIDAS DIGITAIS (pwm)
    //PWM Enable Motor Right
    pwm_mot_rig.period_us(500);
    pwm_mot_rig.pulsewidth_us(0);

    //PWM Enable Motor Left
    pwm_mot_lef.period_us(500);
    pwm_mot_lef.pulsewidth_us(0);

    //Buzzer PWM
    pwm_buzzer.period_us(500);
    pwm_buzzer.pulsewidth_us(0);

    //LED white
    pwm_led_whi.period_us(500);
    pwm_led_whi.pulsewidth_us(0);

}


/**
 * Initializes all the pins and all the modules necessary
 */
void initRobot(void)
{
    init_robot_pins();
    enable_dc_dc_boost();
    //init_Infrared();
    //initEncoders();

    enable_dc_dc_boost();
    wait_ms(100); //wait for read wait(>=150ms);
    measure_always_on();
    float value = value_of_Batery();
    pc.printf("Initialization Successful \n\r");
    pc.printf("Battery level: %f \n\r",value);
    if(value < 3.0) {
        pc.printf(" WARNING: BATTERY NEEDS CHARGING ");
    }

    // float level = value_of_Batery();
    // sendValue(int(level*100));

}


////////////////////////////////////////////////////

/**
 * Updates the position and orientation of the robot based on the data from the encoders
 *
 * Note: Needs to be calibrated for each robot, in this case the radius of the whells is 3.55
 * and the distance between them is 7.4
 */
void Odometria()
{
    long int ticks1d=R_encoder();
    long int ticks1e=L_encoder();

    long int D_ticks=ticks1d - ticks2d;
    long int E_ticks=ticks1e - ticks2e;

    ticks2d=ticks1d;
    ticks2e=ticks1e;

    float D_cm= (float)D_ticks*((3.25*3.1415)/4096);
    float L_cm= (float)E_ticks*((3.25*3.1415)/4096);

    float CM=(D_cm + L_cm)/2;

    theta +=(D_cm - L_cm)/7.18;

    theta = atan2(sin(theta), cos(theta));

    // meter entre 0

    X += CM*cos(theta);
    Y += CM*sin(theta);

}